Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-field-method-studied mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy

Wang Kai-Le Yang Wen-Kui Shi Xin-Cheng Hou Hua Zhao Yu-Hong

Citation:

Phase-field-method-studied mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy

Wang Kai-Le, Yang Wen-Kui, Shi Xin-Cheng, Hou Hua, Zhao Yu-Hong
PDF
HTML
Get Citation
  • High-entropy alloys with BCC and FCC coexisting structures usually have excellent comprehensive mechanical properties, and Al element can promote the transformation of Cu-containing high-entropy alloys from FCC structure to BCC structure to obtain the BCC and FCC coexisting structures. In order to illustrate the process of phase separation of high entropy alloys, a low-cost Al-TM transition group element high-entropy alloy is selected in this work. Based on the Chan-Hilliard equation and Allen-Cahn equation, a three-dimensional phase field model of AlxCuMnNiFe high-entropy alloy is established, and the microscopic evolution of the nano-Cu-rich phase of AlxCuMnNiFe high-entropy alloy (x = 0.4, 0.5, 0.6, 0.7) at 823 K isothermal aging is simulated. The results show that the AlxCuMnNiFe high-entropy alloy generates two complex core-shell structures upon aging: Cu-rich core/B2s shell and B2c core/FeMn shell, and it is found through discussion and analysis that the formed B2c plays an inhibitory role in the formation of the nano-Cu-rich phase, and that this inhibitory role becomes larger with the increase of Al element. Combining the empirical formula, the curve of yield strength of the Cu-rich phase varying with the aging time is obtained for the AlxCuMnNiFe high-entropy alloy, and the overall yield strength of the high-entropy alloy has a rising-and-then-falling trend with the change of time, and the aging time of the peak yield strength and the alloy system are obtained from the change of the curve, so that the best alloy system and aging time of the high-entropy alloy can provide a reference for aging process.
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52074246, 22008224, 52275390, 52205429, 52201146), the National Defense Basic Scientific Research Program of China (Grant Nos. JCKY2020408B002, WDZC2022-12), the Key Research and Development Program of Shanxi Province (Grant Nos. 202102050201011, 202202050201014), and the Shanxi Graduate Innovation Project, China (Grant No. 2021Y592)
    [1]

    Cantor B, Chang I T H, Knight P, Vincent A 2004 Mater. Sci. Eng., A 375 213

    [2]

    Zhang Y 2019 High-Entropy Materials (Singapore: Springer Nature Singapore Pte Ltd) p215

    [3]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. 2004 Adv. Eng. Mater. 6 299Google Scholar

    [4]

    Zhou Y J, Zhang Y, Wang Y L, Chen G L 2007 Appl. Phys. Lett. 90 253

    [5]

    Niu S Z, Kou H C, Wang J, Li J S 2021 Rare Met. 40 2508

    [6]

    Sha M H, Zhang L, Zhang J W, Li N, Li T Z, Wang N 2017 Rare Met. Mater. Eng. 46 1237Google Scholar

    [7]

    Chen X, Hu J X, Liu Y, Xiang F 2021 Met. Mater. Int. 27 2230Google Scholar

    [8]

    Pradeep K G, Wanderka N, Choi P, Banhart J, Murty B S, Raabe D 2013 Acta Mater. 61 4696Google Scholar

    [9]

    Jones N G, Frezza A, Stone H J 2014 Mater. Sci. Eng., A 615 214Google Scholar

    [10]

    Dąbrowa J, Cieślak G, Stygar M, Mroczka K, Berebt K, Kulik T, Danielewski M 2017 Intermetallics 84 52Google Scholar

    [11]

    Wu P H, Liu N, Yang W, Zhu Z X, Liu Y P, Wang X J 2015 Mater. Sci. Eng. , A 642 142Google Scholar

    [12]

    Xian X, Lin L, Zhong Z, Zhang C, Chen C, Song K J, Cheng J G, Wu Y C 2018 Mater. Sci. Eng., A 713 134Google Scholar

    [13]

    Borkar T, Gwalani B, Choudhuri D, Alam T, Mantri A S, Gibson M A 2016 Intermetallics 71 31Google Scholar

    [14]

    Gwalani B, Choudhuri D, Soni V, Ren Y, Styles M, Hwang J Y, Nam S J, Ryu H, Hong S H, Banerjee R 2017 Acta Mater. 129 170Google Scholar

    [15]

    Shim S H, Pouraliakbar H, Hong S I 2022 Scr. Mater. 210 114473Google Scholar

    [16]

    Lahiri A 2022 J. Indian Inst. Sci. 102 39Google Scholar

    [17]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [18]

