Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure of metallic glasses on a mesoscopic scale: spatial heterogeneity in correlating atomic configurations with macroscopic properties*

ZHU Fan ZHOU Jiong HUANG Huang WEN Wenxin YE Jieyu YAN Zhenzhen

Citation:

Microstructure of metallic glasses on a mesoscopic scale: spatial heterogeneity in correlating atomic configurations with macroscopic properties*

ZHU Fan, ZHOU Jiong, HUANG Huang, WEN Wenxin, YE Jieyu, YAN Zhenzhen
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The atomic arrangement of metallic glasses lacks long-range periodicity, and exhibits structural characteristics of an amorphous state. Their unique structural features lead to research methods that differ traditional metallic crystalline materials, focusing mainly on two scales: one is a macroscopic scale, on which glass-forming ability and mechanical behavior are investigated through alloy design, thermodynamic parameters, and other means; the other is an atomic scale, on which medium- to short-range orders of metallic glass are studied through computational simulations and diffraction techniques. There is a difference of over seven-orders of magnitude between the scales of these two methods, which makes it difficult to establish a direct quantitative relationship between them. Therefore, a structural feature is needed that can connect atomic configurations with macroscopic properties on a mesoscopic scale. With the development of amorphous structure characterization technique, it has been found that metallic glasses exhibit spatial heterogeneity at the nanometer and micrometer levels above a medium-to-short range, with their scales ranging between macroscopic and atomic scales. This article introduces experimental characterization methods for spatial heterogeneity, focuses on the electron microscopic characterization methods of spatial heterogeneity and local atomic orders, and discusses their intrinsic correlations with macroscopic properties such as β-relaxation behavior, mechanical behavior, thermodynamic stability, and glass-forming capability. Spatial heterogeneity, as a structural characteristic of metallic glasses on a mesoscopic scale, can serve as a link between short-range order and macroscopic properties of atoms.
  • 图 1  介观空间非均匀性可作为关联非晶合金的原子中短程序与宏观性能的结构特征[1822]

    Figure 1.  Mesoscopic spatial heterogeneity can be used as a microstructure to correlate the atomic short- and medium-range orders with macroscopic properties of metallic glasses[1822].

    图 2  非晶合金的类晶体中程有序结构[47]

    Figure 2.  Crystal-like medium-range ordered structure in metallic glass[47].

    图 3  不同制备条件和测量方法下超快冷却Zr-Cu-Al非晶合金的微观结构 (a) 高分辨透射电子显微图; (b), (c) 离子减薄(b)以及电解双喷(c)制备条件下样品的高角环形暗场成像(HAADF)模式的扫描透射电子显微(STEM)图片; (d) 调幅动态原子力显微镜的相位偏移图以及对应的放大图片, 图(b)—(d)中的空间非均匀性的特征关联长度都在6 nm左右[18,19]

    Figure 3.  Microstructure of ultraquenched Zr-Cu-Al metallic glass prepared under different conditions and measured by different methods: (a) High-resolution transmission electron micrograph; (b), (c) scanning transmission electron micrographs of samples with ion milling (b) and twin-jet polishing (c) preparation conditions in high-angle annular dark-field imaging modes; (d) phase-shift image of amplitude-modulation dynamic AFM and the corresponding enlarged images, the characteristic correlation lengths of spatial heterogeneity in (b)–(d) are all about 6 nm[18,19].

    图 4  通过离子减薄制备的超快冷Zr-Cu-Al非晶合金的密度和厚度分析 (a) HAADF-STEM 图像的强度分布, 可以用高斯函数拟合; (b) 从HAADF-STEM 图像中标记的区域提取的强度曲线; (c) 根据电子能量损失谱零损失峰(EELS zero-loss peak)绘制的厚度图, 色标显示t/l的值, 其中t为样品厚度, l为非弹性平均自由路径; (d) 从厚度图中相应区域提取的强度曲线[19]

    Figure 4.  Density and thickness analysis of a hyper-quenched Zr-Cu-Al metallic glass prepared by ion milling: (a) The intensity distribution of HAADF-STEM images which can be well fitted by the Guassian function; (b) the intensity profile taken from the regions marked in the HAADF-STEM image; (c) a thickness mapping derived from the EELS zero-loss peak with a color scale showing the values of t/l where t is the thickness of sample and l is the inelastic mean free path; (d) the intensity profile taken from the corresponding regions in the thickness mapping[19].

