-
The dynamic relaxation process of amorphous alloys is an important issue to understand the diffusion behavior, plastic deformation as well as glass transition phenomenon. In the current research, (La0.6Ce0.4)65Al10Co25 amorphous alloy with a pronounced β relaxation process was selected as a model system to study the dynamic mechanical relaxation processes. Influence of driving frequency, physical aging and applied strain amplitude on the β relaxation of the La-based metallic glass was probed process using dynamic mechanical analysis. The experimental results demonstrated that the peak of the β relaxation process shifts to high temperature by increasing the driving frequency. Physical aging below the glass transition temperature induces a decrease of the intensity of the β relaxation process. The “defects” of amorphous alloy decreases during the physical aging process, which is ascribed to the glassy system shifts to more stable state induced by physical aging treatment. In parallel, the intensity of the β relaxation process of the amorphous alloy increases by increasing strain amplitude. The research sheds new light on further understanding the physical origin of β relaxation process of the amorphous alloy.
-
Keywords:
- Amorphous alloy /
- Dynamic mechanical relaxation /
- Physical aging /
- Microstructural heterogeneity
[1] Demetriou M D, Launey M E, Garrett G, et al. 2011 Nat. Mater. 10 123Google Scholar
[2] Hufnagel T C, Schuh C A, Falk M L 2016 Acta Mater. 109 375Google Scholar
[3] Inoue A 2000 Acta Mater. 48 279Google Scholar
[4] Johnson W, Samwer K 2005 Phys. Rev. Lett. 95 195501Google Scholar
[5] Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200Google Scholar
[6] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar
[7] Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar
[8] Wang W H 2012 Nat. Mater. 11 275Google Scholar
[9] Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar
[10] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[11] 乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117
Qiao J C, Zhang L T, Tong Y, Lyu G J, Hao Q, Tao K 2022 Adv. Mech. 52 117
[12] Huang B, Zhu Z G, Ge T P, Bai H Y, Sun B A, Yang Y, Liu C T, Wang W H 2016 Acta Mater. 110 73Google Scholar
[13] Ichitsubo T, Matsubara E, Yamamoto T, Chen H, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501Google Scholar
[14] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar
[15] Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81Google Scholar
[16] Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619Google Scholar
[17] 王峥, 汪卫华 2017 物理学报 66 176105Google Scholar
Wang Z, Wang W H 2017 Acta. Phys. Sin. 66 176105Google Scholar
[18] Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240Google Scholar
[19] Duan Y J, Zhang L T, Qiao J C, et al. 2022 Phys. Rev. Lett. 129 175501Google Scholar
[20] Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402Google Scholar
[21] Wagner H, Bedorf D, Kuechemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439Google Scholar
[22] Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502Google Scholar
[23] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903Google Scholar
[24] Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823Google Scholar
[25] 汪卫华 2014 中国科学: 物理学 力学 天文学 44 396Google Scholar
Wang W H 2014 Sci. China Phys. Mech. Astr. 44 396Google Scholar
[26] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385Google Scholar
[27] Qiao J, Wang Q, Pelletier J, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar
[28] Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183Google Scholar