    Chen L Q, Zhao Y H 2021 Prog. Mater. Sci. 124 100868

    [19]

    Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Yadav A, Nomoto K, Niu R M, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W Q, Liao X Z, Chen L Q, Hagihara K, Li X Y, Ringer S, Ferry M 2021 Sci. Adv. 7 eabf3039Google Scholar

    [20]

    Tian X L, Zhao Y H, Peng D W, Guo Q W, Hou H 2021 Trans. Nonferrous Met. Soc. China 31 1175Google Scholar

    [21]

    Tian X L, Zhao Y H, Gu T, Guo Y L, Xu F Q, Hou H 2022 Mater. Sci. Eng., A 849 143485Google Scholar

    [22]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. Mater. Sci. Technol. 35 1044Google Scholar

    [23]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [24]

    Chen W P, Zhao Y H, Yang S, Zhang D, Hou H 2021 Adv. Compos. Hybrid Mater. 4 371Google Scholar

    [25]

    Biner S B, Rao W, Zhang Y 2016 J. Nucl. Mater. 468 9Google Scholar

    [26]

    Koyama T, Onodera H 2005 Mater. Trans. 46 1187Google Scholar

    [27]

    Zhao Y H. 2022 Intermetallics 144 107528Google Scholar

    [28]

    Zeng Y F, Cai X R, Koslowski M 2019 Acta Mater. 164 1Google Scholar

    [29]

    Kadirvel K, Kloenne Z, Jensen J K, Fraser H, Wang Y 2021 Appl. Phys. Lett. 119 171905Google Scholar

    [30]

    Zuo X J, Coutinho Y, Chatterjee S, Moelans N 2022 Mater. Theor. 6 12Google Scholar

    [31]

    Li J L, Li Z, Wang Q, Dong C, Liaw P K 2020 Acta Mater. 197 10Google Scholar

    [32]

    Coutinho Y A, Kunwar A, Moelans N 2022 J. Mater. Sci. 57 10600Google Scholar

    [33]

    Zhao Y H, Liu K X, Hou H, Chen L Q 2022 Mater. Des. 216 110555Google Scholar

    [34]

    Zhao Y H, Sun Y Y, Hou H. 2022 Prog. Nat. Sci.-Mater. Int. 32 358Google Scholar

    [35]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L 2019 J. Mater. Sci. 54 11263Google Scholar

    [36]

    蒋新安, 赵宇宏, 杨文奎, 田晓琳, 侯华 2022 物理学报 71 080201Google Scholar

    Jiang X A, Zhao Y H, Yang W K, Tian X L, Hou H 2022 Acta Phys. Sin. 71 080201Google Scholar

    [37]

    栾亨伟, 赵威, 姚可夫 2020 材料热处理学报 41 1

    Luan H W, Zhao W, Yao K F 2020 Trans. Mater. Heat Treat. 41 1

    [38]

    Pang C, Jiang B B, Shi Y, Wang Q, Dong C 2015 J. Alloys Compd. 652 63Google Scholar

    [39]

    郝家苗 2020 硕士学位论文 (大连: 大连理工大学)

    Hao J M 2020 M. S. Thesis (Dalian: Dalian University of Technology) (in chinese)

    [40]

    Chen L Q 2002 Annual Review of Materials Research 32 113

    [41]

    Kuang W W, Wang H F, Li X, Zhang J B, Qing Z, Zhao Y H 2018 Acta Mater. 159 16Google Scholar

    [42]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [43]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [44]

    Kitashima T, Harada H. 2009 Acta Mater. 57 2020Google Scholar

    [45]

    Tsukada Y, Koyama T, Murata Y, Miura N, Kondo Y 2014 Comput. Mater. Sci. 83 371Google Scholar

    [46]

    Deng S, Chen W M, Zhong J, Zhang L J, Du Y, Chen L 2017 Calphad 56 230Google Scholar

    [47]

    Allen S, Cahn J W 1992 Acta Metall. 20 423

    [48]

    Chen H L, Mao H, Chen Q 2018 Mater. Chem. Phys. 210 279Google Scholar

    [49]

    Luo Z, Du Y, Liu Y L, Tang S, Pan Y F, Mao H, Peng Y B, Liu W S, Liu Z K 2018 Calphad 63 190Google Scholar

    [50]

    Li Y S, Zhu H, Zhang L, Cheng X L 2012 J. Nucl. Mater. 429 13Google Scholar

    [51]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268Google Scholar

    [52]

    Neumann G, Tuijn C 2011 Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data Elsevier

    [53]

    Khachaturian A G 1983 Acta Crystallogr.