    图 5  (a)—(d) 无减薄的Zr70Cu29Pt1非晶合金条带中的薄区显示空间非均匀性; (e) 经过5 h离子减薄后的样品中的空间非均匀性[19]

    Figure 5.  (a)–(d) Thin region in a milling-free Zr70Cu29Pt1 metallic glass ribbon showing spatial heterogeneity; (e) spatial heterogeneity in sample after ion milling for 5 h[19].

    图 6  (a) 扫描埃尺度相干电子衍射的示意图; (b) 扫描ABED衍射花样与二维位置信息一起存储在四维数据库示意, 非晶合金亮区和暗区的代表性 ABED 图样; (c)亮区和(f)暗区提取的单个ABED花样; (d), (g) 衍射矢量之间的角度标注; (e) 完全非晶的样品和(h) 部分晶化的样品的选区衍射(SAED)图样[19]

    Figure 6.  (a) Schematic illustration of scanning Angstrom-beam electron diffraction; (b) the scanning ABED patterns are stored with the two-dimensional positioning information as a 4D database, representative ABED patterns from bright and dark regions of the hyper-quenched metallic glasses; individual ABED patterns taken from (c) bright regions and (f) dark regions; (d), (g) the angles between diffraction vectors are marked; SAED patterns taken from (e) the as-prepared hyper-quenched metallic glass; and (h) the partially devitrified metallic glass[19].

    图 7  超快冷Zr-Cu-Al非晶合金 (a) 退火前、在553 K温度下退火 (b) 5 min和(c) 720 min的调幅动态原子力显微图片; (d) 553 K下不同退火时间的相偏移相关方程曲线; (e) 根据空间非均匀性体积的特征弛豫时间与退火温度的倒数关系推导出的演化激活能[18]

    Figure 7.  Amplitude-modulation dynamic AFM of ultraquenched Zr-Cu-Al metallic glasses (a) before annealing and after annealing at 553 K for (b) 5 min and (c) 720 min; (d) phase-shift correlation function curves for samples annealed at 553 K for different times; (e) the evolution activation energy derived from the dependence of characteristic relaxation time of spatial heterogeneity volumes on the reciprocal annealing temperature [18].

    图 8  (a) 超快冷却Zr-Cu-Al非晶合金的高分辨率图像, 插图为对应的选区电子衍射图; (b) 超快冷却、中速冷却和慢速冷却样品的高角度环形暗场扫描图像; (c) 纳米压痕硬度和模量与空间非均匀性的特征长度的关系图, 实心曲线是对各点的线性拟合; (d) 超快冷却和慢速冷却的微米柱在单轴压缩下的工程应力应变线[20]

    Figure 8.  (a) High-resolution TEM (HRTEM) image of the hyper-quenched Zr-Cu-Al metallic glass, the inset is the corresponding selected area electron diffraction pattern; (b) high-angle annular dark-field scanning TEM (HAADF-STEM) images of the hyper-quenched, the intermediate and the highly relaxed samples; (c) nanoindentation hardness and modulus plotted with the characteristic length of spatial heterogeneity, the solid curve is a linear fitting for the points; (d) micro-pillar compression testing, engineering stress-stain curves of the hyper-quenched and the highly relaxed samples subjected to the uniaxial micro-pillar compression[20].

    图 9  应变弛豫测试 (a) 50 mN的恒定加载条件下, 压头位移h与保持时间th的应变弛豫测试曲线; (b) 拉伸指数β与特征长度ξ的关系图, 通过应变弛豫测量的β实验值与混合物模型的理论值完全一致, 左上插图是亮区的代表性埃尺度相关电子衍射(ABED)图案, 右下插图是暗区的代表性ABED图案[20]

    Figure 9.  Strain relaxation measurements: (a) Indenter displacement h as a function of the holding time th at a constant loading of 50 mN; (b) the stretching exponent β plotted with the characteristic length ξ, the experimental values of β measured by the strain relaxation are well consistent with the predictions of the mixture model, the top left inset is a representative ABED pattern for the bright regions, and the bottom right inset for the dark regions[20].

    图 10  (a) 普通非晶合金和(b) 超稳非晶合金的空间非均匀性[21]

    Figure 10.  Spatial heterogeneity in (a) normal and (b) ultrastable metallic glasses[21].

