Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Top-view analysis of ultrafast differential scanning calorimetry data

Cheng Qi Sun Yong-Hao Wang Wei-Hua

Citation:

Top-view analysis of ultrafast differential scanning calorimetry data

Cheng Qi, Sun Yong-Hao, Wang Wei-Hua
PDF
HTML
Get Citation
  • Ultrafast differential scanning calorimetry is the third-generation technique of differential thermal-analysis. It can fast heat up to 60000 K/s or fast cool down to 40000 K/s, so its temperature-changing rate spans five orders of magnitude, and permit repeating experiments on compounds or materials with a melting point lower than 1000 ℃. The unique rate of temperature change allows it to record structural changes of sample in milliseconds, producing a significant number of data. A “top-view” graph is suggested in this study for data analysis. It basically projects the heat flow onto a plane of variables such as temperature, rate or time and uses color contrast to describe the intensity change of heat flow. The issues with “side-view” graphs, where it is a challenge to discern rate or time from several curves, are successfully resolved by this novel technique. It can also realize a comparison of the kinetics among several co-existing physical events. Using an Au-based metallic glass as an example material, this work collects the data from four “side-view” graphs in literature, replots the data on “top-view” graphs, and compares pros and cons. Any substance or material to be examined by utilizing fast differential scanning calorimetry can be examined through using the “top-view” approach. It is useful not only for data analysis but also for constructing processing maps for novel materials, finding new structural transitions, and examining the kinetic behaviors of physical phenomena. All the data presented in this paper are openly available at https://doi.org/ 10.57760/sciencedb.j00213.00012.
      Corresponding author: Sun Yong-Hao, ysun58@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 92263103) and the National Key Technology Research and Development Program of China (Grant No. 2018YFA0703603).
    [1]

    瓦格纳M著 (陆立华译) 2011 热分析应用基础 (上海: 东华大学出版社) 第1页

    Wagner M (translated by Lu L H) 2011 Thermal Analysis in Practice (Shanghai: Dong Hua University Press) p1

    [2]

    Ravisankar R, Naseerutheen A, Rajalakshmi A, Raja Annamalai, G, Chandrasekaran A 2014 Spectrochim. Acta A 129 201Google Scholar

    [3]

    刘振海, 陆立明, 唐远望 2012 热分析简明教程 (北京: 科学出版社) 第1页

    Liu Z H, Lu L M, Tang Y W 2012 A Concise Coursebook of Thermal Analysis (Beijing: Science Press) p1

    [4]

    Boersma S L 1955 J. Amer. Ceram. 38 281Google Scholar

    [5]

    Watson E S, O’Neill M J, Justin J, Brenner N 1964 Anal. Chem. 36 1233Google Scholar

    [6]

    Reading M, Elliott D, Hill V L 1993 J. Therm. Anal. 40 949Google Scholar

    [7]

    Schick C, Mathot V 2016 Fast Scanning Calorimetry (Switzerland: Springer Nature

    [8]

    Cheng Q, Sun Y H, Orava J, Bai H Y, Wang W H 2022 Acta Mater. 230 117834Google Scholar

    [9]

    Cheng Q, Han X L, Kaban I, Soldatov I, Wang W H, Sun Y H, Orava J 2020 Scripta Mater. 183 61Google Scholar

    [10]

    Cheng Q, Wang P F, Jiang H Y, Gu L, Orava J, Sun Y H, Bai H Y, Wang W H 2021 Phys. Rev. B 103 L100203Google Scholar

    [11]

    Shen J, Lu Z, Wang J Q, Lan S, Zhang F, Hirata A, Chen M W, Wang X L, Wen P, Sun Y H, Bai H Y, Wang W H 2020 J. Phys. Chem. Lett. 11 6718Google Scholar

    [12]

    Shen J, Sun Y H, Orava J, Bai H Y, Wang W H 2022 Acta Mater. 225 117588Google Scholar

    [13]