    [54]

    Shen C, Wang Y 2005 Handb. Mater. Model.

    [55]

    Koyama T, Hashimoto K, Onodera H 2006 Mater. Trans. 47 2765Google Scholar

    [56]

    Cale W F, Totemeier T C 2003 Smithells Metals Reference Book (Oxford: Butter worth-Heinemann)

    [57]

    Sonkusare R, Swain A, Rahul M R, Samal S, Gurao N P, Biswas k, Singh S S, Nayan N 2019 Mater. Sci. Eng., A 759 415Google Scholar

    [58]

    龚子杰, 李春辉, 李晓宇, 李炜, 陈伟, 赵东国, 刘润芳 2022 精密成形工程 14 83Google Scholar

    Gong Z J, Li C H, Li X N, Li W, Chen W, Zhao D G, Liu R F 2022 J. Netshape Form. Eng. 14 83Google Scholar

    [59]

    Takeuchi A, Inoue A 2007 Mater. Trans., JIM 41 1372

    [60]

    Li B, Zhang L, Li C L, Li Q L, Chen J, Shun G G, Weng Y Q, Xu B, Hu S Y, Liu W 2018 J. Nucl. Mater. 507 59Google Scholar

    [61]

    程一丹 2018 硕士学位论文 (西安: 西安工业大学)

    Cheng Y D 2018 M. S. Thesis (Xi'an: Xi'an Technological University) (in Chinese)

    [62]

    王晓姣 2016 博士学位论文 (上海: 上海大学)

    Wang X J 2016 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese)

    [63]

    Jiao Z B, Luan J H, Miller M K, Yu C Y, Liu C T 2015 Acta Mater. 84 283Google Scholar

    [64]

    Isheim D, Kolli R P, Fine M E, Seidman D N 2006 Scr. Mater. 55 35Google Scholar

    [65]

    Russell K C, Brown L M 1972 Acta Metall. 20 969Google Scholar

    [66]

    Hahn S I, Hwang S J 2009 J. Alloys Compd. 483 207Google Scholar

    [67]

    Dinsdale A T 1991 Calphad 15 317Google Scholar

    [68]

    Liu X Y, Wang G, Hu Y, Ji Y Z, Rong Y M, Hu Y Z, Chen L Q 2021 Mater. Sci. Eng., A. 814 141223Google Scholar

  • 图 1  时效温度为823 K时Al0.7Cu1.5Mn1Ni1Fe1.5高熵合金三维形貌演化图 (a)—(e) 分别表示元素Cu, Ni, Al, Mn, Fe元素以及序参量的形貌; (1)—(5)表示不同演化时间

    Figure 1.  Evolution of three-dimensional morphology of Al0.7Cu1.5Mn1Ni1Fe1.5 high entropy alloys at aging temperature of 823 K: (a)–(e) The morphology of elements Cu, Ni, Al, Mn, Fe and order parameters, respectively; (1)–(5) indicates different evolution times.

    图 2  时效温度为823 K时Al0.7Cu1.5Mn1Ni1Fe1.5高熵合金在时效过程中(a)总自由能与化学自由能(b)弹性能与界面能随时间的变化曲线

    Figure 2.  Curves of (a) total free energy and chemical free energy (b) elastic energy and interfacial energy with time during aging of Al0.7Cu1.5Mn1Ni1Fe1.5 high entropy alloy at aging temperature of 823 K.

    图 3  t * = 20000时Al0.7Cu1.5Mn1Ni1Fe1.5高熵合金形貌图 (a) Ni的三维空间分布, 球状的B2相和环状的B2壳; (b) 球状富Cu相及周围元素分布; (c) 球状B2相及周围元素分布; (d) 短棒状的富Cu相及元素分布; (e) 球状富Cu相成分曲线; (f) 球状B2相成分曲线; (g) 短棒状富Cu相成分曲线

    Figure 3.  Morphology of Al0.7Cu1.5Mn1Ni1Fe1.5 high-entropy alloy at t * = 20000: (a) Three-dimensional spatial distribution of Ni, spherical B2 phase and annular B2 shell; (b) spherical Cu-rich phase and surrounding elemental distribution; (c) spherical B2 phase and surrounding elemental distribution; (d) short rod-like Cu-rich phase and elemental distribution; (e) spherical Cu-rich phase composition curve; (f) spherical B2 phase composition curve; (g) short rod-shaped Cu-rich phase composition curve.

