Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli

Zhang Jian Hao Qi Zhang Lang-Ting Qiao Ji-Chao

Citation:

Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli

Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao
PDF
HTML
Get Citation
  • The intrinsic structural heterogeneity of amorphous alloy is closely related to the thermodynamics and dynamical behavior, such as relaxation/crystallization, glass transition and plastic deformation. However, the structural information is submerged into the meta-stable disordered long-range structure, which makes it very difficult to explore the structural heterogeneity of amorphous alloy. A mechanical excitation factor is insufficient to effectively describe the heterogeneity of the microstructure in amorphous alloy, particularly the correlation between structure and dynamics. To explore the essence of the structure in amorphous alloy, it is necessary to consider the different mechanical stimuli. La62Cu12Ni12Al14 amorphous alloy is selected as the model system, dynamic mechanical process is probed by dynamic mechanical analyzer (DMA). The contributions of α relaxation process and β relaxation process are described in the framework of the quasi-point defect theory. Based on the quasi-point defect theory, the α-relaxation and β-relaxation in the La-based amorphous alloy are separated. Tensile strain rate jump measurements are conducted to study the high temperature rheological behavior of amorphous alloy. The contributions of elasticity, anelasticity, and plastic deformation during the homogeneous flow of amorphous alloy are determined within the framework of quasi-point defect theory. The present work aims to reveal the structural heterogeneities of amorphous alloys under the action of dynamics on various temporal scales. The physical background of the activation, propagation and coalescence of defects in amorphous alloy under different mechanical stimuli are reviewed.
      Corresponding author: Qiao Ji-Chao, qjczy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51971178, 52271153) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JC-12).
    [1]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211Google Scholar

    [2]

    Greer A L 1995 Science 267 1947Google Scholar

    [3]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [4]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [5]

    乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117Google Scholar

    Qiao J C, Zhang L T, Tong Y, Lü G J, Hao Q, Tao K 2022 Adv. Mech. 52 117Google Scholar

    [6]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar

    [7]

    Wagner H, Bedorf D, Kuechemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439Google Scholar

    [8]

    王峥, 汪卫华 2017 物理学报 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [9]

    Johari G P 2002 J. Non-Cryst. Solids 307 317

    [10]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [11]

    Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516Google Scholar

    [12]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504Google Scholar

    [13]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906Google Scholar

    [14]

    Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J, Yang Y 2017 Mater. Today 20 293Google Scholar

    [15]

    Liang S Y, Zhang L T, Wang B, Wang Y J, Pineda E, Qiao J C 2024 Intermetallics 164 108115Google Scholar

    [16]

    Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T 2020 Acta Mater. 200 42Google Scholar

    [17]

    Fan Y, Iwashita T, Egami T 2014 Nat. Commun. 5 5083Google Scholar

    [18]

    Wang N, Ding J, Yan F, Asta M, Ritchie R O, Li L 2018 npj Comput. Mater. 4 19Google Scholar

    [19]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164Google Scholar

    [20]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [21]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [22]

    Argon A S, Kuo H Y 1979 Mat. Sci. Eng. 39 101Google Scholar

    [23]

    Cavaille J, Perez J, Johari G 1989 Phys. Rev. B 39 2411Google Scholar

    [24]

    Guo J, Joo S H, Pi D, Kim W, Song Y, Kim H S, Zhang X, Kong D 2019 Adv. Eng. Mater. 21 1800918Google Scholar

    [25]

    Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240Google Scholar

    [26]

    Yang Q, Peng S X, Wang Z, Yu H B 2020 Natl. Sci. Rev. 7 1896Google Scholar

    [27]

    Yu H B, Samwer K, Wang W H, Bai H Y 2013 Nat. Commun. 4 2204Google Scholar

    [28]

    Qiao J C, Chen Y H, Casalini R, Pelletier J M, Yao Y 2019 J. Mater. Sci. Tech 35 982Google Scholar

