-
The intrinsic structural heterogeneity of amorphous alloy is closely related to the thermodynamics and dynamical behavior, such as relaxation/crystallization, glass transition and plastic deformation. However, the structural information is submerged into the meta-stable disordered long-range structure, which makes it very difficult to explore the structural heterogeneity of amorphous alloy. A mechanical excitation factor is insufficient to effectively describe the heterogeneity of the microstructure in amorphous alloy, particularly the correlation between structure and dynamics. To explore the essence of the structure in amorphous alloy, it is necessary to consider the different mechanical stimuli. La62Cu12Ni12Al14 amorphous alloy is selected as the model system, dynamic mechanical process is probed by dynamic mechanical analyzer (DMA). The contributions of α relaxation process and β relaxation process are described in the framework of the quasi-point defect theory. Based on the quasi-point defect theory, the α-relaxation and β-relaxation in the La-based amorphous alloy are separated. Tensile strain rate jump measurements are conducted to study the high temperature rheological behavior of amorphous alloy. The contributions of elasticity, anelasticity, and plastic deformation during the homogeneous flow of amorphous alloy are determined within the framework of quasi-point defect theory. The present work aims to reveal the structural heterogeneities of amorphous alloys under the action of dynamics on various temporal scales. The physical background of the activation, propagation and coalescence of defects in amorphous alloy under different mechanical stimuli are reviewed.
-
Keywords:
- amorphous alloys /
- microstructural heterogeneity /
- dynamic mechanical relaxation /
- high-temperature flow /
- quasi-point defects theory
[1] Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211Google Scholar
[2] Greer A L 1995 Science 267 1947Google Scholar
[3] Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar
[4] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar
[5] 乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117Google Scholar
Qiao J C, Zhang L T, Tong Y, Lü G J, Hao Q, Tao K 2022 Adv. Mech. 52 117Google Scholar
[6] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar
[7] Wagner H, Bedorf D, Kuechemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439Google Scholar
[8] 王峥, 汪卫华 2017 物理学报 66 176103Google Scholar
Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar
[9] Johari G P 2002 J. Non-Cryst. Solids 307 317
[10] Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar
[11] Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516Google Scholar
[12] Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504Google Scholar
[13] Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906Google Scholar
[14] Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J, Yang Y 2017 Mater. Today 20 293Google Scholar
[15] Liang S Y, Zhang L T, Wang B, Wang Y J, Pineda E, Qiao J C 2024 Intermetallics 164 108115Google Scholar
[16] Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T 2020 Acta Mater. 200 42Google Scholar
[17] Fan Y, Iwashita T, Egami T 2014 Nat. Commun. 5 5083Google Scholar
[18] Wang N, Ding J, Yan F, Asta M, Ritchie R O, Li L 2018 npj Comput. Mater. 4 19Google Scholar
[19] Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164Google Scholar
[20] Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar
[21] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[22] Argon A S, Kuo H Y 1979 Mat. Sci. Eng. 39 101Google Scholar
[23] Cavaille J, Perez J, Johari G 1989 Phys. Rev. B 39 2411Google Scholar
[24] Guo J, Joo S H, Pi D, Kim W, Song Y, Kim H S, Zhang X, Kong D 2019 Adv. Eng. Mater. 21 1800918Google Scholar
[25] Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240Google Scholar
[26] Yang Q, Peng S X, Wang Z, Yu H B 2020 Natl. Sci. Rev. 7 1896Google Scholar