[29] Wang J, Zhang X, Jiang L, Qiao J 2019 Prog. Polym. Sci. 98 101160Google Scholar
[30] Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 016402Google Scholar
[31] 胡丽娜, 张春芝, 岳远征, 边秀房 2010 科学通报 55 115
Hu L N, Zhang C Z, Yue Y Z, Bian Y F 2010 Sci. Bull. 55 115
[32] Wang X D, Ruta B, Xiong L H, et al. 2015 Acta Mater. 99 290Google Scholar
[33] Li N, Xu X, Zheng Z, Liu L 2014 Acta Mater. 65 400Google Scholar
[34] Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109 095508Google Scholar
[35] Hao Q, Lyu G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar
[36] Li R, Pang S, Ma C, Zhang T 2007 Acta Mater. 55 3719Google Scholar
[37] Menard K P 2015 Dynamic Mechanical Analysis (3rd Ed.) (Place: Published: Crc Press)
[38] Zhao Z F, Wen P, Wang W H, Shek C H 2006 Appl. Phys. Lett. 89 071920Google Scholar
[39] Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J, Yang Y 2017 Mater. Today 20 293Google Scholar
[40] Yu H B, Samwer K 2014 Phys. Rev. B 90 144201Google Scholar
[41] Goldstein M 2011 J. Non-Cryst. Solids 357 249Google Scholar
[42] Ke H B, Zeng J F, Liu C T, Yang Y 2014 Mater. Sci. Technol. 30 560Google Scholar
[43] Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260
[44] Perez J 1990 Solid State Ionics 39 69Google Scholar
[45] Cavaille J Y, Perez J, Johari G P 1989 Phys. Rev. B 39 2411
[46] Ngai K L, Capaccioli S 2004 Phys. Rev. E 69 031501Google Scholar
[47] Lunkenheimer P, Wehn R, Schneider U, Loidl A 2005 Phys. Rev. Lett. 95 055702Google Scholar
[48] Zhao Y, Shang B, Zhang B, Tong X, Ke H, Bai H, Wang W H 2022 Sci. Adv. 8 eabn3623Google Scholar
[49] Qiao J, Pelletier J-M, Casalini R 2013 J. Phys. Chem. B 117 13658Google Scholar
[50] Wen P, Zhao Z F, Pan M X, Wang W H 2010 Phys. Status Solidi 207 2693Google Scholar
[51] Zhu F, Nguyen H, Song S, Aji D P, Hirata A, Wang H, Nakajima K, Chen M 2016 Nat. Commun. 7 1
[52] Hiki Y, Tanahashi M, Takeuchi S 2008 J. Non-Cryst. Solids 354 1780Google Scholar
[53] Angell C A 1988 J. Non-Cryst. Solids 102 205Google Scholar
[54] 郝奇, 乔吉超, Jean-Marc Pelletier 2020 力学学报 52 360Google Scholar
Hao Q, Qiao J C, Pelletier J M 2020 Acta Mech. Sin. 52 360Google Scholar
[55] Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. Condens. Mat. 23 142202Google Scholar
[56] Liu Y H, Fujita T, Aji D P B, Matsuura M, Chen M W 2014 Nat. Commun. 5 3238Google Scholar
[57] Evenson Z, Naleway S E, Wei S, Gross O, Kruzic J J, Gallino I, Possart W, Stommel M, Busch R 2014 Phys. Rev. B 89 174204Google Scholar
[58] Aji D P B, Johari G P 2015 J. Chem. Phys. 142 214501Google Scholar
[59] Johari G P 1976 Ann. Ny. Acad. Sci. 279 117Google Scholar
[60] Johari G P 2002 J. Non-Cryst. Solids 307-310 317
[61] Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372Google Scholar
[62] Johari G P, Goldstein M 1971 J. Chem. Phys. 55 4245Google Scholar
[63] Perez J 1994 J. Food Eng. 22 89Google Scholar
[64] Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar
[65] Qiao J, Pelletier J-M, Esnouf C, Liu Y, Kato H 2014 J. Alloy. Compd. 607 139Google Scholar
[66] Gauthier C, David L, Ladouce L, Quinson R, Perez J 1997 J. Appl. Polym. Sci. 65 2517Google Scholar
[67] Sun Y, Concustell A, Greer A L 2016 Nat. Rev. Mater. 1 16039Google Scholar
-
图 2 (a) (La0.6Ce0.4)65Al10Co25非晶合金归一化储能模量
${E'}/{{E}}_{\text{u}}$ 和损耗模量${E''}/{{E}}_{\text{u}}$ 随温度的演化(升温速率: 3 K/min, 加载频率: 0.7 Hz); (b) (La0.6Ce0.4)65Al10Co25非晶合金归一化损耗模量${E''}/{{E}}_{\text{u}}$ 在不同加载频率随温度的演化 (升温速率为3 K/min). 插图是β弛豫峰温与加载频率的关系, 实线为Arrhenius方程拟合Figure 2. (a) Temperature dependence of the normalized storage modulus
