-
Structural relaxation is significantly restricted. Notably, the dissipative component of cyclic loading dominates the thermodynamic energy of the practical applications of metallic glasses (MGs). Mechanical rejuvenation, achieved through cyclic loading, provides an effective approach for mitigating this problem. In this study, we systematically investigate the deformation characteristics and rejuvenation mechanism of Pd20Pt20Cu20Ni20P20 MG under mechanical cycling through dynamic mechanical analysis (DMA). By using a two-phase Kelvin model and continuous relaxation time spectrum, we elucidate the interplay between mechanical deformation and energy dissipation during cyclic loading. The experimental results demonstrate that the strain rate increases significantly with the increase of the intensity of mechanical cycling, indicating enhanced dynamic activity in the glassy matrix version. At higher cycling intensities, anelastic deformation is promoted, activating a broader spectrum of defects and amplifying dynamic heterogeneity. Through differential scanning calorimetry (DSC), we establish a quantitative correlation between deformation and energetic state, revealing that the rejuvenation originates from internal heating induced by anelastic strain. A comparative analysis with creep deformation reveals that mechanical cycling exhibits a superior rejuvenation potential, attributed to its ability to periodically excite multi-scale defect clusters and sustain non-equilibrium states. The main findings of this work include 1) Deformation mechanism: Cyclic loading enhances atomic mobility and facilitates deformation unit activation; 2) Energy landscape: The enthalpy change (ΔH) measured by DSC provides a direct metric for rejuvenation efficiency; 3) Dynamic heterogeneity: Mechanical cycling broadens the relaxation time spectrum, reflecting increased dynamic heterogeneity.
-
Keywords:
- metallic glasses /
- mechanical cycling /
- rejuvenation /
- relaxation
-
图 2 不同应力速率条件下机械循环过程中Pd20Pt20Cu20Ni20P20非晶合金 (a)应变、(b)蠕变耗能、(c)总应变耗能和(d)蠕变耗散分量权重系数随时间的演化
Figure 2. Evolution of the weight coefficients of (a) strain, (b) creep energy, (c) total strain energy dissipation, and (d) creep dissipation component of Pd20Pt20Cu20Ni20P20 amorphous alloy during mechanical cycling at different stress rates.
图 3 200 MPa/min条件下非晶合金的瞬时应力 (a)及其对应的拟合曲线(b); (c)应力ε值、(d)特征弛豫时间$ \tau $值、(e)斜率随时间的演化; (f)激活体积随应力速率的演化
Figure 3. (a) Separation stress of amorphous alloy at 200 MPa/min and (b) its corresponding fitting curve; (c) stress value, (d) characteristic relaxation time value, (e) slope evolution over time; (f) evolution of activation volume with stress rate.
图 4 (a)典型蠕变曲线及其对应的拟合曲线; (b) 25 MPa/min条件下非晶合金瞬时应力的高斯分布拟合结果; 拟合弛豫时间的(c)均值、(d)方差
Figure 4. (a) Typical creep curves and their corresponding fitting curves; (b) Gaussian distribution fitting results of separation stress of amorphous alloys at 25 MPa/min; (c) means, (d) variance of fitted relaxation times.
图 5 (a)应力速率200 MPa/min的样品机械循环-回复过程中黏弹性、黏塑性和能量损耗随回复时间演化过程, 插图为应力速率200 MPa/min的样品机械循环-回复过程中应变随时间的演化; (b)机械循环、蠕变分别回复8 h样品DSC曲线
Figure 5. (a) Evolution of viscoelasticity, viscoplasticity and energy loss with response time during mechanical cycling-response of samples with a stress rate of 200 MPa/min, and the inset shows the evolution of strain with time during mechanical cycling-response of samples with a stress rate of 200 MPa/min; (b) DSC curves of samples responding to mechanical cycling and creep for 8 h, respectively.
-
[1] Zhou Z Y, Yang Q, Yu H B 2024 Prog. Mater. Sci. 145 101311
Google Scholar
[2] Li F, Zhang Z, Liu H, Zhu W, Wang T, Park M, Zhang J, Bönninghoff N, Feng X, Zhang H, Luan J, Wang J, Liu X, Chang T, Chu J P, Lu Y, Liu Y, Guan P, Yang Y 2024 Nat. Mater. 23 52
Google Scholar
[3] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨 2024 物理学报 73 217101
Google Scholar
Wang Z, Jin F, Li W, Ruan J Y, Wang L F, Wu X L, Zhang Y K, Yuan C C 2024 Acta Phys. Sin. 73 217101
Google Scholar
[4] 姜晓月, 黄志敏, 王璇, 张响, 杨卫明, 刘海顺 2025 物理学报 74 017501
Google Scholar
Jiang X Y, Huang Z M, Wang X, Zhang X, Yang W M, Liu H S 2025 Acta Phys. Sin. 74 017501
Google Scholar
[5] Şopu D, Yuan X, Spieckermann F, Eckert J 2024 Acta Mater. 275 120033
Google Scholar
