Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase field study of effect of Al on Cu-rich precipitates in Fe-Cu-Mn-Al alloys

Guo Zhen Zhao Yu-Hong Sun Yuan-Yang Zhao Bao-Jun Tian Xiao-Lin Hou Hua

Citation:

Phase field study of effect of Al on Cu-rich precipitates in Fe-Cu-Mn-Al alloys

Guo Zhen, Zhao Yu-Hong, Sun Yuan-Yang, Zhao Bao-Jun, Tian Xiao-Lin, Hou Hua
PDF
HTML
Get Citation
  • Low carbon steel plays an important role in many applications due to its high strength. Its high strength comes from the strengthening effect of nano-Cu-rich phase precipitates. In order to effectively adjust the microstructure of Cu-rich phase precipitates and obtain Fe-Cu-based steel with the best properties by adding different alloying elements (Mn, Al), it is necessary to understand the precipitation process of Cu particles. In this paper, based on the Ginzburg-Landau theory, the previous phase field model is modified, and the continuous phase field method is used to simulate the precipitation mechanism of nanometer Cu-rich precipitates and the inhibiting of the effect of Al content on Cu-rich precipitates of Fe-15%Cu-3%Mn-xAl (x = 1%, 3%, 5% mass fraction) alloy at 873 K isothermal aging. Combining with the free energy derived from thermodynamics database, the microstructure evolution corresponds to the real alloy system. By calculating the composition field variables and structural order parameters, the evolution of phase separation and precipitated phase morphology in aging process are simulated. Moreover, the influence law of morphology, quantity density, average particle radius, growth and coarsening of Cu-rich precipitated phase are discussed. The results show that in the early stage of aging process, the nano-Cu-rich phase precipitates through the spinodal decomposition mechanism, and is randomly distributed in the iron matrix. Furthermore, due to the difference in atomic diffusion rate, the core-shell structure with Cu-rich phase as a core is formed. With the aging time extending, the structure of Cu-rich phase precipitates changes from bcc to fcc. Because of the synergistic effect between Al and Cu, the diffusion of Cu is slowed down. Besides, with the Al and Mn atoms precipitating, Al/Mn clusters are segregated around the Cu-rich precipitates, forming the Al/Mn intermetallic core-shell structure, and gradually wrapping the Cu-rich phase uniformly. During the evolution of the precipitation stage, the Al/Mn clusters are isolated around the Cu-rich precipitation phase, forming a gradually uniform Al/Mn intermetallic phase core shell structure covering the Cu-rich phase, which is to hinder the buffer layer from forming in the precipitation stage of the reservoir. In addition, with the Al content increasing, the Al/Mn intermetallic phase promotes the growth of the buffer layer and hinders the Cu-rich precipitate phase from growing and coarsening.
      Corresponding author: Zhao Yu-Hong, zhaoyuhong@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 22008224, 52074246, 51774254, 51774253, 51804279, 51801189), the Guiding Local Science and Technology Development Projects by the Central Government, China (Grant No. YDZX20191400002796), the Science and Technology Major Project of Shanxi Province, China (Grant Nos. 20181101014, 20191102008, 20191102007), the Platform and Talent Project of Shanxi Province, China (Grant No. 201805D211036), the Transformation of Scientific and Technological Achievements Special Guide Project of Shanxi Province, China (Grant No. 201804D131039), the Youth Science and Technology Research Foundation of Shanxi Province, China (Grnat No. 201801D221152) and the Key Project of Equipment Pre-research Foundation, China (Grant No. 61409230407)
    [1]

    Zhu J M, Zhang T L, Yang Y, Liu C T 2019 Acta Mater. 166 560Google Scholar

    [2]

    Han G, Shang C J, Misra R D K, Xie Z J 2019 Physica B 569 68Google Scholar

    [3]

    Li B Y, Zhang L, Li C L, Li Q L, Chen J, Shu G G, Weng Y Q, Xu B, Hu S Y, Liu W 2018 J. Nucl. Mater. 507 59Google Scholar

    [4]