    江海河 2001 光电子技术与信息 14 1

    Jiang H H 2001 Opto-Electronics Tech. Info. 14 1

    [14]

    Schroers J, Lohwongwatana B, Johnson W L, Peker A 2007 Mater. Sci. Eng. A 449 235

    [15]

    Schorers J, Lohwongwatana B, Johnson W L, Peker A 2005 Appl. Phys. Lett. 87 061912Google Scholar

    [16]

    Cardinal S, Qiao J C, Pelletier J M 2014 Mater. Sci. Forum 783 1901

    [17]

    Zhang W, Guo H, Chen M W, Saotome Y, Qin C L, Inoue S 2009 Scripta Mater. 61 744Google Scholar

    [18]

    Na J H, Han K H, Garrett G R, Launey M F, Demetriou M D, Johnson W L 2019 Sci. Rep. 9 3269Google Scholar

    [19]

    Rizzi P, Corazzari I, Fiore G, Fenoglio I, Fubini B, Kaciulis S, Battezzati L 2013 Cor. Sci. 77 135Google Scholar

    [20]

    Eisenbart M, Klotz U E, Busch R, Gallino I 2014 J. Alloys Compd. 615 S118Google Scholar

    [21]

    Eisenbart M, Klotz U E, Busch R, Gallino I 2014 Cor. Sci. 85 258Google Scholar

    [22]

    Ivanov Y P, Meylan C M, Panagiotopoulos N T, Georgorakis K, Greer A L 2020 Acta Mater. 196 52Google Scholar

    [23]

    Schawe J E K, Löffler J F 2019 Nat. Commun. 10 1337Google Scholar

    [24]

    Cheng Q, Sun Y H, Orava J, Wang W H 2023 Mater. Today Phys. 31 101004Google Scholar

    [25]

    Song L J, Xu W, Huo J T, Wang J Q, Wang X M, Li R W 2018 Intermetallics 93 101Google Scholar

    [26]

    Song L J, Gao M, Xu W, Huo J T, Wang J Q, Li R W, Wang W H, Perepezko J H 2020 Acta Mater. 185 38Google Scholar

    [27]

    Schawe J E K, Löffler J F 2022 Acta Mater. 226 117630

    [28]

    Zhang L J, Wang C H, Wu H Y, Wang L M, Yi J, Zhai Q J, Gao Y L, Zhao B G 2024 Thermochim. Acta 731 179643Google Scholar

    [29]

    Song L J, Gao Y R, Zou P, Xu W, Gao M, Zhang Y, Huo J T, Li F S, Qiao J C, Wang L M, Wang J Q 2023 Proc. Natl. Acad. Sci. 120 e2302776120Google Scholar

    [30]

    Lisio V D, Gallino I, Riegler S S, Frey M, Neuber N, Kumar G, Schroers J, Busch R, Cangialosi D 2023 Nat. Commun. 14 4698Google Scholar

    [31]

    Pogatscher S, Leutenegger D, Schawe J E K, Uggowitzer P J, Löffler J F 2016 Nat. Commun. 7 11113Google Scholar

    [32]

    Kissinger H E 1956 Journal of Research of the National Bureau of Standards 57 217Google Scholar

    [33]

    汪卫华 2023 非晶态物质—常规物质第四态(第二卷) (北京: 科学出版社) 第279页

    Wang W H 2023 Amorphous Matter: The Forth Conventional Matter (Vol. 2) (Beijing: Science Press) p279

  • 图 1  FDSC实验的温控程序(Tq代表熔体温度, Ta代表退火温度, φc代表冷却速率, φh代表加热速率, ta代表退火时间; 双箭头代表变量可以调节的方向)

    Figure 1.  Thermal protocol of FDSC experiments (Tq is quenching temperature, Ta is annealing temperature, φc is cooling rate, φh is heating rate, ta is annealing time; double arrows indicate directions of change for variables).