[27] Yu H B, Samwer K, Wang W H, Bai H Y 2013 Nat. Commun. 4 2204Google Scholar
[28] Qiao J C, Chen Y H, Casalini R, Pelletier J M, Yao Y 2019 J. Mater. Sci. Tech 35 982Google Scholar
[29] Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201Google Scholar
[30] Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123Google Scholar
[31] Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429Google Scholar
[32] Qiao J C, Pelletier J M 2012 J. Appl. Phys. 112 083528Google Scholar
[33] Hu L, Yue Y 2009 J. Phys. Chem. C 113 15001Google Scholar
[34] Zhang L T, Duan Y J, Crespo D, Pineda E, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. China: Phys. , Mech. Astron. 64 1
[35] Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203Google Scholar
[36] Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar
[37] Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar
[38] Spaepen F 1977 Acta Metall. 25 407Google Scholar
[39] Argon A S 1979 Acta Metall. 27 47Google Scholar
[40] Falk M L, Langer J S 1998 Phys. Rev. E 57 7192Google Scholar
[41] Langer J S 2015 Phys. Rev. E 92 012318Google Scholar
[42] Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329Google Scholar
[43] Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619Google Scholar
[44] Palmer R G, Stein D L, Abrahams E, Anderson P W 1984 Phys. Rev. Lett. 53 958Google Scholar
[45] Gauthier C, Pelletier J M, David L, Vigier G, Perez J 2000 J. Non-Cryst. Solids 274 181Google Scholar
[46] Hao Q, Lü G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar
[47] Makarov A S, Mitrofanov Y P, Konchakov R A, Kobelev N P, Csach K, Qiao J C, Khonik V A 2019 J. Non-Cryst. Solids 521 119474Google Scholar
[48] Hao Q, Qiao J C, Goncharova E V, Afonin G V, Liu M N, Cheng Y T, Khonik V 2020 Chin. Phys. B 29 086402Google Scholar
[49] Tao K, Khonik V A, Qiao J C 2023 Int. J. Mech. Sci. 240 107941Google Scholar
[50] Qiao J C, Pelletier J M 2012 Intermetallics 28 40Google Scholar
[51] Qiao J C, Casalini R, Pelletier J M 2014 J. Chem. Phys. 141 104510
[52] Perez J, Cavaille J Y, Etienne S, Jourdan C 1988 Rev. Phys. Appl. 23 125Google Scholar
[53] Rinaldi R, Gaertner R, Chazeau L, Gauthier C 2011 Int. J. Nonlin. Mech 46 496Google Scholar
[54] Bruns M, Hassani M, Varnik F, Hassanpour A, Divinski S, Wilde G 2021 Phys. Rev. Res. 3 013234Google Scholar
[55] Zhang C, Qiao J C, Pelletier J M, Yao Y 2017 Intermetallics 86 88Google Scholar
[56] Kawamura Y, Inoue A 2000 Appl. Phys. Lett. 77 1114Google Scholar
[57] 郝奇, 乔吉超, Pelletier J M 2020 力学学报 52 360Google Scholar
Hao Q, Qiao J C, Pelletier J M 2020 Acta Mech. Sin. 52 360Google Scholar
[58] Perez J 1998 Physics and Mechanics of Amorphous Polymers (Routledge, London) pp55–65
[59] Pelletier J M, Van de Moortèle B, Lu I 2002 Mat. Sci. Eng. A 336 190Google Scholar
-
图 4 不同体系非晶合金的β弛豫名义激活能分布[31–34], 图中点划线区域为经验公式$ {{E}}_{{\beta } } =(24\pm 2){RT}\text{g} $包围区域
Figure 4. Evolution of the β relaxation at different amorphous alloys with the glass transition temperature[31–34], dotted area in the figure is the area surrounded by empirical formula $ {{E}}_{{\beta } } =(24\pm 2) {R}{{T}}_{{\text{g} } }$.
图 7 (a) 铸态和退火态La62Cu12Ni12Al14非晶合金XRD衍射图; (b) 铸态和退火态La62Cu12Ni12Al14非晶合金蠕变曲线. 测试温度为390 K, 施加应力为60 MPa, 图中实线为KWW方程拟合曲线
Figure 7. (a) XRD patterns of La62Cu12Ni12Al14 amorphous alloy with different states, as-cast state and annealed state; (b) creep deformation process of La62Cu12Ni12Al14 amorphous alloy with different states, as-cast state and annealed state. The measurement temperature is 373 K and the applied stress is 50 MPa, the solid lines denote KWW fitted curves.
图 9 (a)单轴拉伸回复实验过程中La62Cu12Ni12Al14非晶合金的时间-真实应变曲线; (b)实验过程中La62Cu12Ni12Al14非晶合金的真实应力-真实应变曲线, 符号为实验数据, 曲线为(5a)式计算得到
Figure 9. (a) True strain-tine curve of La62Cu12Ni12Al14 amorphous alloy in uniaxial tensile and recovery experiment; (b) true stress-true strain curve of La62Cu12Ni12Al14 amorphous alloy, symbols represent the experimental data, solid line represents the calculated data of Eq. (5a).