    图 11  (a) Cu45Zr45Ag10非晶合金的透射电子显微镜(TEM)图像, 插图是对应的选区电子衍射图; (b) Cu45Zr45Ag10非晶合金的高分辨电子显微图像和(c) 高角环形暗场成像模式的扫描透射电子显微图像; (d) 暗场像及对应的混合(MIX), Zr, Cu和Ag元素的能谱(EDS)扫描图; (e) 势能随有效冷却速率变化的关系图; (f) Zr原子(红色)、Cu原子(紫色)和 Ag原子(黄色)在不同冷却速率下的模型玻璃中的化学分布[22]

    Figure 11.  (a) TEM image of a Cu45Zr45Ag10 metallic glass, inset is the selected area electron diffraction; (b) high-resolution TEM image and (c) HAADF-STEM image of Cu45Zr45Ag10 metallic glass; (d) ADF image and corresponds EDS mappings for mixed, Zr, Cu and Ag elements; (e) plot of potential energy per atom as a function of cooling rate; (f) chemical distributions of Zr atoms (red), Cu atoms (purple) and Ag atoms (yellow) in model glasses of different cooling rates[22].

    图 12  (a)—(c) Zr原子(红色)、Cu 原子(紫色)和Ag 原子(黄色)在冷却速率约为106 K/s的(a) Cu50Zr50, (b) Cu45Zr45Ag10和(c) Cu40Zr40Ag20的化学分布图; (d)—(f) 二十面体团簇(青)和 Ag元素(黄)的分布; (g) 冷却速率为106 K/s的Cu-Zr-Ag非晶合金模型中Ag富集区域原子的质量分布与径向距离的关系曲线; (h) 非均匀(MCMD)与均匀(MD)非晶合金的二十面体团簇含量、Ag的维度与Ag含量的关系曲线, 误差条表示标准偏差[22]

    Figure 12.  Chemical distributions of Zr atoms (red), Cu atoms (purple) and Ag atoms (yellow) in (a) Cu50Zr50, (b) Cu45Zr45Ag10, and (c) Cu40Zr40Ag20 with a cooling rate of ~106 K/s. (d)—(f) Icosahedral-like clusters (cyan polyhedron) and Ag (yellow particle) distributions; (g) mass distribution of atoms in Ag-rich regions as a function of radial distance for MCMD models; (h) the fractions of icosahedral-like clusters of MCMD and MD models as a function of Ag content, the dimensionality of Ag distribution is also plotted with the Ag content. The error bars indicate standard deviation[22].

  • [1]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [2]

    Chen M W 2008 Annu. Rev. Mater. Res. 38 445Google Scholar

    [3]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [4]

    管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪 2017 物理学报 66 17176112Google Scholar

    Guan P F, Wang B, Wu Y C, Zhang S, Shang B S, Hu Y C, Su R, Liu Q 2017 Acta Phys. Sin. 66 17176112Google Scholar

    [5]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [6]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342Google Scholar

    [7]

    潘杰, 段峰辉 2021 金属学报 57 439Google Scholar

    Pan J, Duan F H 2021 Acta Metall. Sin. 57 439Google Scholar

    [8]

    Zhang Z F, He G, Eckert J, Schultz L 2003 Phys. Rev. Lett. 91 045505Google Scholar

    [9]

    Zhou Z Y, Yang Q, Yu H B 2024 Prog. Mater. Sci. 101311

    [10]

    Miracle D B 2004 Nat. Mater. 3 697Google Scholar

    [11]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [12]

    Cheng Y Q, Ma E, Sheng H W 2009 Phys. Rev. Lett. 102 245501Google Scholar

    [13]

    Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen M W 2009 Phys. Rev. Lett. 103 075502Google Scholar

    [14]

    Guan P F, Fujita T, Hirata A, Liu Y H, Chen M W 2012 Phys. Rev. Lett. 108 175501Google Scholar

    [15]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nat. Commun. 6 6035Google Scholar

    [16]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [17]

    Ding J, Patinet S, Falk M L, Cheng Y, Ma E 2014 Proc. Natl. Acad. Sci. U. S. A. 111 14052Google Scholar

    [18]

    Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516Google Scholar

    [19]