    图 2  FDSC结果的三维形貌图、侧视图和俯视图 (h' 代表被φh约化后的热流, 数据来源于参考文献[23])

    Figure 2.  3D morphology, side and top views of typical FDSC results (h' is φh-normalized heat flow, reproduced from Ref. [23]).

    图 3  铸态Au基非晶合金的超快加热曲线 (a) 侧视图; (b) 俯视图; (c) 低热流强度下的俯视图. 方块和圆圈分别代表焓过冲和晶化的峰值温度; 信息数据来源于文献[22]. 注: 由于文献[22]未能提供部分曲线上完整的晶化峰或熔化峰信息, 所以部分热流曲线不连续

    Figure 3.  Ultrafast heating curves of the as-cast Au-based metallic glass: (a) Side view; (b) top view; (c) top view under low heat flux intensity. Squares and circles represent peak temperatures of enthalpy overshoot and crystallization; reproduced from Ref. [22]. Note: Due to the lack of a complete crystallization peak or a complete melting peak on some heat-flow curves in Ref. [22], some of the presented appear discontinuous.

    图 4  退火态Au基非晶合金的超快加热曲线 (a) 侧视图; (b) 俯视图. 圆圈代表晶化峰值温度, 数据来源于参考文献[27]

    Figure 4.  Ultrafast heating curves of the annealed Au-based metallic glass: (a) Side view; (b) top view. Circles represent the peak temperature of crystallization, reproduced from Ref. [27].

    图 5  化学均匀型(CHG)和自掺杂型(SDG) Au基非晶合金的超快加热曲线 (a) CHG样品的侧视图; (b) SDG样品的侧视图; (c) CHG样品的俯视图; (d) SDG样品的俯视图. 三角、空心圆和实心圆分别代表焓过冲、晶化和熔化的峰值温度, 数据来源于参考文献[23]

    Figure 5.  Ultrafast heating curves of the chemically-homogeneous-glass (CHG) and self-doped glass (SDG) of the Au-based metallic glass: (a) Side view of CHG; (b) side view of SDG; (c) top view of CHG; (d) top view of SDG. Triangles, circles and dots denote peak temperatures of enthalpy overshoot, crystallization and melting, respectively, reproduced from Ref. [23].

    图 6  退火态Au基非晶合金的超快加热曲线 (a)侧视图; (b)俯视图. 圆圈代表焓过冲的峰值温度, 数据来源于参考文献[29]

    Figure 6.  Ultrafast heating curves of the annealed Au-based metallic glass: (a) Side view; (b) top view. Circles represent the peak temperatures of enthalpy overshoot, reproduced from Ref. [29].

    表 1  Au基化学均匀型玻璃(CHG)和自掺杂型玻璃(SDG)的α弛豫、晶化和熔化激活能

    Table 1.  Activation energy of Au-based CHG and SDG metallic glasses for their α relaxation, crystallization and melting

    物理过程 CHG的激活能Ea/(kJ·mol–1) SDG的激活能Ea/(kJ·mol–1) 相对变化
    α弛豫 110±11 85±7 –23%
    结晶 94±13 105±5 12%
    熔化 430±43 380±26 –12%
    DownLoad: CSV
  • [1]

    瓦格纳M著 (陆立华译) 2011 热分析应用基础 (上海: 东华大学出版社) 第1页

    Wagner M (translated by Lu L H) 2011 Thermal Analysis in Practice (Shanghai: Dong Hua University Press) p1

    [2]

    Ravisankar R, Naseerutheen A, Rajalakshmi A, Raja Annamalai, G, Chandrasekaran A 2014 Spectrochim. Acta A 129 201Google Scholar

    [3]

    刘振海, 陆立明, 唐远望 2012 热分析简明教程 (北京: 科学出版社) 第1页

    Liu Z H, Lu L M, Tang Y W 2012 A Concise Coursebook of Thermal Analysis (Beijing: Science Press) p1

    [4]

    Boersma S L 1955 J. Amer. Ceram. 38 281Google Scholar

    [5]

    Watson E S, O’Neill M J, Justin J, Brenner N 1964 Anal. Chem. 36 1233Google Scholar