    Li B Y, Hu S Y, Li C L, Li Q L, Chen J, Shu G G, Jr C H, Weng Y Q, Xu B, Liu W 2017 Model. Simul. Mater. Sc. 25 6

    [5]

    Lv G C, Zhang H, He X F, Yang W, Su Y J 2016 Aip Adv. 6 045004Google Scholar

    [6]

    Jiao Z B, Luan J H, Miller M K, Chung Y W, Liu C T 2017 Mater. Today 20 142Google Scholar

    [7]

    Shu S P, Wells P B, Almirall N, Odette G R, Morgan D D 2018 Acta Mater. 157 298Google Scholar

    [8]

    Odette G R, Liu C L, Wirth B D 1996 MRS Online Proceedings Library Archive 439 457Google Scholar

    [9]

    Wen Y R, Hirata A, Zhang Z W, Fujita T, Liu C T, Jiang J H, Chen M W 2013 Acta Mater. 61 2133Google Scholar

    [10]

    Miller M K, Wirth B D, Odette G R 2003 Mater. Sci. Eng. A 353 133Google Scholar

    [11]

    Osamura K, Okuda H, Asano K, Furusaka M, Kishida K, Kurosawa F, Uemori R 1994 ISIJ Int. 34 346Google Scholar

    [12]

    沈琴, 王晓姣, 赵安宇, 何益锋, 方旭磊, 马佳荣, 刘文庆 2016 金属学报 52 513Google Scholar

    Shen Q, Wang X J, Zhao A Y, He Y F, Fang X L, Ma J R, Liu W Q 2016 Acta Metall. Sin. 52 513Google Scholar

    [13]

    Shen Q, Xiong X, Li T, Chen H, Cheng Y M, Liu W Q 2018 Mater. Sci. Eng. A 723 279Google Scholar

    [14]

    Vaynman S, Isheim D, Kolli R P, Bhat S P, Seidman D N, Fine M E 2008 Metall. Mater. Trans. A 39 363Google Scholar

    [15]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L, Hou H 2019 J. Mater. Sci. 54 11263Google Scholar

    [16]

    赵宝军, 赵宇宏, 孙远洋, 杨文奎, 侯华 2019 金属学报 55 593Google Scholar

    Zhao B J, Zhao Y H, Sun Y Y, Yang W K, Hou H 2019 Acta Metall. Sin. 55 593Google Scholar

    [17]

    Wen Z Q, Zhao Y H, Hou H, Wang B, Han P D 2017 Mater. Design 114 398Google Scholar

    [18]

    Huang Z W, Zhao Y H, Hou H, Wang Z, Mu Y Q, Niu X F, Han P D 2011 Rare Metal Mat. Eng. 12 2136

    [19]

    田晓林, 赵宇宏, 田晋忠, 侯华 2018 物理学报 67 230201Google Scholar

    Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar

    [20]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [21]

    Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M Y, Liu H, Wang X J, Guo Z H, Umar A, Hou H 2018 Sci. Adv. Mater. 10 1793Google Scholar

    [22]

    Hou H, Zhao Y H, Zhao Y H 2009 Mater. Sci. Eng. 499 204Google Scholar

    [23]

    Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta Mater. 159 16Google Scholar

    [24]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. Mater. Sci. Technol. 35 1044Google Scholar

    [25]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [26]

    Cahn J W 1961 Acta Metal. 9 795Google Scholar

    [27]

    Zhao Y H, Wang S, Zhang B, Yuan Y, Guo Q W, Hou H 2019 J. Solid State Chem. 276 232Google Scholar

    [28]

    Koyama T, Hashimoto K, Onodera H 2006 Mater. Trans. 47 2765Google Scholar

    [29]

    Koyama T, Onodera H 2005 Mater. Trans. 46 1187Google Scholar

    [30]

    Dinsdale A T 1991 Calphad 15 317Google Scholar

    [31]

    Bergner D, Khaddour Y 1993 Defect Diffus Forum 6 95

  • 图 1  时效温度873 K时Fe-15%Cu-3%Mn-1%Al合金沉淀相三维演化相场模拟 (a1)−(a4) t* = 17000; (b1)−(b4) t* = 18500; (c1)−(c4) t* = 20000; (d1)−(d4) t* = 22500

    Figure 1.  Three-dimensional phase-field simulation of precipitation phase of Fe-15%Cu-3%Mn-1%Al alloy when aged at 873 K: (a1)−(a4) t* = 17000; (b1)−(b4) t* = 18500; (c1)−(c4) t* = 20000; (d1)−(d4) t* = 22500.

