Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure of metallic glasses at mesoscopic scale: spatial heterogeneity in correlating atomic configurations with macroscopic properties

ZHU Fan ZHOU Jiong HUANG Huang WEN Wenxin YE Jieyu YAN Zhenzhen

Citation:

Microstructure of metallic glasses at mesoscopic scale: spatial heterogeneity in correlating atomic configurations with macroscopic properties

ZHU Fan, ZHOU Jiong, HUANG Huang, WEN Wenxin, YE Jieyu, YAN Zhenzhen
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The atomic arrangement of metallic glasses lacks long-range periodicity, displaying structural characteristics of an amorphous state. Their unique structural features lead to research methods that differ from traditional metallic crystalline materials, focusing mainly on two scales: one class at the macroscopic scale investigating glass-forming ability and mechanical behavior through alloy design, thermodynamic parameters, and other means; the other class at the atomic scale studying medium- to short-range orders of metallic glass through computational simulations and diffraction techniques. There is over a seven-order magnitude difference between the scales of these two methods, making it difficult to establish a direct quantitative relationship between the two, necessitating a structural feature that can connect atomic configurations with macroscopic properties at a mesoscopic scale. With the advancement of characterization techniques for amorphous structures, metallic glasses have been found to exhibit nanoscale and microscale spatial heterogeneity above medium- and short-range orders, with their scale falling between macroscopic and atomic scales. This article will introduce experimental characterization methods for spatial heterogeneity, focus on the electron microscopic characterization methods of spatial heterogeneity and local atomic orders, and discuss their intrinsic correlations with macroscopic properties such as β-relaxation behavior, mechanical behavior, thermodynamic stability, and glass-forming ability. As a structural feature of metallic glasses at the mesoscopic scale, spatial heterogeneity can serve as a link connecting the atomic medium- to short-range orders with macroscopic properties.
  • [1]

    Wang W H 2013 Prog. Phys. 33177(in Chinese) [汪卫华2013物理学进展 33177]

    [2]

    Chen M W 2008 Annu. Rev. Mater. Res. 38445

    [3]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56379

    [4]

    Guan P F, Wang B, Wu Y C, Zhang S, Shang B S, Hu Y C, Su R, Liu Q 2017 Acta Phys. Sin. 6617176112(in Chinese) [管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪2017物理学报6617176112]

    [5]

    Inoue A 2000 Acta Mater. 48279

    [6]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 632342

    [7]

    Pan J, Duan F H 2021 Acta Metall. Sin. 57439(in Chinese) [潘杰, 段峰辉2021金属学报57439]

    [8]

    Zhang Z F, He G, Eckert J, Schultz L 2003 Phys. Rev. Lett. 91045505

    [9]

    Zhou Z Y, Yang Q, Yu H B 2024 Prog. Mater. Sci. 101311

    [10]

    Miracle D B 2004 Nat. Mater. 3697

    [11]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439419

    [12]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102245501

    [13]

    Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen M W 2009 Phys. Rev. Lett. 103075502

    [14]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108175501

    [15]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 66035

    [16]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104250

    [17]

    Ding J, Patinet S, Falk M L, Cheng Y, Ma E 2014 Proc. Natl. Acad. Sci. U.S.A. 11114052

    [18]

    Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 711516

    [19]

    Zhu F, Hirata A, Liu P, Song S X, Tian Y, Han J H, Fujita T, Chen M W 2017 Phys. Rev. Lett. 119215501

    [20]

    Zhu F, Song S X, Reddy K M, Hirata A, Chen M W 2018 Nat. Commun. 93965

    [21]

    Luo P, Cao C R, Zhu F, Lv Y M, Lv Y H, Wen P, Bai H Y, Vaughan G, Michiel M, Ruta B, Wang W H 2018 Nat. Commun. 91389

    [22]

    Zhou J, Yan Z Z, Huang H, Que S J, Song S X, Liu H P, Ding J, Zhu F 2025 Phys. Rev. B (in press)

    [23]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 5199

    [24]

    Wagner H, Bedorf D, Küchemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10439

    [25]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106125504

    [26]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 605260

    [27]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 614329

    [28]

    Tsai P, Kranjc K, Flores K M 2017 Acta Mater. 13911

    [29]

    Sun X, Mo G, Zhao L Z, Dai L H, Wu Z H, Jiang M Q 2017 Acta Phys. Sin. 66176109(in Chinese) [孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强2017物理学报66176109]

    [30]

    Zhang P, Maldonis J J, Liu Z, Schroers J, Voyles P M 2018 Nat. Commun. 91129

    [31]

    Gao M, Perepezko J H 2020 Nano Lett. 207558

    [32]

    Jiang J, Lu Z, Shen J, Wada T, Kato H, Chen M 2021 Nat. Commun. 123843

    [33]

    Duan Y J, Zhang L T, Qiao J C, Wang Y J, Yang Y, Wada T, Crespo D 2022 Phys. Rev. Lett. 129175501

    [34]