    [6]

    Reading M, Elliott D, Hill V L 1993 J. Therm. Anal. 40 949Google Scholar

    [7]

    Schick C, Mathot V 2016 Fast Scanning Calorimetry (Switzerland: Springer Nature

    [8]

    Cheng Q, Sun Y H, Orava J, Bai H Y, Wang W H 2022 Acta Mater. 230 117834Google Scholar

    [9]

    Cheng Q, Han X L, Kaban I, Soldatov I, Wang W H, Sun Y H, Orava J 2020 Scripta Mater. 183 61Google Scholar

    [10]

    Cheng Q, Wang P F, Jiang H Y, Gu L, Orava J, Sun Y H, Bai H Y, Wang W H 2021 Phys. Rev. B 103 L100203Google Scholar

    [11]

    Shen J, Lu Z, Wang J Q, Lan S, Zhang F, Hirata A, Chen M W, Wang X L, Wen P, Sun Y H, Bai H Y, Wang W H 2020 J. Phys. Chem. Lett. 11 6718Google Scholar

    [12]

    Shen J, Sun Y H, Orava J, Bai H Y, Wang W H 2022 Acta Mater. 225 117588Google Scholar

    [13]

    江海河 2001 光电子技术与信息 14 1

    Jiang H H 2001 Opto-Electronics Tech. Info. 14 1

    [14]

    Schroers J, Lohwongwatana B, Johnson W L, Peker A 2007 Mater. Sci. Eng. A 449 235

    [15]

    Schorers J, Lohwongwatana B, Johnson W L, Peker A 2005 Appl. Phys. Lett. 87 061912Google Scholar

    [16]

    Cardinal S, Qiao J C, Pelletier J M 2014 Mater. Sci. Forum 783 1901

    [17]

    Zhang W, Guo H, Chen M W, Saotome Y, Qin C L, Inoue S 2009 Scripta Mater. 61 744Google Scholar

    [18]

    Na J H, Han K H, Garrett G R, Launey M F, Demetriou M D, Johnson W L 2019 Sci. Rep. 9 3269Google Scholar

    [19]

    Rizzi P, Corazzari I, Fiore G, Fenoglio I, Fubini B, Kaciulis S, Battezzati L 2013 Cor. Sci. 77 135Google Scholar

    [20]

    Eisenbart M, Klotz U E, Busch R, Gallino I 2014 J. Alloys Compd. 615 S118Google Scholar

    [21]

    Eisenbart M, Klotz U E, Busch R, Gallino I 2014 Cor. Sci. 85 258Google Scholar

    [22]

    Ivanov Y P, Meylan C M, Panagiotopoulos N T, Georgorakis K, Greer A L 2020 Acta Mater. 196 52Google Scholar

    [23]

    Schawe J E K, Löffler J F 2019 Nat. Commun. 10 1337Google Scholar

    [24]

    Cheng Q, Sun Y H, Orava J, Wang W H 2023 Mater. Today Phys. 31 101004Google Scholar

    [25]

    Song L J, Xu W, Huo J T, Wang J Q, Wang X M, Li R W 2018 Intermetallics 93 101Google Scholar

    [26]

    Song L J, Gao M, Xu W, Huo J T, Wang J Q, Li R W, Wang W H, Perepezko J H 2020 Acta Mater. 185 38Google Scholar

    [27]

    Schawe J E K, Löffler J F 2022 Acta Mater. 226 117630

    [28]

    Zhang L J, Wang C H, Wu H Y, Wang L M, Yi J, Zhai Q J, Gao Y L, Zhao B G 2024 Thermochim. Acta 731 179643Google Scholar

    [29]

    Song L J, Gao Y R, Zou P, Xu W, Gao M, Zhang Y, Huo J T, Li F S, Qiao J C, Wang L M, Wang J Q 2023 Proc. Natl. Acad. Sci. 120 e2302776120Google Scholar

    [30]

