Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Yield behavior of amorphous alloy based on percolation theory

Ping Zhi-Hai Zhong Ming Long Zhi-Lin

Citation:

Yield behavior of amorphous alloy based on percolation theory

Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • According to the microstructure of amorphous crystal, the percolation theory, which is a theoretical approach to dealing with the inhomogeneous physical systems or random fractals, is used to describe the plastic flows of amorphous alloys under shear yielding. In order to understand in depth the critical problems about the shear band initiations in amorphous alloys, a percolation model for shear transformations of these alloys is established by combining with the existing free volume model and shear transformation zone model. Taking the binary amorphous alloy Cu25Zr75 for example, the percolation threshold for the shearing instability of the atomic clusters prone to producing plastic flows in the shear transformation zone is calculated when a shear band comes into being. In addition, the size of the above-mentioned cluster is also roughly estimated. The calculated results show that the percolation threshold of the shearing instability is similar to the critical reduced free volume value (xC) of~2.4% for the onset of yielding in amorphous alloy although this threshold is closely related to the dispersity of free volume. The present study may provide a new idea and method of studying the ductile-brittle transition in amorphous alloy.
      Corresponding author: Long Zhi-Lin, longzl@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51471139, 51071134).
    [1]

    Wang W H 2013 Prog. Phys. 33 177(in Chinese)[汪卫华2013物理学进展 33 177]

    [2]

    Ding D, Zhang Y Q, Xia L 2015 Chin. Phys. Lett. 32 106101

    [3]

    Schroers J 2013 Phys. Today 66 32

    [4]

    Jiang M Q 2014 Mater. China 33 257(in Chinese)[蒋敏强2014中国材料进展 33 257]

    [5]

    Gao W, Feng S D, Qi L, Zhang S L, Liu R P 2015 Chin. Phys. Lett. 32 116101

    [6]

    Jiang M Q 2012 Acta Mech. Solida Sin. 33 227(in Chinese)[蒋敏强2012固体力学学报 33 227]

    [7]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81

    [8]

    Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876

    [9]

    Spaepen F 1977 Acta Metall. 25 407

    [10]

    Argon A S 1979 Acta Mater. 27 47

    [11]

    Wang J G, Zhao D Q, Pan M X, Wang W H, Song S X, Nieh T G 2010 Scripta Mater. 62 477

    [12]

    Liu A J, Nagel S R 1998 Nature 396 21

    [13]

    Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Greer J R 2015 Science 349 1306

    [14]

    Broadbent S R, Hammersley J M 1957 Math. Proc. Cambridge 53 629

    [15]

    Wu S H 1985 Polymer 26 1855

    [16]

    Li Q, Zheng W G, Qi Z N, Zhu X G, Cai Z L 1992 Sci. China:Chem. 22 236(in Chinese)[李强, 郑文革, 漆宗能, 朱晓光, 蔡忠龙1992中国科学:化学 22 236]

    [17]

    Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Nat. Acad. Sci. USA 105 14769

    [18]

    Senkov O N, Miracle D B 2001 Mater. Res. Bull. 36 2183

    [19]

    Huang R, Suo Z, Prevost J H, Nix W D 2002 J. Mech. Phys. Solids 50 1011

    [20]

    Liu L F, Hu J, Cai Z P, Li H Q, Guo S B, Zhang G Y 2012 Acta Mech. Solida Sin. 33 69(in Chinese)[刘龙飞, 胡静, 蔡志鹏, 李会强, 郭世伯, 张光业2012固体力学学报 33 69]

    [21]

    Hu J 2011 M. S. Thesis (Xiangtan:Hunan University of Science and Technology) (in Chinese)[胡静2011硕士学位论文(湘潭:湖南科技大学)]

    [22]

    Arogn A S, Demkowice M J 2008 Metall. Mater. Trans. A 39 1762

    [23]

    Wu X Z, Zhu X G, Qi Z N 1991 Proceedings of the 8th International Conference on Deformation, Yield and Fracture of Polymers London 1991 p78

    [24]

    Irani R R, Callis C F 1963 Particle Siz:Measurement, Interpretation and Application (New York:Wiley) p40

    [25]

    Liu Z H, Zhu X G, Zhang X D, Qi Z N, Cai Z L, Wang F S 1998 Acta Polym. Sin. 1 32(in Chinese)[刘浙辉, 朱晓光, 张学东, 漆宗能, 蔡忠龙, 王佛松1998高分子学报 1 32]

    [26]

    Liu L F, Dai L H, Bai Y L, Ke F J 2008 Sci. China:Phys. Mech. Astron. 51 1367

    [27]

    Wang B P, Wang L, Xue Y F, Wang Y W, Zhang H F, HuaMeng F U 2016 Trans. Nonferrous Met. Soc. China 26 3154

    [28]

    Jeon C, Kang M, Kim C P, Kim H S, Lee S 2016 Mater. Sci. Eng. A 650 102

    [29]

    Yang B, Li X, Luo W, Li Y 2015 Acta Metall. Sin. 51 465

    [30]

    Wu Y C, Wang B, Hu Y C, Lu Z, Li Y Z, Shang B S, Wang W H, Bai H Y, Guan P F 2017 Scripta Mater. 134 75

  • [1]

    Wang W H 2013 Prog. Phys. 33 177(in Chinese)[汪卫华2013物理学进展 33 177]

    [2]

    Ding D, Zhang Y Q, Xia L 2015 Chin. Phys. Lett. 32 106101

    [3]

