Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Three-dimensional ultrasounds modulated solidification microstructure and mechanical property of (FeCoNiCrMn)92Mo8 high-entropy alloy

WU Hao WANG Xu WANG Jianyuan ZHAI Wei WEI Bingbo

Citation:

Three-dimensional ultrasounds modulated solidification microstructure and mechanical property of (FeCoNiCrMn)92Mo8 high-entropy alloy

WU Hao, WANG Xu, WANG Jianyuan, ZHAI Wei, WEI Bingbo
cstr: 32037.14.aps.74.20250657
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Three-dimensional ultrasonic waves with amplitudes of 14, 18, and 22 μm, respectively, are used during the solidification of (FeCoNiCrMn)92Mo8 high-entropy alloy, and its microstructural evolution and mechanical property are investigated in this work. Under static condition, the solidification microstructure is composed of primary γ phase dendrites with FCC structure and stripe-shaped σ phase with tetragonal structure. As the ultrasonic amplitude increases, the mean transient cavitation intensity rises to trigger off a significant nucleation rate increase of the primary γ phase to 5.6 × 1012 m–3·s–1, leading to the remarkable grain size reduction by two orders of magnitude. The maximum and the average acoustic streaming velocity increase simultaneously, which accelerates atomic diffusion at the liquid/solid interface, reducing Cr content in the primary γ phase from 18.6% to 13.1% and Mo content from 6.8% to 3.4% (atomic percent). This atomic redistribution subsequently causes the liquid composition to approach the eutectic point and facilitate the formation of (γ + σ) eutectic, which accounts for more than 50% volume fraction. The two eutectic phases exhibit a semi-coherent interface relationship characterized by [110]γ//[110]σ and $(1\bar1\bar 1) $γ//$(\overline110) $σ. Furthermore, due to the gradual enrichment of Cr atoms in the remaining liquid phase, a small quantity of metastable μ phases with Cr content up to 62.3% form in the final microstructure. The maximum compressive yield strength of the ultrasonically solidified microstructure reaches 876.2 MPa, almost twice that of static solidification microstructure, and the compressive strain reaches 33.2%. The formation of (γ + σ) eutectic is the main factor that increases the yield strength of alloy by 527.1 MPa.
      Corresponding author: ZHAI Wei, zhaiwei322@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52130405, 52088101) and the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2023-JC-JQ-28).
    [1]

    Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113 107001Google Scholar

    [2]

    Feng T, Jiang S M, Hu X T, Zhang Z J, Huang Z J, Dong S G, Zhang J 2024 Chin. Phys. B 33 076501Google Scholar

    [3]

    王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏 2023 物理学报 72 076102Google Scholar

    Wang K L, Yang W K, Shi X C, Hou H, Zhao Y H 2023 Acta Phys. Sin. 72 076102Google Scholar

    [4]

    Fang J Z, Li R, Yao S L, Chen J, Wang K 2024 J. Appl. Phys. 136 245901Google Scholar

    [5]

    Wang X, Zhai W, Li H, Wang J Y, Wei B B 2023 Acta Mater. 252 118900Google Scholar

    [6]

    Song H Q, Feng C S, Guan Z, Zhang W, Yang H Y, Tang Y, Zeng K, Yuan X, Zhang J W, Liu J, Zhang F X 2025 Appl. Phys. Lett. 126 031903Google Scholar

    [7]

    Yu Z H, Wang H Y, Sun L G, Li Z H, Zhu L L 2024 Chin. Phys. B 33 116201Google Scholar

    [8]

    闻鹏, 陶钢 2022 物理学报 71 246101Google Scholar

    Wen P, Tao G 2022 Acta Phys. Sin. 71 246101Google Scholar

    [9]

    Cantor B 2021 Prog. Mater. Sci. 120 100754Google Scholar

    [10]

    Han D Z, Luan H W, Zhao S F, Chen N, Peng R X, Shao Y, Yao K F 2018 Chin. Phys. Lett. 35 036102Google Scholar

    [11]

    Xing R L, Liu X P 2024 Chin. Phys. B 33 016202Google Scholar

    [12]

    安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋 2022 物理学报 71 243101Google Scholar