    Zhu F, Hirata A, Liu P, Song S X, Tian Y, Han J H, Fujita T, Chen M W 2017 Phys. Rev. Lett. 119 215501Google Scholar

    [20]

    Zhu F, Song S X, Reddy K M, Hirata A, Chen M W 2018 Nat. Commun. 9 3965Google Scholar

    [21]

    Luo P, Cao C R, Zhu F, Lv Y M, Lv Y H, Wen P, Bai H Y, Vaughan G, Michiel M, Ruta B, Wang W H 2018 Nat. Commun. 9 1389Google Scholar

    [22]

    Zhou J, Yan Z Z, Huang H, Que S J, Song S X, Liu H P, Ding J, Zhu F 2025 Phys. Rev. B (in press

    [23]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99Google Scholar

    [24]

    Wagner H, Bedorf D, Küchemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439Google Scholar

    [25]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar

    [26]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260Google Scholar

    [27]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329Google Scholar

    [28]

    Tsai P, Kranjc K, Flores K M 2017 Acta Mater. 139 11Google Scholar

    [29]

    孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强 2017 物理学报 66 176109Google Scholar

    Sun X, Mo G, Zhao L Z, Dai L H, Wu Z H, Jiang M Q 2017 Acta Phys. Sin. 66 176109Google Scholar

    [30]

    Zhang P, Maldonis J J, Liu Z, Schroers J, Voyles P M 2018 Nat. Commun. 9 1129Google Scholar

    [31]

    Gao M, Perepezko J H 2020 Nano Lett. 20 7558Google Scholar

    [32]

    Jiang J, Lu Z, Shen J, Wada T, Kato H, Chen M 2021 Nat. Commun. 12 3843Google Scholar

    [33]

    Duan Y J, Zhang L T, Qiao J C, Wang Y J, Yang Y, Wada T, Crespo D 2022 Phys. Rev. Lett. 129 175501Google Scholar

    [34]

    冯涛, Horst Hahn, Herbert Gleiter 2017 物理学报 66 176110Google Scholar

    Feng T, Hahn H, Gleiter H 2017 Acta Phys. Sin. 66 176110Google Scholar

    [35]

    Elliott S R 1990 Physics of Amorphous Materials (2nd Ed. ) (London: Longman

    [36]

    Cusack N E 2003 The Physics of Structurally Disordered Matter: An Introduction (Bristol: Adam Hilger

    [37]

    Frank F C 1952 Proc. R. Soc. London, Ser. A 215 43Google Scholar

    [38]

    Bernal J D 1960 Nature 185 68Google Scholar

    [39]

    Ma E 2015 Nat. Mater. 14 547Google Scholar

    [40]

    Nelson D R 1983 Phys. Rev. B 28 5515Google Scholar

    [41]

    Cowley J M 2002 Ultramicroscopy 90 197Google Scholar

    [42]

    Zhu J, Cowley J M 1982 Acta Crystallogr. , Sect. A: Found. Crystallogr. 38 718

    [43]

    Krivanek O L, Dellby N, Lupini A R 1999 Ultramicroscopy 78 1Google Scholar

    [44]

    Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M 2011 Nat. Mater. 10 28Google Scholar

    [45]

    Hirata A, Chen M W 2014 J. Non-Cryst. Solids 383 52Google Scholar

    [46]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376Google Scholar

    [47]

    Yang Y, Zhou J, Zhu F, Yuan Y, Chang D J, Kim D S, Miao J 2021 Nature 592 60Google Scholar

    [48]

    Yuan Y K, Kim D S, Zhou J, Chang D J, Zhu F, Nagaoka Y, Miao J 2022 Nat. Mater. 21 95Google Scholar

    [49]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar

    [50]

    Johari G P 1973 J. Chem. Phys. 58 1766Google Scholar

    [51]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372Google Scholar

    [52]

    Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York: Springer

    [53]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 88 3113Google Scholar

    [54]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429Google Scholar

    [55]

    Hu L N, Yue Y Z 2009 J. Phys. Chem. C 113 15001Google Scholar

    [56]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501Google Scholar

    [57]

    Wang W H 2011 J. Appl. Phys. 110 053521Google Scholar

    [58]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504Google Scholar

    [59]

    Johari G P 2002 J. Non-crystal. Solids 307 317

    [60]