    图 2  时效温度873 K时Fe-15%Cu-3%Mn-1%Al合金中富Cu相结构序参数演化曲线

    Figure 2.  Evolution curves of Cu-rich phase structure order parameter in Fe-15%Cu-3%Mn-1%Al alloy when aged at 873 K.

    图 3  时效温度为873 K时Fe-15%Cu-3%Mn-xAl合金三维富Cu相演化相场模拟 (a1)−(d1) x = 1%; (a2)−(d2) x = 3%; (a3)−(d3) x = 5%; (a1)−(a3) t* = 21000; (b1)−(b3) t* = 22000; (c1)−(c3) t* = 25000

    Figure 3.  Three dimensional evolution diagrams of Cu rich phase in quaternary alloy Fe-15%Cu-3%Mn-xAl alloy aged at 873 K: (a1)−(d1) x = 1%; (a2)−(d2) x = 3%; (a3)−(d3) x = 5%; (a1)−(a3) t* = 21000; (b1)−(b3) t* = 22000; (c1)−(c3) t* = 25000.

    图 4  时效温度873 K时Fe-15%Cu-3%Mn-xAl(x = 1%, 3%, 5%)合金Gibbs自由能随时间变化曲线

    Figure 4.  Gibbs free energy curves in Fe-15%Cu-3%Mn-xAl (x = 1%, 3%, 5%) alloy when aged at 873 K.

    图 5  时效温度873 K时Fe-15%Cu-3%Mn-xAl (x = 1%, 3%, 5%)合金中富Cu析出相颗粒密度随时间变化曲线

    Figure 5.  Curves of Cu-rich precipitate phase particle density in Fe-15%Cu-3%Mn-xAl (x = 1%, 3%, 5%) alloy aged at 873 K.

    图 6  时效温度873 K时Fe-15%Cu-3%Mn-xAl (x = 1%, 3%, 5%)合金富Cu析出相平均颗粒半径随时间变化

    Figure 6.  Average particle radius of Cu-rich precipitates in Fe-15%Cu-3%Mn-xAl (x = 1%, 3%, 5%) alloy aged at 873 K.

    表 1  相场模型参数表[16]

    Table 1.  Parameters used in phase field simulation[16]

    ParameterValueUnit
    $ {k}_{c}, {k}_{\eta } $${k}_{c}=5.0\times {10}^{-15}, $$ {\mathrm{J} \cdot \mathrm{m}}^{2}/{\mathrm{mol}}^{} $
    ${k}_{c}=1.0\times {10}^{-15} $
    $ {V}_{m} $$ 7.09\times {10}^{-6} $$ {\mathrm{m}}^{3}/{\mathrm{mol}}^{} $
    T$ 873 $$ \mathrm{K} $
    Y$ 214 $$ \mathrm{GPa} $
    $ {L}_{x}\times {L}_{y}\times {L}_{z} $$ 64\times 64\times 64 $$ \mathrm{n}{\mathrm{m}}^{3} $
    W$ 5.0\times {10}^{3} $$ \mathrm{J}/{\mathrm{mol}}^{} $
    $ {D}_{i}^{0, \varphi }\left(\varphi =\alpha, \gamma \right) $${D}_{\mathrm{Cu} }^{0, \alpha }=4.7\times {10}^{-5},$

    ${D}_{\mathrm{Cu} }^{0, \gamma }=4.3\times {10}^{-5} $
    $ {\mathrm{m}}^{2}/{\mathrm{s}}^{} $
    ${D}_{\mathrm{Mn} }^{0, \alpha }=1.49\times {10}^{-4}, $