    Lisio V D, Gallino I, Riegler S S, Frey M, Neuber N, Kumar G, Schroers J, Busch R, Cangialosi D 2023 Nat. Commun. 14 4698Google Scholar

    [31]

    Pogatscher S, Leutenegger D, Schawe J E K, Uggowitzer P J, Löffler J F 2016 Nat. Commun. 7 11113Google Scholar

    [32]

    Kissinger H E 1956 Journal of Research of the National Bureau of Standards 57 217Google Scholar

    [33]

    汪卫华 2023 非晶态物质—常规物质第四态(第二卷) (北京: 科学出版社) 第279页

    Wang W H 2023 Amorphous Matter: The Forth Conventional Matter (Vol. 2) (Beijing: Science Press) p279

  • [1] JIANG Xiaoyue, HUANG Zhimin, WANG Xuan, ZHANG Xiang, YANG Weiming, LIU Haishun. Effects of substrate temperature on crystallization of Fe-based amorphous alloy prepared by selective laser melting. Acta Physica Sinica, 2025, 74(1): 017501. doi: 10.7498/aps.74.20240662
    [2] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [3] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [4] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [5] Cheng Yi-Ting, Andrey S. Makarov, Gennadii V. Afonin, Vitaly A. Khonik, Qiao Ji-Chao. Evolution of defect concentration in Zr50–xCu34Ag8Al8Pdx (x = 0, 2) amorphous alloys derived using shear modulus and calorimetric data. Acta Physica Sinica, 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [6] Wen Da-Dong, Deng Yong-He, Dai Xiong-Ying, Wu An-Ru, Tian Ze-An. Atomic-level mechanism for isothermal crystallization in supercooled liquid tantalum. Acta Physica Sinica, 2020, 69(19): 196101. doi: 10.7498/aps.69.20200665
    [7] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [8] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [9] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [10] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [11] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [12] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [13] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [14] Jin Xin-Xin, Jin Feng, Liu Ning, Sun Qi-Cheng. Analysis of elastic energy relaxation process for granular materials at quasi-static state. Acta Physica Sinica, 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [15] Zhou Zheng-Cun, Zhao Hong-Ping, Gu Su-Yi, Wu Qian. Relaxation resulting from atomic defects in quenched Fe-Al alloys. Acta Physica Sinica, 2008, 57(2): 1025-1029. doi: 10.7498/aps.57.1025
    [16] Li Shi-Bin, Wu Zhi-Ming, Li Wei, Yu Jun-Sheng, Jiang Ya-Dong, Liao Nai-Man. Study on crystallization mechanism of hydrogenated silicon film. Acta Physica Sinica, 2008, 57(11): 7114-7118. doi: 10.7498/aps.57.7114
    [17] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [18] Cheng Wei-Dong, Sun Min-Hua, Li Jia-Yun, Wang Ai-Ping, Sun Yong-Li, Liu Fang, Liu Xiong-Jun. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy. Acta Physica Sinica, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [19] Zhou Feng, Liang Kai-Ming, Wang Guo-Liang. Study on the phase transformation behavior of TiO2 thin films in an electric field. Acta Physica Sinica, 2005, 54(6): 2863-2867. doi: 10.7498/aps.54.2863
    [20] QI ZE-MING, SHI CHAO-SHU, WANG ZHENG, WEI YA-GUANG, XIE YA-NING, HU TIAN-DOU, LI FU-LI. AMORPHOUS AND NANOCRYSTALLINE ZrO2·Y2O3(15%) STUDIED BY EXTENDED X-RAY ABSORPTION FINE STRUCTURE. Acta Physica Sinica, 2001, 50(7): 1318-1323. doi: 10.7498/aps.50.1318
  • supplement 7-20232027数据集.ZIP supplement
Metrics
  • Abstract views:  2755
  • PDF Downloads:  169
  • Cited By: 0
Publishing process
  • Received Date:  27 December 2023
  • Accepted Date:  17 January 2024
  • Available Online:  23 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回