    Thayyil M S, Capaccioli S, Prevosto D, Ngai K L 2008 Philos. Mag. 88 4007Google Scholar

    [61]

    Stevenson J D, Wolynes P G 2010 Nat. Phys. 6 63

    [62]

    Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109 095508Google Scholar

    [63]

    Yu H B, Samwer K, Wang W H, Bai H Y 2013 Nat. Commun. 4 3204

    [64]

    Liu Y H, Fujita T, Aji D P B, Matsuura M, Chen M W 2014 Nat. Commun. 5 4328Google Scholar

    [65]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99Google Scholar

    [66]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 6823

    [67]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [68]

    Argon A S 1979 Acta Metall. 27 47Google Scholar

    [69]

    Langer J S 2006 Scr. Mater. 54 375Google Scholar

    [70]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501Google Scholar

    [71]

    Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14769Google Scholar

    [72]

    乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117Google Scholar

    Qiao J C, Zhang L T, Tong Y, Lyu G J, Hao Q, Tao K 2022 Adv. Mech. 52 117Google Scholar

    [73]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502Google Scholar

    [74]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619Google Scholar

    [75]

    Wang W H 2012 Nat. Mater. 11 275Google Scholar

    [76]

    Patinet S, Vandembroucq D, Falk M L 2016 Phys. Rev. Lett. 117 045501Google Scholar

    [77]

    Ding J, Cheng Y Q, Sheng H, Asta M, Ritchie R O, Ma E 2016 Nat. Commun. 7 13733Google Scholar

    [78]

    Cubuk E D, Ivancic R J S, Schoenholz S S, Strickland D J, Basu A, Davidson Z S, Fontaine J, Hor J L, Huang Y R, Jiang Y, Keim N C, Koshigan K D, Lefever J A, Liu T, Ma X G, Magagnosc D J, Morrow E, Ortiz C P, Rieser J M, Shavit A, Still T, Xu Y, Zhang Y, Nordstrom K N, Arratia P E, Carpick R W, Durian D J, Fakhraai Z, Jerolmack D J, Lee D, Li J, Riggleman R, Turner K T, Yodh A G, Gianola D S, Liu A J 2017 Science 358 1033Google Scholar

    [79]

    Sun B A, Hu Y C, Wang D P, Zhu Z G, Wen P, Wang W H, Liu C T, Yang Y 2016 Acta Mater. 121 266Google Scholar

    [80]

    Pan J, Ivanov Y P, Zhou W H, Li Y, Greer A L 2020 Nature 578 559Google Scholar

    [81]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Greer A L 2015 Nature 524 200Google Scholar

    [82]

    Ross P, Küchemann S, Derlet P M, Yu H B, Arnold W, Liaw P, Samwer K, Maaß R 2017 Acta Mater. 138 111Google Scholar

    [83]

    Ediger M D 2017 J. Chem. Phys. 147 210901Google Scholar

    [84]

    Rodríguez-Tinoco C, Gonzalez-Silveira M, Ramos M A, Rodríguez-Viejo J 2022 Riv. Nuovo Cim. 45 325Google Scholar

    [85]

    Luo P, Fakhraai Z 2023 Annu. Rev. Phys. Chem. 74 361Google Scholar

    [86]

    Ngai K L 2023 Prog. Mater. Sci. 139 101130Google Scholar

    [87]

    Ruiz-Ruiz M, Vila-Costa A, Bar T, Rodríguez-Tinoco C, Gonzalez-Silveira M, Plaza J A, Alcalá J, Fraxedas J, Rodriguez-Viejo J 2023 Nat. Phys. 19 1509Google Scholar

    [88]

    Vila-Costa A, Gonzalez-Silveira M, Rodríguez-Tinoco C, Rodríguez-López M, Rodriguez-Viejo J 2023 Nat. Phys. 19 114Google Scholar

    [89]

    Yu H B, Gao L, Gao J Q, Samwer K 2024 Natl. Sci. Rev. 11 nwae091Google Scholar

    [90]

    Swallen S F, Kearns K L, Mapes M K, Kim Y S, McMahon R J, Ediger M D, Wu T, Yu L, Satija S 2007 Science 315 353Google Scholar

    [91]