    [29]

    Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201Google Scholar

    [30]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123Google Scholar

    [31]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429Google Scholar

    [32]

    Qiao J C, Pelletier J M 2012 J. Appl. Phys. 112 083528Google Scholar

    [33]

    Hu L, Yue Y 2009 J. Phys. Chem. C 113 15001Google Scholar

    [34]

    Zhang L T, Duan Y J, Crespo D, Pineda E, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. China: Phys. , Mech. Astron. 64 1

    [35]

    Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203Google Scholar

    [36]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar

    [37]

    Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar

    [38]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [39]

    Argon A S 1979 Acta Metall. 27 47Google Scholar

    [40]

    Falk M L, Langer J S 1998 Phys. Rev. E 57 7192Google Scholar

    [41]

    Langer J S 2015 Phys. Rev. E 92 012318Google Scholar

    [42]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329Google Scholar

    [43]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619Google Scholar

    [44]

    Palmer R G, Stein D L, Abrahams E, Anderson P W 1984 Phys. Rev. Lett. 53 958Google Scholar

    [45]

    Gauthier C, Pelletier J M, David L, Vigier G, Perez J 2000 J. Non-Cryst. Solids 274 181Google Scholar

    [46]

    Hao Q, Lü G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar

    [47]

    Makarov A S, Mitrofanov Y P, Konchakov R A, Kobelev N P, Csach K, Qiao J C, Khonik V A 2019 J. Non-Cryst. Solids 521 119474Google Scholar

    [48]

    Hao Q, Qiao J C, Goncharova E V, Afonin G V, Liu M N, Cheng Y T, Khonik V 2020 Chin. Phys. B 29 086402Google Scholar

    [49]

    Tao K, Khonik V A, Qiao J C 2023 Int. J. Mech. Sci. 240 107941Google Scholar

    [50]

    Qiao J C, Pelletier J M 2012 Intermetallics 28 40Google Scholar

    [51]

    Qiao J C, Casalini R, Pelletier J M 2014 J. Chem. Phys. 141 104510

    [52]

    Perez J, Cavaille J Y, Etienne S, Jourdan C 1988 Rev. Phys. Appl. 23 125Google Scholar

    [53]

    Rinaldi R, Gaertner R, Chazeau L, Gauthier C 2011 Int. J. Nonlin. Mech 46 496Google Scholar

    [54]

    Bruns M, Hassani M, Varnik F, Hassanpour A, Divinski S, Wilde G 2021 Phys. Rev. Res. 3 013234Google Scholar

    [55]

    Zhang C, Qiao J C, Pelletier J M, Yao Y 2017 Intermetallics 86 88Google Scholar

    [56]

    Kawamura Y, Inoue A 2000 Appl. Phys. Lett. 77 1114Google Scholar

    [57]

    郝奇, 乔吉超, Pelletier J M 2020 力学学报 52 360Google Scholar

    Hao Q, Qiao J C, Pelletier J M 2020 Acta Mech. Sin. 52 360Google Scholar

    [58]

    Perez J 1998 Physics and Mechanics of Amorphous Polymers (Routledge, London) pp55–65

    [59]

    Pelletier J M, Van de Moortèle B, Lu I 2002 Mat. Sci. Eng. A 336 190Google Scholar

  • 图 1  La62Cu12Ni12Al14非晶合金DSC曲线 (升温速率: 20 K/min) , 插图为非晶合金的XRD衍射图

    Figure 1.  DSC curve of La62Cu12Ni12Al14 amorphous alloy (heating rate is 20 K/min), insert shows the XRD pattern of the amorphous alloy.

    图 2  La62Cu12Ni12Al14非晶合金归一化储能模量E'/Eu和损耗模量E''/Eu随温度演化

    Figure 2.  Evolution of the normalized storage modulus and loss modulus with temperature of La62Cu12Ni12Al14 amorphous alloy.