    ${D}_{\mathrm{Mn} }^{0, \gamma }=1.78\times {10}^{-5} $
    ${D}_{\mathrm{Al} }^{0, \alpha}$[31]$=5.35\times {10}^{-4}, $

    $ {D}_{\mathrm{Al} }^{0, \gamma } $[31]$=2.20\times {10}^{-5} $
    $ {Q}_{i}^{0, \varphi }\left(\varphi =\alpha, \gamma \right) $${Q}_{\mathrm{Cu} }^{0, \alpha }=2.44\times {10}^{5}, $

    ${Q}_{\mathrm{Cu} }^{0, \gamma }=2.80\times {10}^{5} $
    $ \mathrm{J}/{\mathrm{mol}}^{} $
    ${Q}_{\mathrm{Mn} }^{0, \alpha }=2.63\times {10}^{5},$

    $ {Q}_{\mathrm{Mn} }^{0, \gamma }=2.64\times {10}^{5} $
    ${Q}_{\mathrm{Al} }^{0, \alpha }$[31]$=2.71\times {10}^{5}, $

    ${Q}_{\mathrm{Al} }^{0, \gamma } $[31]$=2.67\times {10}^{5} $
    注: $ {k}_{c}, {k}_{\eta } $, 梯度能量系数; $ {V}_{m} $, 摩尔体积; T, 热力学温度; Y, 平均刚度系数; $ {L}_{x}, {L}_{y}, {L}_{z} $, 沿x, y, z轴的模拟区域宽度; W, 双势阱高度; $ {D}_{i}^{0, \varphi } $, 扩散系数; $ {Q}_{i}^{0, \varphi } $, 热扩散激活能.
    DownLoad: CSV
  • [1]

    Zhu J M, Zhang T L, Yang Y, Liu C T 2019 Acta Mater. 166 560Google Scholar

    [2]

    Han G, Shang C J, Misra R D K, Xie Z J 2019 Physica B 569 68Google Scholar

    [3]

    Li B Y, Zhang L, Li C L, Li Q L, Chen J, Shu G G, Weng Y Q, Xu B, Hu S Y, Liu W 2018 J. Nucl. Mater. 507 59Google Scholar

    [4]

    Li B Y, Hu S Y, Li C L, Li Q L, Chen J, Shu G G, Jr C H, Weng Y Q, Xu B, Liu W 2017 Model. Simul. Mater. Sc. 25 6

    [5]

    Lv G C, Zhang H, He X F, Yang W, Su Y J 2016 Aip Adv. 6 045004Google Scholar

    [6]

    Jiao Z B, Luan J H, Miller M K, Chung Y W, Liu C T 2017 Mater. Today 20 142Google Scholar

    [7]

    Shu S P, Wells P B, Almirall N, Odette G R, Morgan D D 2018 Acta Mater. 157 298Google Scholar

    [8]

    Odette G R, Liu C L, Wirth B D 1996 MRS Online Proceedings Library Archive 439 457Google Scholar

    [9]

    Wen Y R, Hirata A, Zhang Z W, Fujita T, Liu C T, Jiang J H, Chen M W 2013 Acta Mater. 61 2133Google Scholar

    [10]

    Miller M K, Wirth B D, Odette G R 2003 Mater. Sci. Eng. A 353 133Google Scholar

    [11]

    Osamura K, Okuda H, Asano K, Furusaka M, Kishida K, Kurosawa F, Uemori R 1994 ISIJ Int. 34 346Google Scholar

    [12]

    沈琴, 王晓姣, 赵安宇, 何益锋, 方旭磊, 马佳荣, 刘文庆 2016 金属学报 52 513Google Scholar

    Shen Q, Wang X J, Zhao A Y, He Y F, Fang X L, Ma J R, Liu W Q 2016 Acta Metall. Sin. 52 513Google Scholar

    [13]