    Schroers J 2013 Phys. Today 66 32

    [4]

    Jiang M Q 2014 Mater. China 33 257(in Chinese)[蒋敏强2014中国材料进展 33 257]

    [5]

    Gao W, Feng S D, Qi L, Zhang S L, Liu R P 2015 Chin. Phys. Lett. 32 116101

    [6]

    Jiang M Q 2012 Acta Mech. Solida Sin. 33 227(in Chinese)[蒋敏强2012固体力学学报 33 227]

    [7]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81

    [8]

    Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876

    [9]

    Spaepen F 1977 Acta Metall. 25 407

    [10]

    Argon A S 1979 Acta Mater. 27 47

    [11]

    Wang J G, Zhao D Q, Pan M X, Wang W H, Song S X, Nieh T G 2010 Scripta Mater. 62 477

    [12]

    Liu A J, Nagel S R 1998 Nature 396 21

    [13]

    Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Greer J R 2015 Science 349 1306

    [14]

    Broadbent S R, Hammersley J M 1957 Math. Proc. Cambridge 53 629

    [15]

    Wu S H 1985 Polymer 26 1855

    [16]

    Li Q, Zheng W G, Qi Z N, Zhu X G, Cai Z L 1992 Sci. China:Chem. 22 236(in Chinese)[李强, 郑文革, 漆宗能, 朱晓光, 蔡忠龙1992中国科学:化学 22 236]

    [17]

    Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Nat. Acad. Sci. USA 105 14769

    [18]

    Senkov O N, Miracle D B 2001 Mater. Res. Bull. 36 2183

    [19]

    Huang R, Suo Z, Prevost J H, Nix W D 2002 J. Mech. Phys. Solids 50 1011

    [20]

    Liu L F, Hu J, Cai Z P, Li H Q, Guo S B, Zhang G Y 2012 Acta Mech. Solida Sin. 33 69(in Chinese)[刘龙飞, 胡静, 蔡志鹏, 李会强, 郭世伯, 张光业2012固体力学学报 33 69]

    [21]

    Hu J 2011 M. S. Thesis (Xiangtan:Hunan University of Science and Technology) (in Chinese)[胡静2011硕士学位论文(湘潭:湖南科技大学)]

    [22]

    Arogn A S, Demkowice M J 2008 Metall. Mater. Trans. A 39 1762

    [23]

    Wu X Z, Zhu X G, Qi Z N 1991 Proceedings of the 8th International Conference on Deformation, Yield and Fracture of Polymers London 1991 p78

    [24]

    Irani R R, Callis C F 1963 Particle Siz:Measurement, Interpretation and Application (New York:Wiley) p40

    [25]

    Liu Z H, Zhu X G, Zhang X D, Qi Z N, Cai Z L, Wang F S 1998 Acta Polym. Sin. 1 32(in Chinese)[刘浙辉, 朱晓光, 张学东, 漆宗能, 蔡忠龙, 王佛松1998高分子学报 1 32]

    [26]

    Liu L F, Dai L H, Bai Y L, Ke F J 2008 Sci. China:Phys. Mech. Astron. 51 1367

    [27]

    Wang B P, Wang L, Xue Y F, Wang Y W, Zhang H F, HuaMeng F U 2016 Trans. Nonferrous Met. Soc. China 26 3154

    [28]

    Jeon C, Kang M, Kim C P, Kim H S, Lee S 2016 Mater. Sci. Eng. A 650 102

    [29]

    Yang B, Li X, Luo W, Li Y 2015 Acta Metall. Sin. 51 465

    [30]

    Wu Y C, Wang B, Hu Y C, Lu Z, Li Y Z, Shang B S, Wang W H, Bai H Y, Guan P F 2017 Scripta Mater. 134 75

  • [1] Mi Xiao-Lei, Hu Liang, Wu Bo-Wen, Long Qiang, Wei Bing-Bo. Influence of gadolinium content on magnetic property and oxidation mechanism of Fe-B-Nb-Gd metallic glass. Acta Physica Sinica, 2024, 73(9): 097102. doi: 10.7498/aps.73.20232040
    [2] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [3] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [4] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [5] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [6] Cheng Yi-Ting, Andrey S. Makarov, Gennadii V. Afonin, Vitaly A. Khonik, Qiao Ji-Chao. Evolution of defect concentration in Zr50–xCu34Ag8Al8Pdx (x = 0, 2) amorphous alloys derived using shear modulus and calorimetric data. Acta Physica Sinica, 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [7] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [8] Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [9] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [10] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [11] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [12] Chen Na, Zhang Ying-Qi, Yao Ke-Fu. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [13] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [14] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [15] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [16] Li Le, Li Ke-Fei. Permeability of cracked porous solids through percolation approach. Acta Physica Sinica, 2015, 64(13): 136402. doi: 10.7498/aps.64.136402
    [17] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [18] Feng Zeng-Chao, Zhao Yang-Sheng, Lü Zhao-Xing. Study on percolation law of 2D porous and fractured double-medium. Acta Physica Sinica, 2007, 56(5): 2796-2801. doi: 10.7498/aps.56.2796
    [19] Cheng Wei-Dong, Sun Min-Hua, Li Jia-Yun, Wang Ai-Ping, Sun Yong-Li, Liu Fang, Liu Xiong-Jun. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy. Acta Physica Sinica, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [20] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
Metrics
  • Abstract views:  6146
  • PDF Downloads:  182
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2017
  • Accepted Date:  05 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回