    图 3  La基非晶合金在不同加载频率时损耗模量随温度演化, 插图为lnf与1000/T之间关系

    Figure 3.  Evolution of the loss modulus with temperature in various frequency, insert shows the correlation between lnf and 1000/T.

    图 4  不同体系非晶合金的β弛豫名义激活能分布[3134], 图中点划线区域为经验公式$ {{E}}_{{\beta } } =(24\pm 2){RT}\text{g} $包围区域

    Figure 4.  Evolution of the β relaxation at different amorphous alloys with the glass transition temperature[3134], dotted area in the figure is the area surrounded by empirical formula $ {{E}}_{{\beta } } =(24\pm 2) {R}{{T}}_{{\text{g} } }$.

    图 5  等温退火过程中归一化储能模量、损耗模量和内耗tanδ随退火时间的演化 (退火温度为373 K)

    Figure 5.  Evolution of the normalized storage modulus, loss modulus and internal friction with annealing time in annealing process (annealing temperature is 373 K).

    图 6  铸态和退火态La62Cu12Ni12Al14非晶合金的归一化损耗模量随温度的演化

    Figure 6.  Temperature dependent normalized loss modulus in La62Cu12Ni12Al14 amorphous alloy at different states: as-cast state and annealed state.

    图 7  (a) 铸态和退火态La62Cu12Ni12Al14非晶合金XRD衍射图; (b) 铸态和退火态La62Cu12Ni12Al14非晶合金蠕变曲线. 测试温度为390 K, 施加应力为60 MPa, 图中实线为KWW方程拟合曲线

    Figure 7.  (a) XRD patterns of La62Cu12Ni12Al14 amorphous alloy with different states, as-cast state and annealed state; (b) creep deformation process of La62Cu12Ni12Al14 amorphous alloy with different states, as-cast state and annealed state. The measurement temperature is 373 K and the applied stress is 50 MPa, the solid lines denote KWW fitted curves.

    图 8  La62Cu12Ni12Al14非晶合金储能模量和损耗模量随温度的演化, 符号代表实验数据, 实线代表 (5b) 式计算数据

    Figure 8.  Evolution of the normalized storage modulus and loss modulus with temperature of La62Cu12Ni12Al14 amorphous alloy. Symbols represent the experimental data, solid line represents the calculated data of the Eq. (5b).

    图 9  (a)单轴拉伸回复实验过程中La62Cu12Ni12Al14非晶合金的时间-真实应变曲线; (b)实验过程中La62Cu12Ni12Al14非晶合金的真实应力-真实应变曲线, 符号为实验数据, 曲线为(5a)式计算得到

    Figure 9.  (a) True strain-tine curve of La62Cu12Ni12Al14 amorphous alloy in uniaxial tensile and recovery experiment; (b) true stress-true strain curve of La62Cu12Ni12Al14 amorphous alloy, symbols represent the experimental data, solid line represents the calculated data of Eq. (5a).

    图 10  La62Cu12Ni12Al14非晶合金在415 K时应变率跳跃拉伸实验真实应力-真实应变曲线

    Figure 10.  True stress-true strain curve of La62Cu12Ni12Al14 amorphous alloy by strain jump tensile experiment at 415 K.

    图 11  La62Cu12Ni12Al14非晶合金在不同温度时名义黏度η随应变速率$ \dot{\varepsilon } $的关系

    Figure 11.  Correlation between the nominal viscosity η and the strain rate $ \dot{\varepsilon } $ of La62Cu12Ni12Al14 amorphous alloy at different temperature.

    图 12  采用扩展指数方程(a)和QPD理论(b)描述La62Cu12Ni12Al14非晶合金归一化黏度主曲线 (参考温度为 405 K)

    Figure 12.  Master curve of the normalized viscosity of La62Cu12Ni12Al14 amorphous alloy was described by the KWW equation (a) and QPD theory (b) (reference temperature is 405 K).