    图 4  在时效温度为823 K时Al0.7Cu1.5Mn1Ni1Fe1.5高熵合金B2-NiAl演化图 (a)—(f) B2-NiAl相不同元素不随时间变化得三维演化图; (g)—(l)相对应时刻的成分曲线

    Figure 4.  The evolution of Al0.6Cu1.5Mn1Ni1Fe1.5 high-entropy alloy B2-NiAl at an aging temperature of 823 K: (a)–(f) The three-dimensional evolution of different elements of B2-NiAl phase without changing with time; (g)–(l) the composition curves obtained at the corresponding time.

    图 5  不同Al含量下AlxCuMnNiFe高熵合金 (a) 数量密度随时间变化; (b) 体积分数随时间变化; (c) 平均颗粒半径随时间变化

    Figure 5.  Variation of (a) number density, (b) volume fraction and (c) average particle radius with time for AlxCuMnNiFe high-entropy alloys with different Al contents.

    图 6  不同合金体系在随时间变化的三维模拟图 (a)—(d) 表示Al0.4, Al0.5, Al0.6, Al0.7四个体系. (1)—(5)分别表示开始形核时间以及四个体系到达峰值数量密度的时间

    Figure 6.  Three-dimensional simulations of different alloy systems over time, (a)–(d) for Al0.4, Al0.5, Al0.6, and Al0.7, respectively; (1)–(5) for the start of nucleation and the time to peak number density for the four systems, respectively.

    图 7  纳米富Cu相在时效过程中 (a) 共格强化、(b) 化学强化、(c) 模量强化、(d) Orowan强化和(e) 纳米富Cu相屈服强度随时效时间的变化

    Figure 7.  (a) Co-grid strengthening, (b) chemical strengthening, (c) modulus strengthening, (d) Orowan strengthening and (e) variation of yield strength of nano-Cu-rich phase with aging time during aging.

    表 1  合金元素成分的原子百分含量(单位: %)

    Table 1.  Atomic percent of alloying element composition (unit: %).

    Alloy systemAlCuMnNiFe
    Al0.4Cu1.5Mn1Ni1Fe1.57.427.818.518.527.8
    Al0.5Cu1.5Mn1Ni1Fe1.59.227.218.218.227.2
    Al0.6Cu1.5Mn1Ni1Fe1.510.826.817.817.826.8
    Al0.7Cu1.5Mn1Ni1Fe1.512.2826.3617.517.526.36
    DownLoad: CSV

    表 2  合金元素的频率因子和扩散激活能[52]

    Table 2.  Frequency factor and activation energy of alloying elements.

    Alloy elementsCuMnNiAl
    ${D}_{i}^{0, \varphi }/{({10}^{-5}~{\rm{m} } }^{2}{\cdot}{ {\rm{s} } }^{-1}$)${\rm{\alpha } }({\rm{B} }{\rm{C} }{\rm{C} })$4.7014.9014.0053.50
    ${\rm{\gamma } }({\rm{F} }{\rm{C} }{\rm{C} })$4.301.781.082.20
    ${Q}_{i}^{0, \varphi }/{({10}^{5}~{\rm{J} }{\cdot}{\rm{m} }{\rm{o} }{\rm{l} } }^{-1}$)${\rm{\alpha } }({\rm{B} }{\rm{C} }{\rm{C} })$2.442.632.642.71
    ${\rm{\gamma } } ({\rm{F} }{\rm{C} }{\rm{C} } )$2.802.642.732.67
    $ {D}_{i}^{0, \varphi } $-frequency factor; $ {Q}_{i}^{0, \varphi } $-diffusion activation energy
    DownLoad: CSV

    表 3  相场模型参数

    Table 3.  Phase field parameters.

