-
Structural relaxation is significantly restrict. Notably, the dissipative component of cyclic loading dominates the thermodynamic energy of the practical applications of metallic glasses (MGs). Mechanical rejuvenation, achieved through cyclic loading, provides an effective approach to mitigate this issue. In this study, we systematically investigate the deformation characteristics and rejuvenation mechanisms of Pd20Pt20Cu20Ni20P20 MG under mechanical cycling using dynamic mechanical analysis (DMA). By employing a two-phase Kelvin model and continuous relaxation time spectrum, we elucidate the interplay between mechanical deformation and energy dissipation during cyclic loading. The experimental results demonstrate that the strain rate increases significantly with the intensity of mechanical cycling, indicating enhanced dynamic activity in the glassy matrix version. At higher cycling intensities, anelastic deformation is promoted, activating a broader spectrum of defects and amplifying dynamic heterogeneity. Through differential scanning calorimetry (DSC), we establish a quantitative correlation between deformation and energetic state, revealing that rejuvenation originates from internal heating induced by anelastic strain. A comparative analysis with creep deformation reveals that mechanical cycling exhibits superior rejuvenation potential, attributed to its ability to periodically excite multi-scale defect clusters and sustain non-equilibrium states. The key findings of this work include: (1) Deformation mechanism: Cyclic loading enhances atomic mobility and facilitates deformation unit activation. (2) Energy landscape: The enthalpy change (ΔH) measured by DSC provides a direct metric for rejuvenation efficiency. (3) Dynamic heterogeneity: Mechanical cycling broadens the relaxation time spectrum, reflecting increased dynamic heterogeneity.
-
Keywords:
- Metallic glasses /
- Mechanical cycling /
- Rejuvenation /
- Relaxation
-
[1] Zhou Z Y, Yang Q, Yu H B 2024 Prog. Mater. Sci. 145 101311
[2] Li F, Zhang Z, Liu H, Zhu W, Wang T, Park M, Zhang J, Bönninghoff N, Feng X, Zhang H, Luan J, Wang J, Liu X, Chang T, Chu J P, Lu Y, Liu Y, Guan P, Yang Y 2024 Nat. Mater 23 52
[3] Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101
[4] Jiang X, Huang Z, Wang X, Zhang X, Yang W, Liu H 2025 Acta Phys. Sin. 74 017501
[5] Şopu D, Yuan X, Spieckermann F, Eckert J 2024 Acta Mater. 275 120033
[6] Liang S Y, Zhang L T, Zhu H C, Xing G H, Qiao Ji C 2025 Acta Phys. Sin. 74
[7] Deshmukh A A, Ranganathan R 2025 J. Mat. Sci. Technol. 204 127
[8] Yang C, Zhou H B, Duan J, Cai S L, Ding G, Zhang B B, Shi C J, Dai L H, Wilde G, Jiang M Q 2025 Fundam. Res.
[9] Houghton O S, Greer A L 2025 Acta Mater. 288 120862
[10] Riechers B, Das A, Rashidi R, Dufresne E, Maaß R 2025 Mater. Today 82 92
[11] Balal A H, Bian X L, Han D X, Jia Y F, Ali S, Jia Y D, Wang G 2024 Mater. Charact. 212 113977
[12] Yang Y, Geng J, Cao Y, Fan L, Shi B 2025 Scr. Mater. 256 116418
[13] Yang Z Y, Dai L H 2022 Phys Rev. Mater. 6 L100602
[14] Cheng Y, Shen Y, An Q, Jiang M, Huang C, Goddard W A, Wu X 2025 Extreme Mech. Lett. 74 102280
[15] Wang C, Yu J, Lai J, Wang B, Zhao F, Jiang Z, Xiao Z 2025 Appl. Surf. Sci. 686 162105
[16] Li X X, Wang J G, Ke H B, Yang C, Wang W H 2022 Mater. Today Phys. 27 100782
[17] Pan J, Wang Y X, Guo Q, Zhang D, Greer A L, Li Y 2018 Nat. Commun. 9 560
[18] Ross P, Küchemann S, Derlet P M, Yu H, Arnold W, Liaw P, Samwer K, Maaß R 2017 Acta Mater. 138 111
[19] Wang W H 2019 Prog. Mater. Sci. 106 100561
[20] Costa M B, Londoño J J, Blatter A, Hariharan A, Gebert A, Carpenter M A, Greer A L 2023 Acta Mater. 244 118551
[21] Gao Y, Ding G, Yang C, Zhang B B, Shi C J, Dai L H, Jiang M Q 2023 J. Non·Cryst. Solids 615 122410
[22] Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402
[23] Sun Y H, Concustell A, Greer A L 2016 Nat. Rev. Mater 1 16039
[24] Liang S Y, Zhang L T, Wang B, Wang Y J, Pineda E, Qiao J C 2024 Intermetallics 164 108115
[25] Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546
[26] Wu Y, Ertekin E, Sehitoglu H 2017 Acta Mater. 135 158
[27] Xing G H, Hao Q, Lyu G J, Zhu F, Wang Y J, Yang Y, Pineda E, Qiao J C 2025 J. Mater. Sci. Technol. 218 135
[28] Zhang L T, Wang Y J, Yang Y, Wada T, Kato H, Qiao J C 2024 Int. J. Mech. Sci. 281 109661
[29] Khonik V, Kobelev N 2019 9 605
[30] Qiao J C, Chen Y X, Pelletier J M, Kato H, Crespo D, Yao Y, Khonik V A 2018 Mater. Sci. Eng. 719 164
[31] Wang Z, Wang W H 2018 Nat. Sci. Rev. 6 304
[32] Şopu D 2023 J. Alloys Compd. 960 170585
[33] Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876
[34] Schuh C A, Lund A C, Nieh T G 2004 Acta Mater. 52 5879
[35] Yu P F, Feng S D, Xu G S, Guo X L, Wang Y Y, Zhao W, Qi L, Li G, Liaw P K, Liu R P 2014 Scr. Mater. 90-91 45
[36] Liang S Y, Zhang L T, Wang Y J, Wang B, Pelletier J M, Qiao J C 2024 Int. J. Fatigue 187 108446
[37] Liang S Y, Zhu F, Wang Y J, Pineda E, Wada T, Kato H, Qiao J C 2024 Int. J. Eng. Sci. 205 104146
[38] Castellero A, Moser B, Uhlenhaut D I, Torre F H D, Löffler J F 2008 Acta Mater. 56 3777
[39] Yuan C C, Lv Z W, Li X, Pang C M, Liu R, Yang C, Ma J, Zhu W W, Huang B, Ke H B 2023 Intermetallics 153 107803
[40] Zhang L T, Wang Y J, Nabahat M, Pineda E, Yang Y, Pelletier J M, Crespo D, Qiao J C 2024 Int. J. Plast. 174 103923
[41] Zhang L T, Wang Y J, Pineda E, Kato H, Yang Y, Qiao J C 2022 Scr. Mater. 214 114673
[42] Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81
[43] Ge T P, Wang W H, Bai H Y 2016 J. Appl. Phys. 119
[44] Tsai P, Kranjc K, Flores K M 2017 Acta Mater. 139 11
[45] Zella L, Moon J, Keffer D, Egami T 2022 Acta Mater. 239 118254
[46] Monnier X, Cangialosi D, Ruta B, Busch R, Gallino I 2020 6 eaay1454
[47] Luo Q, Zhang Z, Li D, Luo P, Wang W, Shen B 2022 Nano Lett. 22 2867
[48] Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200
Metrics
- Abstract views: 101
- PDF Downloads: 2
- Cited By: 0