  • [1]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211Google Scholar

    [2]

    Greer A L 1995 Science 267 1947Google Scholar

    [3]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [4]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [5]

    乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117Google Scholar

    Qiao J C, Zhang L T, Tong Y, Lü G J, Hao Q, Tao K 2022 Adv. Mech. 52 117Google Scholar

    [6]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar

    [7]

    Wagner H, Bedorf D, Kuechemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439Google Scholar

    [8]

    王峥, 汪卫华 2017 物理学报 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [9]

    Johari G P 2002 J. Non-Cryst. Solids 307 317

    [10]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [11]

    Zhu F, Nguyen H K, Song S X, Aji D P B, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516Google Scholar

    [12]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504Google Scholar

    [13]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906Google Scholar

    [14]

    Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J, Yang Y 2017 Mater. Today 20 293Google Scholar

    [15]

    Liang S Y, Zhang L T, Wang B, Wang Y J, Pineda E, Qiao J C 2024 Intermetallics 164 108115Google Scholar

    [16]

    Liu S N, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T 2020 Acta Mater. 200 42Google Scholar

    [17]

    Fan Y, Iwashita T, Egami T 2014 Nat. Commun. 5 5083Google Scholar

    [18]

    Wang N, Ding J, Yan F, Asta M, Ritchie R O, Li L 2018 npj Comput. Mater. 4 19Google Scholar

    [19]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164Google Scholar

    [20]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [21]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [22]

    Argon A S, Kuo H Y 1979 Mat. Sci. Eng. 39 101Google Scholar

    [23]

    Cavaille J, Perez J, Johari G 1989 Phys. Rev. B 39 2411Google Scholar

    [24]

    Guo J, Joo S H, Pi D, Kim W, Song Y, Kim H S, Zhang X, Kong D 2019 Adv. Eng. Mater. 21 1800918Google Scholar

    [25]

    Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240Google Scholar

    [26]

    Yang Q, Peng S X, Wang Z, Yu H B 2020 Natl. Sci. Rev. 7 1896Google Scholar

    [27]

    Yu H B, Samwer K, Wang W H, Bai H Y 2013 Nat. Commun. 4 2204Google Scholar

    [28]

    Qiao J C, Chen Y H, Casalini R, Pelletier J M, Yao Y 2019 J. Mater. Sci. Tech 35 982Google Scholar

    [29]

    Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201Google Scholar

    [30]

    Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O 2011 Nat. Mater. 10 123Google Scholar

    [31]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429Google Scholar

    [32]

    Qiao J C, Pelletier J M 2012 J. Appl. Phys. 112 083528Google Scholar

    [33]

    Hu L, Yue Y 2009 J. Phys. Chem. C 113 15001Google Scholar

    [34]

    Zhang L T, Duan Y J, Crespo D, Pineda E, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. China: Phys. , Mech. Astron. 64 1

    [35]

    Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203Google Scholar

    [36]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259Google Scholar

    [37]

    Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar

    [38]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [39]

    Argon A S 1979 Acta Metall. 27 47Google Scholar

    [40]

    Falk M L, Langer J S 1998 Phys. Rev. E 57 7192Google Scholar

    [41]

    Langer J S 2015 Phys. Rev. E 92 012318Google Scholar

    [42]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329Google Scholar

    [43]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619Google Scholar

    [44]

    Palmer R G, Stein D L, Abrahams E, Anderson P W 1984 Phys. Rev. Lett. 53 958Google Scholar

    [45]

    Gauthier C, Pelletier J M, David L, Vigier G, Perez J 2000 J. Non-Cryst. Solids 274 181Google Scholar

    [46]

    Hao Q, Lü G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar

    [47]

    Makarov A S, Mitrofanov Y P, Konchakov R A, Kobelev N P, Csach K, Qiao J C, Khonik V A 2019 J. Non-Cryst. Solids 521 119474Google Scholar