    Feng T, Hahn H, Gleiter H 2017 Acta Phys. Sin. 66176110(in Chinese) [冯涛, Horst Hahn, Herbert Gleiter 2017物理学报66176110]

    [35]

    Elliott S R 1990 Physics of Amorphous Materials 2nd edn (London: Longman)

    [36]

    Cusack N E 2003 The Physics of Structurally Disordered Matter: An Introduction (Bristol: Adam Hilger)

    [37]

    Frank F C 1952 Proc. R. Soc. London, Ser. A 21543

    [38]

    Bernal J D 1960 Nature 18568

    [39]

    Ma E 2015 Nat. Mater. 14547

    [40]

    Nelson D R 1983 Phys. Rev. B 285515

    [41]

    Cowley J M 2002 Ultramicroscopy 90197

    [42]

    Zhu J, Cowley J M 1982 Acta Crystallogr., Sect. A: Found. Crystallogr. 38718

    [43]

    Krivanek O L, Dellby N, Lupini A R 1999 Ultramicroscopy 781

    [44]

    Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M 2011 Nat. Mater. 1028

    [45]

    Hirata A, Chen M W 2014 J. Non-Cryst. Solids 38352

    [46]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341376

    [47]

    Yang Y, Zhou J, Zhu F, Yuan Y, Chang D J, Kim D S, Miao J 2021 Nature 59260

    [48]

    Yuan Y, Kim D S, Zhou J, Chang D J, Zhu F, Nagaoka Y, Miao J 2022 Nat. Mater. 2195

    [49]

    Debenedetti P G, Stillinger F H 2001 Nature 410259

    [50]

    Johari G P 1973 J. Chem. Phys. 581766

    [51]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 532372

    [52]

    Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer)

    [53]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 883113

    [54]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1429

    [55]

    Hu L N, Yue Y Z 2009 J. Phys. Chem. C 11315001

    [56]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95245501

    [57]

    Wang W H 2011 J. Appl. Phys. 110053521

    [58]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108015504

    [59]

    Johari G P 2002 J. Non-crystal. Solids 307317

    [60]

    Thayyil M S, Capaccioli S, Prevosto D, Ngai K L 2008 Philos. Mag. 884007

    [61]

    Stevenson J D, Wolynes P G 2010 Nat. Phys. 663

    [62]

    Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109095508

    [63]

    Yu H B, Samwer K, Wang W H, Bai H Y 2013 Nat. Commun. 43204

    [64]

    Liu Y H, Fujita T, Aji D P B, Matsuura M, Chen M W 2014 Nat. Commun. 54328

    [65]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 5199

    [66]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 56823

    [67]

    Spaepen F 1977 Acta Metall. 25407

    [68]

    Argon A S 1979 Acta Metall. 2747

    [69]

    Langer J S 2006 Scr. Mater. 54375

    [70]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95195501

    [71]

    Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Natl. Acad. Sci. U.S.A. 10514769

    [72]

    Qiao J C, Zhang L T, Tong Y, Lyu G J, Hao Q, Tao K 2022 Adv. Mech. 52117(in Chinese) [ 乔吉 超, 张浪 渟, 童钰, 吕国 建, 郝奇, 陶凯 2022力 学进 展52117]

    [73]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105205502

    [74]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9619

    [75]

    Wang W H 2012 Nat. Mater. 11275

    [76]

    Patinet S, Vandembroucq D, Falk M L 2016 Phys. Rev. Lett. 117045501

    [77]

    Ding J, Cheng Y Q, Sheng H, Asta M, Ritchie R O, Ma E 2016 Nat. Commun. 713733

    [78]

    Cubuk E D, Ivancic R J S, Schoenholz S S, Strickland D J, Basu A, Davidson Z S, Fontaine J, Hor J L, Huang Y R, Jiang Y, Keim N C, Koshigan K D, Lefever J A, Liu T, Ma X G, Magagnosc D J, Morrow E, Ortiz C P, Rieser J M, Shavit A, Still T, Xu Y, Zhang Y, Nordstrom K N, Arratia P E, Carpick R W, Durian D J, Fakhraai Z, Jerolmack D J, Lee D, Li J, Riggleman R, Turner K T, Yodh A G, Gianola D S, Liu A J 2017 Science 3581033

    [79]

    Sun B A, Hu Y C, Wang D P, Zhu Z G, Wen P, Wang W H, Liu C T, Yang Y 2016 Acta Mater. 121266

    [80]

    Pan J, Ivanov Y P, Zhou W H, Li Y, Greer A L 2020 Nature 578559

    [81]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Greer A L 2015 Nature 524200

    [82]

    Ross P, Küchemann S, Derlet P M, Yu H B, Arnold W, Liaw P, Samwer K, Maaß R 2017 Acta Mater. 138111

    [83]

    Ediger M D 2017 J. Chem. Phys. 147210901

    [84]

    Rodríguez-Tinoco C, Gonzalez-Silveira M, Ramos M A, Rodríguez-Viejo J 2022 Riv. Nuovo Cim. 45325