[6] 梁淑一, 张浪渟, 朱航辰, 邢光辉, 乔吉超 2025 物理学报 74 136401
Google Scholar
Liang S Y, Zhang L T, Zhu H C, Xing G H, Qiao J C 2025 Acta Phys. Sin. 74 136401
Google Scholar
[7] Deshmukh A A, Ranganathan R 2025 J. Mater. Sci. Technol. 204 127
Google Scholar
[8] Yang C, Zhou H B, Duan J, Cai S L, Ding G, Zhang B B, Shi C J, Dai L H, Wilde G, Jiang M Q 2025 Fundam. Res. https://doi.org/10.1016/j.fmre.2025.03.008
[9] Houghton O S, Greer A L 2025 Acta Mater. 288 120862
Google Scholar
[10] Riechers B, Das A, Rashidi R, Dufresne E, Maaß R 2025 Mater. Today 82 92
Google Scholar
[11] Balal A H, Bian X L, Han D X, Jia Y F, Ali S, Jia Y D, Wang G 2024 Mater. Charact. 212 113977
Google Scholar
[12] Yang Y, Geng J, Cao Y, Fan L, Shi B 2025 Scr. Mater. 256 116418
Google Scholar
[13] Yang Z Y, Dai L H 2022 Phys Rev. Mater. 6 L100602
Google Scholar
[14] Cheng Y, Shen Y, An Q, Jiang M, Huang C, Goddard W A, Wu X 2025 Extreme Mech. Lett. 74 102280
Google Scholar
[15] Wang C, Yu J, Lai J, Wang B, Zhao F, Jiang Z, Xiao Z 2025 Appl. Surf. Sci. 686 162105
Google Scholar
[16] Li X X, Wang J G, Ke H B, Yang C, Wang W H 2022 Mater. Today Phys. 27 100782
Google Scholar
[17] Pan J, Wang Y X, Guo Q, Zhang D, Greer A L, Li Y 2018 Nat. Commun. 9 560
Google Scholar
[18] Ross P, Küchemann S, Derlet P M, Yu H, Arnold W, Liaw P, Samwer K, Maass R 2017 Acta Mater. 138 111
Google Scholar
[19] Wang W H 2019 Prog. Mater. Sci. 106 100561
Google Scholar
[20] Costa M B, Londoño J J, Blatter A, Hariharan A, Gebert A, Carpenter M A, Greer A L 2023 Acta Mater. 244 118551
Google Scholar
[21] Gao Y, Ding G, Yang C, Zhang B B, Shi C J, Dai L H, Jiang M Q 2023 J. Non-Cryst. Solids 615 122410
Google Scholar
[22] Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402
Google Scholar
[23] Sun Y H, Concustell A, Greer A L 2016 Nat. Rev. Mater. 1 16039
Google Scholar
[24] Liang S Y, Zhang L T, Wang B, Wang Y J, Yang Y, Pineda E, Qiao J C 2025 International Journal of Mechanical Sciences 302 110573
Google Scholar
[25] Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546
Google Scholar
[26] Wu Y, Ertekin E, Sehitoglu H 2017 Acta Mater. 135 158
Google Scholar
[27] Xing G H, Hao Q, Lü G J, Zhu F, Wang Y J, Yang Y, Pineda E, Qiao J C 2025 J. Mater. Sci. Technol. 218 135
Google Scholar
[28] Zhang L T, Wang Y J, Yang Y, Wada T, Kato H, Qiao J C 2024 Int. J. Mech. Sci. 281 109661
Google Scholar
[29] Khonik V, Kobelev N 2019 Metal 9 605
Google Scholar
[30] Qiao J C, Chen Y X, Pelletier J M, Kato H, Crespo D, Yao Y, Khonik V A 2018 Mater. Sci. Eng. 719 164
Google Scholar
[31] Wang Z, Wang W H 2018 Nat. Sci. Rev. 6 304
[32] Şopu D 2023 J. Alloys Compd. 960 170585
Google Scholar
[33] Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876
Google Scholar
[34] Schuh C A, Lund A C, Nieh T G 2004 Acta Mater. 52 5879
Google Scholar
[35] Yu P F, Feng S D, Xu G S, Guo X L, Wang Y Y, Zhao W, Qi L, Li G, Liaw P K, Liu R P 2014 Scr. Mater. 90 45
[36] Liang S Y, Zhang L T, Wang Y J, Wang B, Pelletier J M, Qiao J C 2024 Int. J. Fatigue 187 108446
Google Scholar
[37] Liang S Y, Zhu F, Wang Y J, Pineda E, Wada T, Kato H, Qiao J C 2024 Int. J. Eng. Sci. 205 104146
Google Scholar
[38] Castellero A, Moser B, Uhlenhaut D I, Torre F H D, Löffler J F 2008 Acta Mater. 56 3777
Google Scholar
[39] Yuan C C, Lv Z W, Li X, Pang C M, Liu R, Yang C, Ma J, Zhu W W, Huang B, Ke H B 2023 Intermetallics 153 107803
Google Scholar
[40] Zhang L T, Wang Y J, Nabahat M, Pineda E, Yang Y, Pelletier J M, Crespo D, Qiao J C 2024 Int. J. Plast. 174 103923
Google Scholar
[41] Zhang L T, Wang Y J, Pineda E, Kato H, Yang Y, Qiao J C 2022 Scr. Mater. 214 114673
Google Scholar
[42] Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81
Google Scholar
[43] Ge T P, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 204905
Google Scholar
[44] Tsai P, Kranjc K, Flores K M 2017 Acta Mater. 139 11
Google Scholar
[45] Zella L, Moon J, Keffer D, Egami T 2022 Acta Mater. 239 118254
Google Scholar
[46] Monnier X, Cangialosi D, Ruta B, Busch R, Gallino I 2020 Sci. Adv. 6 eaay1454
Google Scholar
[47] Luo Q, Zhang Z, Li D, Luo P, Wang W, Shen B 2022 Nano Lett. 22 2867
Google Scholar
[48] Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200
Google Scholar
Metrics
- Abstract views: 480
- PDF Downloads: 7
- Cited By: 0