    [48]

    Hao Q, Qiao J C, Goncharova E V, Afonin G V, Liu M N, Cheng Y T, Khonik V 2020 Chin. Phys. B 29 086402Google Scholar

    [49]

    Tao K, Khonik V A, Qiao J C 2023 Int. J. Mech. Sci. 240 107941Google Scholar

    [50]

    Qiao J C, Pelletier J M 2012 Intermetallics 28 40Google Scholar

    [51]

    Qiao J C, Casalini R, Pelletier J M 2014 J. Chem. Phys. 141 104510

    [52]

    Perez J, Cavaille J Y, Etienne S, Jourdan C 1988 Rev. Phys. Appl. 23 125Google Scholar

    [53]

    Rinaldi R, Gaertner R, Chazeau L, Gauthier C 2011 Int. J. Nonlin. Mech 46 496Google Scholar

    [54]

    Bruns M, Hassani M, Varnik F, Hassanpour A, Divinski S, Wilde G 2021 Phys. Rev. Res. 3 013234Google Scholar

    [55]

    Zhang C, Qiao J C, Pelletier J M, Yao Y 2017 Intermetallics 86 88Google Scholar

    [56]

    Kawamura Y, Inoue A 2000 Appl. Phys. Lett. 77 1114Google Scholar

    [57]

    郝奇, 乔吉超, Pelletier J M 2020 力学学报 52 360Google Scholar

    Hao Q, Qiao J C, Pelletier J M 2020 Acta Mech. Sin. 52 360Google Scholar

    [58]

    Perez J 1998 Physics and Mechanics of Amorphous Polymers (Routledge, London) pp55–65

    [59]

    Pelletier J M, Van de Moortèle B, Lu I 2002 Mat. Sci. Eng. A 336 190Google Scholar

  • [1] Zhang Jing-Qi, Hao Qi, Lyu Guo-Jian, Xiong Bi-Jin, Qiao Ji-Chao. Understanding stress relaxation behavior of amorphous polystyrene based on microstructural heterogeneity. Acta Physica Sinica, 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [2] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [3] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [4] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [5] Cheng Yi-Ting, Andrey S. Makarov, Gennadii V. Afonin, Vitaly A. Khonik, Qiao Ji-Chao. Evolution of defect concentration in Zr50–xCu34Ag8Al8Pdx (x = 0, 2) amorphous alloys derived using shear modulus and calorimetric data. Acta Physica Sinica, 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [6] Wu Zhen-Wei, Wang Wei-Hua. Linking local connectivity to atomic-scale relaxation dynamics in metallic glass-forming systems. Acta Physica Sinica, 2020, 69(6): 066101. doi: 10.7498/aps.69.20191870
    [7] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [8] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [9] Chen Na, Zhang Ying-Qi, Yao Ke-Fu. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [10] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [11] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [12] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [13] Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [14] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [15] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [16] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [17] Xu Fu, Li Ke-Feng, Deng Xu-Hui, Zhang Ping, Long Zhi-Lin. Research on viscoelastic behavior and rheological constitutive parameters of metallic glasses based on fractional-differential rheological model. Acta Physica Sinica, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [18] Wang Hai-Long, Wang Xiu-Xi, Wang Yu, Liang Hai-Yi. Molecular dynamics simulation of deformation-induced crystallization mechanism in amorphous Ti3Al alloy. Acta Physica Sinica, 2007, 56(3): 1489-1493. doi: 10.7498/aps.56.1489
    [19] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [20] Cheng Wei-Dong, Sun Min-Hua, Li Jia-Yun, Wang Ai-Ping, Sun Yong-Li, Liu Fang, Liu Xiong-Jun. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy. Acta Physica Sinica, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
Metrics
  • Abstract views:  2209
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2023
  • Accepted Date:  20 November 2023
  • Available Online:  29 November 2023
  • Published Online:  20 February 2024

/

返回文章
返回