    Parameter typeParameterValueUnit
    Cahn-Hilliard model[55]$ {\kappa }_{c} $$ 5.0\times {10}^{-15} $${\rm{J} \cdot}{ {\rm{m} } }^{2}{\cdot{\rm{m} }{\rm{o} }{\rm{l} } }^{-1}$
    $ {\kappa }_{\eta } $$ 1.0\times {10}^{-15} $$ {\rm{J}}{\cdot{\rm{m}}}^{2}{\cdot{\rm{m}}{\rm{o}}{\rm{l}}}^{-1} $
    $ Y $$ 2.14\times {10}^{11} $$ {\rm{P}}{\rm{a}} $
    $ {V}_{{\rm{m}}} $$ 7.09\times {10}^{-6} $${ {\rm{m} } }^{3}{\cdot {\rm{m} }{\rm{o} }{\rm{l} } }^{-1}$
    $ W $$ 5.0\times {10}^{3} $${\rm J} {\cdot} {\rm mol}^{-1}$
    $ T $823K
    Elasticity constant[56]$ {C}_{11}^{{\rm{m}}} $228GPa
    $ {C}_{12}^{{\rm{m}}} $132GPa
    $ {C}_{44}^{{\rm{m}}} $116.5GPa
    $ {C}_{11}^{{\rm{p}}} $169GPa
    $ {C}_{12}^{{\rm{p}}} $122GPa
    $ {C}_{44}^{{\rm{p}}} $75.3GPa
    Lattice misfit coefficient[55]$ {\varepsilon }_{{\rm{C}}{\rm{u}}}^{0} $$ 3.29\times {10}^{-2} $
    $ {\varepsilon }_{{\rm{M}}{\rm{n}}}^{0} $$ 5.22\times {10}^{-4} $
    $ {\varepsilon }_{{\rm{N}}{\rm{i}}}^{0} $$ 4.75\times {10}^{-4} $
    $ {\varepsilon }_{{\rm{A}}{\rm{l}}}^{0} $$ 1.64\times {10}^{-4} $
    Simulation parameters$ {\rm{d}}x $1nm
    $ {\rm{d}}y $1nm
    $ {\rm{d}}z $1nm
    $ \Delta t $0.01
    $ {\kappa }_{c}, {\kappa }_{\eta } $-gradient energy coefficient; $ Y $-average stiffness; $ {V}_{{\rm{m}}} $-molar volume; $ W $-structural transformation barriers; $ {C}_{11}^{{\rm{m}}}, {C}_{12}^{{\rm{m}}}, {C}_{44}^{{\rm{m}}} $-elastic constant of the matrix phase; $ {C}_{11}^{{\rm{p}}}, {C}_{12}^{{\rm{p}}}, {C}_{44}^{{\rm{p}}} $-elastic constant of the precipitated phase; $ {\varepsilon }_{i}^{0}(i={\rm{C}}{\rm{u}}, {\rm{M}}{\rm{n}}, {\rm{N}}{\rm{i}}, {\rm{A}}{\rm{l}}) $- lattice misfit coefficients of Cu, Mn, Ni, Al; $ {\rm{d}}x, {\rm{d}}y, {\rm{d}}z $ unit length of simulated meshes; $ \Delta t $-unit time step
    DownLoad: CSV

    表 4  AlxCuMnNiFe中各元素的$ {\Delta H}_{{\rm{m}}{\rm{i}}{\rm{x}}} $[59](单位: kJ/mol)

    Table 4.  $ {\Delta H}_{{\rm{m}}{\rm{i}}{\rm{x}}} $between elements in AlxCuMnNiFe alloy (unit: kJ/mol)

    Alloy elementsAlCuMnNiFe
    Al–1–19–22–11
    Cu–14413
    Mn–194–80
    Ni–224–8–2
    Fe–11130–2
    DownLoad: CSV

    表 5  不同合金体系强化的基本数据

    Table 5.  Basic data on strengthening of different alloy systems.

    Alloy systemt *$ {N}_{v} $/($ \times {10}^{23}{{\rm{m}}}^{-3}) $f/% r/nmStrengthening/MPa
    Al0.4Cu1.5Mn1Ni1Fe1.545003.92910.01161.91481166
    Al0.5Cu1.5Mn1Ni1Fe1.545004.08170.01231.92861188
    Al0.6Cu1.5Mn1Ni1Fe1.550003.39510.01031.93431038
    Al0.7Cu1.5Mn1Ni1Fe1.575004.040.0312.63775
    When r$\; \leqslant \;$2 nm, it is a dislocation slicing mechanism, and when r > 2 nm, it is a dislocation bypassing mechanism.
    DownLoad: CSV
  • [1]

    Cantor B, Chang I T H, Knight P, Vincent A 2004 Mater. Sci. Eng., A 375 213

    [2]

    Zhang Y 2019 High-Entropy Materials (Singapore: Springer Nature Singapore Pte Ltd) p215

    [3]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. 2004 Adv. Eng. Mater. 6 299Google Scholar

    [4]

    Zhou Y J, Zhang Y, Wang Y L, Chen G L 2007 Appl. Phys. Lett. 90 253

    [5]

    Niu S Z, Kou H C, Wang J, Li J S 2021 Rare Met. 40 2508

    [6]

    Sha M H, Zhang L, Zhang J W, Li N, Li T Z, Wang N 2017 Rare Met. Mater. Eng. 46 1237Google Scholar

    [7]

    Chen X, Hu J X, Liu Y, Xiang F 2021 Met. Mater. Int. 27 2230Google Scholar

    [8]