    Shen Q, Xiong X, Li T, Chen H, Cheng Y M, Liu W Q 2018 Mater. Sci. Eng. A 723 279Google Scholar

    [14]

    Vaynman S, Isheim D, Kolli R P, Bhat S P, Seidman D N, Fine M E 2008 Metall. Mater. Trans. A 39 363Google Scholar

    [15]

    Sun Y Y, Zhao Y H, Zhao B J, Yang W K, Li X L, Hou H 2019 J. Mater. Sci. 54 11263Google Scholar

    [16]

    赵宝军, 赵宇宏, 孙远洋, 杨文奎, 侯华 2019 金属学报 55 593Google Scholar

    Zhao B J, Zhao Y H, Sun Y Y, Yang W K, Hou H 2019 Acta Metall. Sin. 55 593Google Scholar

    [17]

    Wen Z Q, Zhao Y H, Hou H, Wang B, Han P D 2017 Mater. Design 114 398Google Scholar

    [18]

    Huang Z W, Zhao Y H, Hou H, Wang Z, Mu Y Q, Niu X F, Han P D 2011 Rare Metal Mat. Eng. 12 2136

    [19]

    田晓林, 赵宇宏, 田晋忠, 侯华 2018 物理学报 67 230201Google Scholar

    Tian X L, Zhao Y H, Tian J Z, Hou H 2018 Acta Phys. Sin. 67 230201Google Scholar

    [20]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [21]

    Zhao Y H, Tian X L, Zhao B J, Sun Y Y, Guo H J, Dong M Y, Liu H, Wang X J, Guo Z H, Umar A, Hou H 2018 Sci. Adv. Mater. 10 1793Google Scholar

    [22]

    Hou H, Zhao Y H, Zhao Y H 2009 Mater. Sci. Eng. 499 204Google Scholar

    [23]

    Kuang W W, Wang H F, Li X, Zhang J B, Zhou Q, Zhao Y H 2018 Acta Mater. 159 16Google Scholar

    [24]

    Zhao Y H, Zhang B, Hou H, Chen W P, Wang M 2019 J. Mater. Sci. Technol. 35 1044Google Scholar

    [25]

    Zhang J B, Wang H F, Kuang W W, Zhang Y C, Li S, Zhao Y H, Herlach D M 2018 Acta Mater. 148 86Google Scholar

    [26]

    Cahn J W 1961 Acta Metal. 9 795Google Scholar

    [27]

    Zhao Y H, Wang S, Zhang B, Yuan Y, Guo Q W, Hou H 2019 J. Solid State Chem. 276 232Google Scholar

    [28]

    Koyama T, Hashimoto K, Onodera H 2006 Mater. Trans. 47 2765Google Scholar

    [29]

    Koyama T, Onodera H 2005 Mater. Trans. 46 1187Google Scholar

    [30]

    Dinsdale A T 1991 Calphad 15 317Google Scholar

    [31]