-
[1] Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211Google Scholar
[2] Greer A L 1995 Science 267 1947Google Scholar
[3] Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar
[4] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar
[5] 乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117Google Scholar
Qiao J C, Zhang L T, Tong Y, Lü G J, Hao Q, Tao K 2022 Adv. Mech. 52 117Google Scholar
[6] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar
[7] Wagner H, Bedorf D, Kuechemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439Google Scholar
[8] 王峥, 汪卫华 2017 物理学报 66 176103Google Scholar
Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar
[9] Johari G P 2002 J. Non-Cryst. Solids 307 317
[10] Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar
[11] Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516Google Scholar
[12] Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504Google Scholar
[13] Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906Google Scholar
[14] Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J, Yang Y 2017 Mater. Today 20 293Google Scholar
[15] Liang S Y, Zhang L T, Wang B, Wang Y J, Pineda E, Qiao J C 2024 Intermetallics 164 108115Google Scholar
[16] Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T 2020 Acta Mater. 200 42Google Scholar
[17] Fan Y, Iwashita T, Egami T 2014 Nat. Commun. 5 5083Google Scholar
[18] Wang N, Ding J, Yan F, Asta M, Ritchie R O, Li L 2018 npj Comput. Mater. 4 19Google Scholar
[19] Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164Google Scholar
[20] Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar
[21] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[22] Argon A S, Kuo H Y 1979 Mat. Sci. Eng. 39 101Google Scholar
[23] Cavaille J, Perez J, Johari G 1989 Phys. Rev. B 39 2411Google Scholar
[24] Guo J, Joo S H, Pi D, Kim W, Song Y, Kim H S, Zhang X, Kong D 2019 Adv. Eng. Mater. 21 1800918Google Scholar
[25] Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240Google Scholar
[26] Yang Q, Peng S X, Wang Z, Yu H B 2020 Natl. Sci. Rev. 7 1896Google Scholar
[27] Yu H B, Samwer K, Wang W H, Bai H Y 2013 Nat. Commun. 4 2204Google Scholar
[28] Qiao J C, Chen Y H, Casalini R, Pelletier J M, Yao Y 2019 J. Mater. Sci. Tech 35 982Google Scholar
[29] Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201Google Scholar
[30] Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123Google Scholar
[31] Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429Google Scholar
[32] Qiao J C, Pelletier J M 2012 J. Appl. Phys. 112 083528Google Scholar
[33] Hu L, Yue Y 2009 J. Phys. Chem. C 113 15001Google Scholar
[34] Zhang L T, Duan Y J, Crespo D, Pineda E, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. China: Phys. , Mech. Astron. 64 1
[35] Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203Google Scholar
[36] Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar
[37] Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar
[38] Spaepen F 1977 Acta Metall. 25 407Google Scholar
[39] Argon A S 1979 Acta Metall. 27 47Google Scholar
[40] Falk M L, Langer J S 1998 Phys. Rev. E 57 7192Google Scholar
[41] Langer J S 2015 Phys. Rev. E 92 012318Google Scholar
[42] Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329Google Scholar
[43] Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619Google Scholar
[44] Palmer R G, Stein D L, Abrahams E, Anderson P W 1984 Phys. Rev. Lett. 53 958Google Scholar
[45] Gauthier C, Pelletier J M, David L, Vigier G, Perez J 2000 J. Non-Cryst. Solids 274 181Google Scholar
[46] Hao Q, Lü G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar
[47] Makarov A S, Mitrofanov Y P, Konchakov R A, Kobelev N P, Csach K, Qiao J C, Khonik V A 2019 J. Non-Cryst. Solids 521 119474Google Scholar
[48] Hao Q, Qiao J C, Goncharova E V, Afonin G V, Liu M N, Cheng Y T, Khonik V 2020 Chin. Phys. B 29 086402Google Scholar
[49] Tao K, Khonik V A, Qiao J C 2023 Int. J. Mech. Sci. 240 107941Google Scholar
[50] Qiao J C, Pelletier J M 2012 Intermetallics 28 40Google Scholar
[51] Qiao J C, Casalini R, Pelletier J M 2014 J. Chem. Phys. 141 104510
[52] Perez J, Cavaille J Y, Etienne S, Jourdan C 1988 Rev. Phys. Appl. 23 125Google Scholar
[53] Rinaldi R, Gaertner R, Chazeau L, Gauthier C 2011 Int. J. Nonlin. Mech 46 496Google Scholar
[54] Bruns M, Hassani M, Varnik F, Hassanpour A, Divinski S, Wilde G 2021 Phys. Rev. Res. 3 013234Google Scholar
[55] Zhang C, Qiao J C, Pelletier J M, Yao Y 2017 Intermetallics 86 88Google Scholar
[56] Kawamura Y, Inoue A 2000 Appl. Phys. Lett. 77 1114Google Scholar
[57] 郝奇, 乔吉超, Pelletier J M 2020 力学学报 52 360Google Scholar
Hao Q, Qiao J C, Pelletier J M 2020 Acta Mech. Sin. 52 360Google Scholar
[58] Perez J 1998 Physics and Mechanics of Amorphous Polymers (Routledge, London) pp55–65
[59] Pelletier J M, Van de Moortèle B, Lu I 2002 Mat. Sci. Eng. A 336 190Google Scholar
Catalog
Metrics
- Abstract views: 2209
- PDF Downloads: 74
- Cited By: 0