    An M R, Li S L, Su M J, Deng Q, Song H Y 2022 Acta Phys. Sin. 71 243101Google Scholar

    [13]

    Qin G, Chen R R, Zheng H T, Fang H Z, Wang L, Su Y Q, Guo J J, Fu H Z 2019 J. Mater. Sci. Technol. 35 578Google Scholar

    [14]

    Sathiyamoorthi P, Kim H S 2022 Prog. Mater. Sci. 123 100709Google Scholar

    [15]

    Azhagarsamy P, Sekar K, Murali K P 2022 Mater. Sci. Technol. 137 88

    [16]

    Wang H, He Q F, Yang Y 2022 Rare Met. 41 6

    [17]

    Li T, Chen H, Ma H, Zhou Z, Xu N, Song C, Niu Y, Li R, Li S, Wang Y D 2024 J. Mater. Sci. Technol. 194 15

    [18]

    Wang W L, Meng L J, Li L H, Hu L, Zhou K, Kong Z H, Wei B B 2016 Chin. Phys. Lett. 33 116102Google Scholar

    [19]

    Khosro Aghayani M, Niroumand B 2011 J. Alloys Compd. 509 114Google Scholar

    [20]

    张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波 2024 物理学报 73 184301Google Scholar

    Zhang X Y, Wu W H, Wang J Y, Zhang Y, Zhai W, Wei B B 2024 Acta Phys. Sin. 73 184301Google Scholar

    [21]

    Lou B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 89 18

    [22]

    杜人君, 解文军 2011 物理学报 60 114302Google Scholar

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar

    [23]

    El Ghani N, Miralles S, Botton V, Henry D, Ben Hadid H, Ter Ovanessian B, Marcelin S 2021 Int. J. Heat Mass Transfer 172 121090Google Scholar

    [24]

    Xu N X, Yu Y, Zhai W, Wang J Y, Wei B B 2023 Ultrason. Sonochem. 94 106343Google Scholar

    [25]

    马艳, 林书玉, 徐洁 2018 物理学报 67 034301Google Scholar

    Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301Google Scholar

    [26]

    Patel B, Chaudhari G P, Bhingole P P 2012 Mater. Lett. 66 1Google Scholar

    [27]

    Zhao M M, Wang X, Zhai W, Wang J Y 2024 J. Alloys Compd. 1008 176619Google Scholar

    [28]

    Jamshidi R, Brenner G 2013 Ultrasonics 53 842Google Scholar

    [29]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [30]

    Lebon G S B, Salloum-Abou-Jaoude G, Eskin D, Tzanakis I, Pericleous K, Jarry P 2019 Ultrason. Sonochem. 54 171Google Scholar

    [31]

    Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74 425Google Scholar

    [32]

    Kurz W, Fisher D J 1998 Fundamentals of Solidification (5th Ed.) (Baech: Trans Tech Publications

    [33]

    Turnbull D, Cech R E 1950 J. Appl. Phys. 21 804Google Scholar

    [34]

    Thompson C V, Greer A L, Spaepen F 1983 Acta Metall. 31 1883Google Scholar

    [35]

    Gale W F, Totemeier T C 1983 Smithells Metals Reference Book (8th Ed.) (Oxford: Butterworth-Heinemann

    [36]

    Lin M J, Hu L, Zhu X N, Yan P X, Wei B B 2023 J. Alloys Compd. 968 171912Google Scholar

    [37]

    Tzanakis I, Xu W W, Eskin D G, Lee P D, Kotsovinos N 2015 Ultrason. Sonochem. 27 72Google Scholar

    [38]

    Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8 471Google Scholar

    [39]

    Komarov S V, Kuwabara M, Abramov O V 2005 ISIJ Int. 45 1765Google Scholar

    [40]

    Eskin G I, Eskin D G 2014 Ultrasonic Treatment of Light Alloy Melts (Boca Raton: CRC Press

    [41]

    Labusch R 1970 Phys. Status. Solidi 41 659Google Scholar

    [42]

    Wang S P, Xu J 2018 Intermetallics 95 59Google Scholar

    [43]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427Google Scholar

    [44]