    Pradeep K G, Wanderka N, Choi P, Banhart J, Murty B S, Raabe D 2013 Acta Mater. 61 4696Google Scholar

    [9]

    Jones N G, Frezza A, Stone H J 2014 Mater. Sci. Eng., A 615 214Google Scholar

    [10]

    Dąbrowa J, Cieślak G, Stygar M, Mroczka K, Berebt K, Kulik T, Danielewski M 2017 Intermetallics 84 52Google Scholar

    [11]

    Wu P H, Liu N, Yang W, Zhu Z X, Liu Y P, Wang X J 2015 Mater. Sci. Eng. , A 642 142Google Scholar

    [12]

    Xian X, Lin L, Zhong Z, Zhang C, Chen C, Song K J, Cheng J G, Wu Y C 2018 Mater. Sci. Eng., A 713 134Google Scholar

    [13]

    Borkar T, Gwalani B, Choudhuri D, Alam T, Mantri A S, Gibson M A 2016 Intermetallics 71 31Google Scholar

    [14]

    Gwalani B, Choudhuri D, Soni V, Ren Y, Styles M, Hwang J Y, Nam S J, Ryu H, Hong S H, Banerjee R 2017 Acta Mater. 129 170Google Scholar

    [15]

    Shim S H, Pouraliakbar H, Hong S I 2022 Scr. Mater. 210 114473Google Scholar

    [16]

    Lahiri A 2022 J. Indian Inst. Sci. 102 39Google Scholar

    [17]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [18]

    Chen L Q, Zhao Y H 2021 Prog. Mater. Sci. 124 100868

    [19]

    Xin T Z, Zhao Y H, Mahjoub R, Jiang J X, Yadav A, Nomoto K, Niu R M, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Xu W Q, Liao X Z, Chen L Q, Hagihara K, Li X Y, Ringer S, Ferry M 2021 Sci. Adv. 7 eabf3039Google Scholar

    [20]

    Tian X L, Zhao Y H, Peng D W, Guo Q W, Hou H 2021 Trans. Nonferrous Met. Soc. China 31 1175Google Scholar

    [21]

    Tian X L, Zhao Y H, Gu T, Guo Y L, Xu F Q, Hou H 2022 Mater. Sci. Eng., A 849 143485Google Scholar

    [22]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. Mater. Sci. Technol. 35 1044Google Scholar

    [23]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [24]

    Chen W P, Zhao Y H, Yang S, Zhang D, Hou H 2021 Adv. Compos. Hybrid Mater. 4 371Google Scholar

    [25]

    Biner S B, Rao W, Zhang Y 2016 J. Nucl. Mater. 468 9Google Scholar

    [26]

    Koyama T, Onodera H 2005 Mater. Trans. 46 1187Google Scholar

    [27]

    Zhao Y H. 2022 Intermetallics 144 107528Google Scholar

    [28]

    Zeng Y F, Cai X R, Koslowski M 2019 Acta Mater. 164 1Google Scholar

    [29]

    Kadirvel K, Kloenne Z, Jensen J K, Fraser H, Wang Y 2021 Appl. Phys. Lett. 119 171905Google Scholar

    [30]

    Zuo X J, Coutinho Y, Chatterjee S, Moelans N 2022 Mater. Theor. 6 12Google Scholar

    [31]

    Li J L, Li Z, Wang Q, Dong C, Liaw P K 2020 Acta Mater. 197 10Google Scholar

    [32]

    Coutinho Y A, Kunwar A, Moelans N 2022 J. Mater. Sci. 57 10600Google Scholar

    [33]

    Zhao Y H, Liu K X, Hou H, Chen L Q 2022 Mater. Des. 216 110555Google Scholar

    [34]

    Zhao Y H, Sun Y Y, Hou H. 2022 Prog. Nat. Sci.-Mater. Int. 32 358Google Scholar

    [35]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L 2019 J. Mater. Sci. 54 11263Google Scholar

    [36]

    蒋新安, 赵宇宏, 杨文奎, 田晓琳, 侯华 2022 物理学报 71 080201Google Scholar

    Jiang X A, Zhao Y H, Yang W K, Tian X L, Hou H 2022 Acta Phys. Sin. 71 080201Google Scholar

    [37]

    栾亨伟, 赵威, 姚可夫 2020 材料热处理学报 41 1

    Luan H W, Zhao W, Yao K F 2020 Trans. Mater. Heat Treat. 41 1

    [38]

    Pang C, Jiang B B, Shi Y, Wang Q, Dong C 2015 J. Alloys Compd. 652 63Google Scholar

    [39]

    郝家苗 2020 硕士学位论文 (大连: 大连理工大学)