    [85]

    Luo P, Fakhraai Z 2023 Annu. Rev. Phys. Chem. 74361

    [86]

    Ngai K L 2023 Prog. Mater. Sci. 139101130

    [87]

    Ruiz-Ruiz M, Vila-Costa A, Bar T, Rodríguez-Tinoco C, Gonzalez-Silveira M, Plaza J A, Alcalá J, Fraxedas J, Rodriguez-Viejo J 2023 Nat. Phys. 191509

    [88]

    Vila-Costa A, Gonzalez-Silveira M, Rodríguez-Tinoco C, Rodríguez-López M, Rodriguez-Viejo J 2023 Nat. Phys. 19114

    [89]

    Yu H B, Gao L, Gao J Q, Samwer K 2024 Natl. Sci. Rev. 11 nwae091

    [90]

    Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315353

    [91]

    Luo P, Wolf S E, Govind S, Stephens R B, Kim D H, Chen C Y, Nguyen T, Wąsik P, Zhernenkov M, Mcclimon B, Fakhraai Z 2024 Nat. Mater. 23688

    [92]

    Walters D M, Antony L, de Pablo J J, Ediger M D 2017 J. Phys. Chem. Lett. 83380

    [93]

    Ediger M D, de Pablo J, Yu L 2019 Acc. Chem. Res. 52407

    [94]

    Bagchi K, Ediger M D 2020 J. Phys. Chem. Lett. 116935

    [95]

    Raegen A N, Yin J, Zhou Q, Forrest J A 2020 Nat. Mater. 191110

    [96]

    Ràfols-Ribé J, Will P A, Hänisch C, Gonzalez-Silveira M, Lenk S, RodríguezViejo J, Reineke S 2018 Sci. Adv. 4 eaar8332

    [97]

    Guo Y, Morozov A, Schneider D, Chung J W, Zhang C, Waldmann M, Yao N, Fytas G, Arnold C B, Priestley R D 2012 Nat. Mater. 11337

    [98]

    Yu H B, Luo Y, Samwer K 2013 Adv. Mater. 255904

    [99]

    Aji D P, Hirata A, Zhu F, Pan L, Reddy K M, Song S, Liu Y, Fujita T, Kohara S, Chen M W 2013 arXiv:1306.1575

    [100]

    Wang J Q, Chen N, Liu P, Wang Z, Louzguine-Luzgin D V, Chen M W, Perepezko J H 2014 Acta Mater. 7930

    [101]

    Magagnosc D J, Feng G, Yu L, Cheng X, Gianola D S 2016 APL Mater. 4086104

    [102]

    Luo P, Zhu F, Lv Y M, Lu Z, Shen L Q, Zhao R, Sun Y T, Vaughan G B, Di Michiel M, Ruta B, Bai H Y 2021 ACS Appl. Mater. Inter. 1340098

    [103]

    Zhao Y, Shang B, Zhang B, Tong X, Ke H, Bai H, Wang W H 2022 Sci. Adv. 8 eabn3623

    [104]

    Zhang Z, Ding J, Ma E 2022 Proc. Natl. Acad. Sci. U.S.A. 119

  • [1] Liang Shu-Yi, Zhang Lang-Ting, Zhu Hang-Chen, Xing Guang-Hui, Qiao Ji Chao. Investigation on coupling mechanisms between high-temperature rheological behavior and dynamic relaxation in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.74.20250392
    [2] Qin Hai-Rong, Hou Yi-Jie, Yang Kun, Jin Cancan, Lü Yong-Jun. Topological phase transition in metallic glass formers. Acta Physica Sinica, doi: 10.7498/aps.74.20250513
    [3] Mi Xiao-Lei, Hu Liang, Wu Bo-Wen, Long Qiang, Wei Bing-Bo. Influence of gadolinium content on magnetic property and oxidation mechanism of Fe-B-Nb-Gd metallic glass. Acta Physica Sinica, doi: 10.7498/aps.73.20232040
    [4] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.73.20231417
    [5] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, doi: 10.7498/aps.73.20231421
    [6] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, doi: 10.7498/aps.72.20230181
    [7] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, doi: 10.7498/aps.72.20222389
    [8] Chen Bo, Yang Zhan-Zhan, Wang Yu-Ying, Wang Yin-Gang. Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe80Si9B10Cu1 amorphous alloy. Acta Physica Sinica, doi: 10.7498/aps.71.20220446
    [9] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.69.20191781
    [10] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.66.176104
    [11] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176106
    [12] Chen Na, Zhang Ying-Qi, Yao Ke-Fu. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.66.176113
    [13] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, doi: 10.7498/aps.66.186101
    [14] Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, doi: 10.7498/aps.66.176109
    [15] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176110
    [16] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176112
    [17] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176103
    [18] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.178101
    [19] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, doi: 10.7498/aps.56.999
    [20] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, doi: 10.7498/aps.54.3862
Metrics
  • Abstract views:  49
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Available Online:  20 June 2025

/

返回文章
返回