${E'}/{{E}}_{\text{u}}$ and loss modulus${E''}/{{E}}_{\text{u}}$ for (La0.6Ce0.4)65Al10Co25 amorphous alloy (heating rate: 3 K/min , driving frequency: 0.7 Hz); (b) temperature dependence of the normalized loss modulus${E''}/{{E}}_{\text{u}}$ for (La0.6Ce0.4)65Al10Co25 amorphous alloy with different frequency. Inset shows the frequency versus peak temperature of the β relaxation, the solid line is the Arrhenius equation fit.图 3 (a) 不同温度下(La0.6Ce0.4)65Al10Co25非晶合金损耗模量
${E''}/{{E}}_{\text{u}}$ 随加载频率演化; (b) (La0.6Ce0.4)65Al10Co25非晶合金等温和连续加热条件下β弛豫峰温与频率的关系, 实线为Arrhenius方程拟合Figure 3. (a) Frequency dependence of the normalized loss modulus
${E''}/{{E}}_{\text{u}}$ for (La0.6Ce0.4)65Al10Co25 amorphous alloy with different temperature; (b) the frequency versus peak temperature of the β relaxation with different states (isochronal mode and frequency sweep mode), the solid line is the Arrhenius equation fit.图 4 (a) (La0.6Ce0.4)65Al10Co25非晶合金等温原位退火过程储能模量
${E'}/{{E}}_{\text{u}}$ 和内耗$ \tan\delta $ 随退火时间演化(退火温度为403 K, 加载频率为1 Hz, 实线为KWW拟合); (b) (La0.6Ce0.4)65Al10Co25非晶合金在铸态和退火态(退火样品的退火温度为403 K, 退火时间为10 h)储能模量和损耗模量随温度演化过程(升温速率: 3 K/min, 加载频率: 1 Hz)Figure 4. (a) Time dependence of the loss factor
$ \tan\delta $ and normalized storage modulus${E'}/{{E}}_{\text{u}}$ of (La0.6Ce0.4)65Al10Co25 amorphous alloy, annealing temperature is 403 K, driving frequency is 1 Hz, the solid line is the best fitting by the KWW equation); (b) annealing temperature is 403 K, annealing time is 10 h, temperature dependence of the normalized storage modulus${E'}/{{E}}_{\text{u}}$ and loss modulus${E''}/{{E}}_{\text{u}}$ of (La0.6Ce0.4)65Al10Co25 amorphous alloy with different states (as-cast and annealed state, heating rate: 3 K/min driving frequency: 1 Hz). -
[1] Demetriou M D, Launey M E, Garrett G, et al. 2011 Nat. Mater. 10 123Google Scholar
[2] Hufnagel T C, Schuh C A, Falk M L 2016 Acta Mater. 109 375Google Scholar
[3] Inoue A 2000 Acta Mater. 48 279Google Scholar
[4] Johnson W, Samwer K 2005 Phys. Rev. Lett. 95 195501Google Scholar
[5] Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200Google Scholar
[6] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar
[7] Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar
[8] Wang W H 2012 Nat. Mater. 11 275Google Scholar
[9] Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar
[10] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[11] 乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117
Qiao J C, Zhang L T, Tong Y, Lyu G J, Hao Q, Tao K 2022 Adv. Mech. 52 117
[12] Huang B, Zhu Z G, Ge T P, Bai H Y, Sun B A, Yang Y, Liu C T, Wang W H 2016 Acta Mater. 110 73Google Scholar
[13] Ichitsubo T, Matsubara E, Yamamoto T, Chen H, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501Google Scholar
[14] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar
[15] Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81Google Scholar
[16] Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619Google Scholar
[17] 王峥, 汪卫华 2017 物理学报 66 176105Google Scholar
Wang Z, Wang W H 2017 Acta. Phys. Sin. 66 176105Google Scholar
[18] Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240Google Scholar
[19] Duan Y J, Zhang L T, Qiao J C, et al. 2022 Phys. Rev. Lett. 129 175501Google Scholar
[20] Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402Google Scholar
[21] Wagner H, Bedorf D, Kuechemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439Google Scholar
[22] Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502Google Scholar
[23] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903Google Scholar
[24] Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823Google Scholar
[25] 汪卫华 2014 中国科学: 物理学 力学 天文学 44 396Google Scholar