    Hao J M 2020 M. S. Thesis (Dalian: Dalian University of Technology) (in chinese)

    [40]

    Chen L Q 2002 Annual Review of Materials Research 32 113

    [41]

    Kuang W W, Wang H F, Li X, Zhang J B, Qing Z, Zhao Y H 2018 Acta Mater. 159 16Google Scholar

    [42]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [43]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [44]

    Kitashima T, Harada H. 2009 Acta Mater. 57 2020Google Scholar

    [45]

    Tsukada Y, Koyama T, Murata Y, Miura N, Kondo Y 2014 Comput. Mater. Sci. 83 371Google Scholar

    [46]

    Deng S, Chen W M, Zhong J, Zhang L J, Du Y, Chen L 2017 Calphad 56 230Google Scholar

    [47]

    Allen S, Cahn J W 1992 Acta Metall. 20 423

    [48]

    Chen H L, Mao H, Chen Q 2018 Mater. Chem. Phys. 210 279Google Scholar

    [49]

    Luo Z, Du Y, Liu Y L, Tang S, Pan Y F, Mao H, Peng Y B, Liu W S, Liu Z K 2018 Calphad 63 190Google Scholar

    [50]

    Li Y S, Zhu H, Zhang L, Cheng X L 2012 J. Nucl. Mater. 429 13Google Scholar

    [51]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268Google Scholar

    [52]

    Neumann G, Tuijn C 2011 Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data Elsevier

    [53]

    Khachaturian A G 1983 Acta Crystallogr.

    [54]

    Shen C, Wang Y 2005 Handb. Mater. Model.

    [55]

    Koyama T, Hashimoto K, Onodera H 2006 Mater. Trans. 47 2765Google Scholar

    [56]

    Cale W F, Totemeier T C 2003 Smithells Metals Reference Book (Oxford: Butter worth-Heinemann)

    [57]

    Sonkusare R, Swain A, Rahul M R, Samal S, Gurao N P, Biswas k, Singh S S, Nayan N 2019 Mater. Sci. Eng., A 759 415Google Scholar

    [58]

    龚子杰, 李春辉, 李晓宇, 李炜, 陈伟, 赵东国, 刘润芳 2022 精密成形工程 14 83Google Scholar

    Gong Z J, Li C H, Li X N, Li W, Chen W, Zhao D G, Liu R F 2022 J. Netshape Form. Eng. 14 83Google Scholar

    [59]

    Takeuchi A, Inoue A 2007 Mater. Trans., JIM 41 1372

    [60]

    Li B, Zhang L, Li C L, Li Q L, Chen J, Shun G G, Weng Y Q, Xu B, Hu S Y, Liu W 2018 J. Nucl. Mater. 507 59Google Scholar

    [61]

    程一丹 2018 硕士学位论文 (西安: 西安工业大学)

    Cheng Y D 2018 M. S. Thesis (Xi'an: Xi'an Technological University) (in Chinese)

    [62]

    王晓姣 2016 博士学位论文 (上海: 上海大学)

    Wang X J 2016 Ph. D. Dissertation (Shanghai: Shanghai University) (in Chinese)

    [63]

    Jiao Z B, Luan J H, Miller M K, Yu C Y, Liu C T 2015 Acta Mater. 84 283Google Scholar

    [64]

    Isheim D, Kolli R P, Fine M E, Seidman D N 2006 Scr. Mater. 55 35Google Scholar

    [65]

    Russell K C, Brown L M 1972 Acta Metall. 20 969Google Scholar

    [66]

    Hahn S I, Hwang S J 2009 J. Alloys Compd. 483 207Google Scholar

    [67]

    Dinsdale A T 1991 Calphad 15 317Google Scholar

    [68]

    Liu X Y, Wang G, Hu Y, Ji Y Z, Rong Y M, Hu Y Z, Chen L Q 2021 Mater. Sci. Eng., A. 814 141223Google Scholar