    Luo P, Wolf S E, Govind S, Stephens R B, Kim D H, Chen C Y, Nguyen T, Wąsik P, Zhernenkov M, Mcclimon B, Fakhraai Z 2024 Nat. Mater. 23 688Google Scholar

    [92]

    Walters D M, Antony L, de Pablo J J, Ediger M D 2017 J. Phys. Chem. Lett. 8 3380Google Scholar

    [93]

    Ediger M D, de Pablo J, Yu L 2019 Acc. Chem. Res. 52 407Google Scholar

    [94]

    Bagchi K, Ediger M D 2020 J. Phys. Chem. Lett. 11 6935Google Scholar

    [95]

    Raegen A N, Yin J, Zhou Q, Forrest J A 2020 Nat. Mater. 19 1110Google Scholar

    [96]

    Ràfols-Ribé J, Will P A, Hänisch C, Gonzalez-Silveira M, Lenk S, Rodríguez-Viejo J, Reineke S 2018 Sci. Adv. 4 eaar8332Google Scholar

    [97]

    Guo Y, Morozov A, Schneider D, Chung J W, Zhang C, Waldmann M, Yao N, Fytas G, Arnold C B, Priestley R D 2012 Nat. Mater. 11 337Google Scholar

    [98]

    Yu H B, Luo Y, Samwer K 2013 Adv. Mater. 25 5904Google Scholar

    [99]

    Aji D P, Hirata A, Zhu F, Pan L, Reddy K M, Song S, Liu Y, Fujita T, Kohara S, Chen M W 2013 arXiv: 1306.1575

    [100]

    Wang J Q, Chen N, Liu P, Wang Z, Louzguine-Luzgin D V, Chen M W, Perepezko J H 2014 Acta Mater. 79 30Google Scholar

    [101]

    Magagnosc D J, Feng G, Yu L, Cheng X, Gianola D S 2016 APL Mater. 4 086104Google Scholar

    [102]

    Luo P, Zhu F, Lv Y M, Lu Z, Shen L Q, Zhao R, Sun Y T, Vaughan G B, Di Michiel M, Ruta B, Bai H Y, Wang W H 2021 ACS Appl. Mater. Inter. 13 40098Google Scholar

    [103]

    Zhao Y, Shang B S, Zhang B, Tong X, Ke H, Bai H Y, Wang W H 2022 Sci. Adv. 8 eabn3623Google Scholar

    [104]

    Zhang Z, Ding J, Ma E 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2213941119Google Scholar

  • [1] LIANG Shuyi, ZHANG Langting, ZHU Hangchen, XING Guanghui, QIAO Jichao. Coupling mechanism between high-temperature rheological behavior and dynamic relaxation in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.74.20250392
    [2] QIN Hairong, HOU Yijie, YANG Kun, JIN Cancan, LÜ Yongjun. Topological phase transition in metallic glass formers. Acta Physica Sinica, doi: 10.7498/aps.74.20250513
    [3] Mi Xiao-Lei, Hu Liang, Wu Bo-Wen, Long Qiang, Wei Bing-Bo. Influence of gadolinium content on magnetic property and oxidation mechanism of Fe-B-Nb-Gd metallic glass. Acta Physica Sinica, doi: 10.7498/aps.73.20232040
    [4] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.73.20231417
    [5] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, doi: 10.7498/aps.73.20231421
    [6] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, doi: 10.7498/aps.72.20230181
    [7] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, doi: 10.7498/aps.72.20222389
    [8] Chen Bo, Yang Zhan-Zhan, Wang Yu-Ying, Wang Yin-Gang. Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe80Si9B10Cu1 amorphous alloy. Acta Physica Sinica, doi: 10.7498/aps.71.20220446
    [9] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.69.20191781
    [10] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, doi: 10.7498/aps.66.186101
    [11] Chen Na, Zhang Ying-Qi, Yao Ke-Fu. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.66.176113
    [12] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176106
    [13] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, doi: 10.7498/aps.66.176104
    [14] Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, doi: 10.7498/aps.66.176109
    [15] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176110
    [16] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176112
    [17] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.178101
    [18] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.66.176103
    [19] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, doi: 10.7498/aps.56.999
    [20] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, doi: 10.7498/aps.54.3862
Metrics
  • Abstract views:  521
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  30 April 2025
  • Accepted Date:  18 June 2025
  • Available Online:  20 June 2025
  • /

    返回文章
    返回