    Bergner D, Khaddour Y 1993 Defect Diffus Forum 6 95

  • [1] Liu Zhong-Lei, Cao Jin-Ming, Wang Zhi, Zhao Yu-Hong. Phase-field method explored ferroelectric vortex topology structure and morphotropic phase boundaries. Acta Physica Sinica, 2023, 72(3): 037702. doi: 10.7498/aps.72.20221898
    [2] Wang Kai-Le, Yang Wen-Kui, Shi Xin-Cheng, Hou Hua, Zhao Yu-Hong. Phase-field-method-studied mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy. Acta Physica Sinica, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [3] Guo Can, Kang Chen-Rui, Gao Ying, Zhang Yi-Chi, Deng Ying-Yuan, Ma Chao, Xu Chun-Jie, Liang Shu-Hua. A phase-field model for in-situ reaction process of metal-matrix composite materials. Acta Physica Sinica, 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [4] Jiang Xin-An, Zhao Yu-Hong, Yang Wen-Kui, Tian Xiao-Lin, Hou Hua. Mechanism of internal magnetic energy of Cu-rich phase precipitation in Fe84Cu15Mn1 alloy by phase field method. Acta Physica Sinica, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [5] Yang Hui, Feng Ze-Hua, Wang He-Ran, Zhang Yun-Peng, Chen Zheng, Xin Tian-Yuan, Song Xiao-Rong, Wu Lu, Zhang Jing. Phase-field modeling of irradiated void microstructure evolution of Fe-Cr alloy. Acta Physica Sinica, 2021, 70(5): 054601. doi: 10.7498/aps.70.20201457
    [6] Wang Tao, Li Jun-Jie, Wang Jin-Cheng. Phase field modeling of the influence of interfacial wettability and solid volume fraction on the kinetics of coarsening. Acta Physica Sinica, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [7] Zhang Xian-Gang, Zong Ya-Ping, Wu Yan. A model for releasing of stored energy and microstructure evolution during recrystallization by phase-field simulation. Acta Physica Sinica, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [8] Wang Ya-Qin, Wang Jin-Cheng, Li Jun-Jie. Phase field modeling of the growth and competition behavior of tilted dendrites in directional solidification. Acta Physica Sinica, 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [9] Wei Cheng-Yang, Li Sai-Yi. Effect of temperature gradient on grain growth behavior from phase field simulations. Acta Physica Sinica, 2011, 60(10): 100701. doi: 10.7498/aps.60.100701
    [10] Wang Ming-Guang, Zhao Yu-Hong, Ren Juan-Na, Mu Yan-Qing, Wang Wei, Yang Wei-Ming, Li Ai-Hong, Ge Hong-Hao, Hou Hua. Phase-field simulation of Non-Isothermal dendritic growth of NiCu alloy. Acta Physica Sinica, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [11] Zong Ya-Ping, Wang Ming-Tao, Guo Wei. Phase field simulation on recrystallization and secondary phase precipitation under strain field. Acta Physica Sinica, 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [12] Long Wen-Yuan, Lü Dong-Lan, Xia Chun, Pan Mei-Man, Cai Qi-Zhou, Chen Li-Liang. Phase-field simulation of non-isothermal solidification dendrite growth of binary alloy under the force flow. Acta Physica Sinica, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [13] Chen Yu-Juan, Chen Chang-Le. Simulation of the influence of convection velocity on upstream dendritic growth using phase-field method. Acta Physica Sinica, 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [14] Feng Li, Wang Zhi-Ping, Lu Yang, Zhu Chang-Sheng. Phase-field model of isothermal solidification of binary alloy with multiple grains. Acta Physica Sinica, 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [15] Li Jun-Jie, Wang Jin-Cheng, Xu Quan, Yang Gen-Cang. Effect of foreign particles on the dendritic growth in phase-field theory. Acta Physica Sinica, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [16] Long Wen-Yuan, Cai Qi-Zhou, Wei Bo-Kang, Chen Li-Liang. Simulation of dendritic growth of multicomponent alloys using phase-field method. Acta Physica Sinica, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [17] Zhang Yu-Xiang, Wang Jin-Cheng, Yang Gen-Cang, Zhou Yao-He. Phase-field simulation of the influence of elastic field on microstructure evolution and equilibrium composition of precipitation. Acta Physica Sinica, 2006, 55(5): 2433-2438. doi: 10.7498/aps.55.2433
    [18] Yang Hong, Zhang Qing-Guang, Chen Min. A phase-field simulation on the influence of thermal fluctuation on secondary branch growth in undercooled melt. Acta Physica Sinica, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [19] Li Mei-E, Yang Gen-Cang, Zhou Yao-He. Phase field modeling of directional solidification of a binary alloy at high velocities. Acta Physica Sinica, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
    [20] Long Wen-Yuan, Cai Qi-Zhou, Chen Li-Liang, Wei Bo-Kang. Phase-field modeling of isothermal solidification in binary alloy. Acta Physica Sinica, 2005, 54(1): 256-262. doi: 10.7498/aps.54.256
Metrics
  • Abstract views:  6993
  • PDF Downloads:  147
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2020
  • Accepted Date:  23 December 2020
  • Available Online:  14 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回