  • [1] Liu Zhong-Lei, Cao Jin-Ming, Wang Zhi, Zhao Yu-Hong. Phase-field method explored ferroelectric vortex topology structure and morphotropic phase boundaries. Acta Physica Sinica, 2023, 72(3): 037702. doi: 10.7498/aps.72.20221898
    [2] Guo Can, Kang Chen-Rui, Gao Ying, Zhang Yi-Chi, Deng Ying-Yuan, Ma Chao, Xu Chun-Jie, Liang Shu-Hua. A phase-field model for in-situ reaction process of metal-matrix composite materials. Acta Physica Sinica, 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [3] Jiang Xin-An, Zhao Yu-Hong, Yang Wen-Kui, Tian Xiao-Lin, Hou Hua. Mechanism of internal magnetic energy of Cu-rich phase precipitation in Fe84Cu15Mn1 alloy by phase field method. Acta Physica Sinica, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [4] Huang Wen-Jun, Qiao Jun-Wei, Chen Shun-Hua, Wang Xue-Jiao, Wu Yu-Cheng. Preparation, structures and properties of tungsten-containing refractory high entropy alloys. Acta Physica Sinica, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [5] Yang Hui, Feng Ze-Hua, Wang He-Ran, Zhang Yun-Peng, Chen Zheng, Xin Tian-Yuan, Song Xiao-Rong, Wu Lu, Zhang Jing. Phase-field modeling of irradiated void microstructure evolution of Fe-Cr alloy. Acta Physica Sinica, 2021, 70(5): 054601. doi: 10.7498/aps.70.20201457
    [6] Guo Zhen, Zhao Yu-Hong, Sun Yuan-Yang, Zhao Bao-Jun, Tian Xiao-Lin, Hou Hua. Phase field study of effect of Al on Cu-rich precipitates in Fe-Cu-Mn-Al alloys. Acta Physica Sinica, 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [7] Wang Tao, Li Jun-Jie, Wang Jin-Cheng. Phase field modeling of the influence of interfacial wettability and solid volume fraction on the kinetics of coarsening. Acta Physica Sinica, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [8] Wang Ya-Qin, Wang Jin-Cheng, Li Jun-Jie. Phase field modeling of the growth and competition behavior of tilted dendrites in directional solidification. Acta Physica Sinica, 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [9] Wang Ming-Guang, Zhao Yu-Hong, Ren Juan-Na, Mu Yan-Qing, Wang Wei, Yang Wei-Ming, Li Ai-Hong, Ge Hong-Hao, Hou Hua. Phase-field simulation of Non-Isothermal dendritic growth of NiCu alloy. Acta Physica Sinica, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [10] Zong Ya-Ping, Wang Ming-Tao, Guo Wei. Phase field simulation on recrystallization and secondary phase precipitation under strain field. Acta Physica Sinica, 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [11] Long Wen-Yuan, Lü Dong-Lan, Xia Chun, Pan Mei-Man, Cai Qi-Zhou, Chen Li-Liang. Phase-field simulation of non-isothermal solidification dendrite growth of binary alloy under the force flow. Acta Physica Sinica, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [12] Chen Yu-Juan, Chen Chang-Le. Simulation of the influence of convection velocity on upstream dendritic growth using phase-field method. Acta Physica Sinica, 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [13] Feng Li, Wang Zhi-Ping, Lu Yang, Zhu Chang-Sheng. Phase-field model of isothermal solidification of binary alloy with multiple grains. Acta Physica Sinica, 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [14] Li Jun-Jie, Wang Jin-Cheng, Xu Quan, Yang Gen-Cang. Effect of foreign particles on the dendritic growth in phase-field theory. Acta Physica Sinica, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [15] Long Wen-Yuan, Cai Qi-Zhou, Wei Bo-Kang, Chen Li-Liang. Simulation of dendritic growth of multicomponent alloys using phase-field method. Acta Physica Sinica, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [16] Zhang Yu-Xiang, Wang Jin-Cheng, Yang Gen-Cang, Zhou Yao-He. Phase-field simulation of the influence of elastic field on microstructure evolution and equilibrium composition of precipitation. Acta Physica Sinica, 2006, 55(5): 2433-2438. doi: 10.7498/aps.55.2433
    [17] Yang Hong, Zhang Qing-Guang, Chen Min. A phase-field simulation on the influence of thermal fluctuation on secondary branch growth in undercooled melt. Acta Physica Sinica, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [18] Li Mei-E, Yang Gen-Cang, Zhou Yao-He. Phase field modeling of directional solidification of a binary alloy at high velocities. Acta Physica Sinica, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
    [19] Long Wen-Yuan, Cai Qi-Zhou, Chen Li-Liang, Wei Bo-Kang. Phase-field modeling of isothermal solidification in binary alloy. Acta Physica Sinica, 2005, 54(1): 256-262. doi: 10.7498/aps.54.256
    [20] Liu Hong. Surface energy of the biaxial nematic liquid crystal. Acta Physica Sinica, 2002, 51(12): 2786-2792. doi: 10.7498/aps.51.2786
Metrics
  • Abstract views:  5545
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  26 December 2022
  • Accepted Date:  30 January 2023
  • Available Online:  09 February 2023
  • Published Online:  05 April 2023

/

返回文章
返回