Wang W H 2014 Sci. China Phys. Mech. Astr. 44 396Google Scholar
[26] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385Google Scholar
[27] Qiao J, Wang Q, Pelletier J, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar
[28] Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183Google Scholar
[29] Wang J, Zhang X, Jiang L, Qiao J 2019 Prog. Polym. Sci. 98 101160Google Scholar
[30] Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 016402Google Scholar
[31] 胡丽娜, 张春芝, 岳远征, 边秀房 2010 科学通报 55 115
Hu L N, Zhang C Z, Yue Y Z, Bian Y F 2010 Sci. Bull. 55 115
[32] Wang X D, Ruta B, Xiong L H, et al. 2015 Acta Mater. 99 290Google Scholar
[33] Li N, Xu X, Zheng Z, Liu L 2014 Acta Mater. 65 400Google Scholar
[34] Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109 095508Google Scholar
[35] Hao Q, Lyu G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar
[36] Li R, Pang S, Ma C, Zhang T 2007 Acta Mater. 55 3719Google Scholar
[37] Menard K P 2015 Dynamic Mechanical Analysis (3rd Ed.) (Place: Published: Crc Press)
[38] Zhao Z F, Wen P, Wang W H, Shek C H 2006 Appl. Phys. Lett. 89 071920Google Scholar
[39] Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J, Yang Y 2017 Mater. Today 20 293Google Scholar
[40] Yu H B, Samwer K 2014 Phys. Rev. B 90 144201Google Scholar
[41] Goldstein M 2011 J. Non-Cryst. Solids 357 249Google Scholar
[42] Ke H B, Zeng J F, Liu C T, Yang Y 2014 Mater. Sci. Technol. 30 560Google Scholar
[43] Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260
[44] Perez J 1990 Solid State Ionics 39 69Google Scholar
[45] Cavaille J Y, Perez J, Johari G P 1989 Phys. Rev. B 39 2411
[46] Ngai K L, Capaccioli S 2004 Phys. Rev. E 69 031501Google Scholar
[47] Lunkenheimer P, Wehn R, Schneider U, Loidl A 2005 Phys. Rev. Lett. 95 055702Google Scholar
[48] Zhao Y, Shang B, Zhang B, Tong X, Ke H, Bai H, Wang W H 2022 Sci. Adv. 8 eabn3623Google Scholar
[49] Qiao J, Pelletier J-M, Casalini R 2013 J. Phys. Chem. B 117 13658Google Scholar
[50] Wen P, Zhao Z F, Pan M X, Wang W H 2010 Phys. Status Solidi 207 2693Google Scholar
[51] Zhu F, Nguyen H, Song S, Aji D P, Hirata A, Wang H, Nakajima K, Chen M 2016 Nat. Commun. 7 1
[52] Hiki Y, Tanahashi M, Takeuchi S 2008 J. Non-Cryst. Solids 354 1780Google Scholar
[53] Angell C A 1988 J. Non-Cryst. Solids 102 205Google Scholar
[54] 郝奇, 乔吉超, Jean-Marc Pelletier 2020 力学学报 52 360Google Scholar
Hao Q, Qiao J C, Pelletier J M 2020 Acta Mech. Sin. 52 360Google Scholar
[55] Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. Condens. Mat. 23 142202Google Scholar
[56] Liu Y H, Fujita T, Aji D P B, Matsuura M, Chen M W 2014 Nat. Commun. 5 3238Google Scholar
[57] Evenson Z, Naleway S E, Wei S, Gross O, Kruzic J J, Gallino I, Possart W, Stommel M, Busch R 2014 Phys. Rev. B 89 174204Google Scholar
[58] Aji D P B, Johari G P 2015 J. Chem. Phys. 142 214501Google Scholar
[59] Johari G P 1976 Ann. Ny. Acad. Sci. 279 117Google Scholar
[60] Johari G P 2002 J. Non-Cryst. Solids 307-310 317
[61] Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372Google Scholar
[62] Johari G P, Goldstein M 1971 J. Chem. Phys. 55 4245Google Scholar
[63] Perez J 1994 J. Food Eng. 22 89Google Scholar
[64] Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar
[65] Qiao J, Pelletier J-M, Esnouf C, Liu Y, Kato H 2014 J. Alloy. Compd. 607 139Google Scholar
[66] Gauthier C, David L, Ladouce L, Quinson R, Perez J 1997 J. Appl. Polym. Sci. 65 2517Google Scholar
[67] Sun Y, Concustell A, Greer A L 2016 Nat. Rev. Mater. 1 16039Google Scholar
Catalog
Metrics
- Abstract views: 3819
- PDF Downloads: 104
- Cited By: 0