    Ma K K, Wen H M, Hu T, Topping T D, Isheim D, Seidman D N, Lavernia E J, Schoenung J M 2014 Acta Mater. 62 141Google Scholar

    [45]

    Čižek L, Kratochvíl P, Smola B 1974 J. Mater. Sci. 9 1517Google Scholar

    [46]

    Sun S J, Tian Y Z, Lin H R, Dong X G, Wang Y H, Wang Z J, Zhan Z F 2019 J. Alloys Compd. 25 806

    [47]

    Kwon H, Asghari-Rad P, Park J M, Sathiyamoorthi P, Bae J W, Moon J, Zargaran A, Choi Y T, Son S, Kim H S 2021 Intermetallics 135 107212Google Scholar

    [48]

    Li J X, Yamanaka K, Zhang Y J, Furuhara T, Cao G Q, Hu J H, Chiba A 2024 Mater. Res. Lett. 12 399Google Scholar

    [49]

    Wu Z G, Gao Y F, Bei H B 2016 Acta Mater. 120 108Google Scholar

  • 图 1  液态(FeCoNiCrMn)92Mo8合金中声场和流场特征 (a) 模拟过程中所使用的3D模型; (b) A3D = 14 μm, (c) A3D = 18 μm和(d) A3D = 22 μm条件下声场分布; (e) P1-P2连线处的声场强度; (f) 稳态与瞬态空化平均强度; (g) A3D = 14 μm, (h) A3D = 18 μm和(i) A3D = 22 μm条件下流场分布; (j) 平均与最大流速

    Figure 1.  Acoustic field and flow field characteristics in liquid (FeCoNiCrMn)92Mo8 alloy: (a) 3D model used in the simulation process; sound field distribution of (b) A3D = 14 μm, (c) A3D = 18 μm, and (d) A3D = 22 μm; (e) sound field intensity at the P1-P2 connection line; (f) average intensities of stable and transient cavitation; flow field distribution of (g) A3D = 14 μm, (h) A3D = 18 μm, and (i) A3D = 22 μm; (j) average and maximum flow velocities.

    图 2  静态和超声凝固条件下(FeCoNiCrMn)92Mo8合金相组成与热分析 (a) XRD图谱; (b) DSC曲线

    Figure 2.  Phase constitution and thermal analysis of (FeCoNiCrMn)92Mo8 alloy under static and ultrasonic solidification conditions: (a) XRD patterns; (b) DSC curves.

    图 3  超声场中(FeCoNiCrMn)92Mo8合金凝固组织形貌 (a) 静态; (b) A3D =14 μm; (c) A3D = 22 μm

    Figure 3.  Solidification microstructure of (FeCoNiCrMn)92Mo8 alloy within ultrasonic fields: (a) Static; (b) A3D = 14 μm; (c) A3D = 22 μm

    图 4  凝固组织特征尺寸及其相体积分数随超声振幅的变化规律 (a) 初生γ相平均尺寸和形核率; (b) 初生γ相与(γ + σ)共晶体积分数

    Figure 4.  Scale length characteristics and phase volume fractions of solidification microstructure versus ultrasound amplitude: (a) Average size and nucleation rate of primary γ phase; (b) volume fractions of primary γ phase and (γ + σ) eutectic.

    图 5  (FeCoNiCrMn)92Mo8合金各相Cr和Mo元素含量随超声振幅的变化规律 (a) 初生γ相; (b) (γ + σ)共晶

    Figure 5.  Cr and Mo element contents in various phases of (FeCoNiCrMn)92Mo8 alloy versus ultrasound amplitude: (a) Primary γ phase; (b) (γ + σ) eutectic.

    图 6  超声振幅22 μm条件下共晶γ/σ界面晶体学分析 (a) HAADF图像; (b) HRTEM图像; (c) HRTEM图像的FFT; (d) SAED模拟图

    Figure 6.  Crystallographic analysis of eutectic γ/σ interface under 22 μm ultrasound amplitude: (a) HAADF image; (b) HRTEM image; (c) FFT of HRTEM image; (d) simulated SAED pattern.

    图 7  超声振幅22 μm条件下所形成的亚稳μ相结构特征 (a) HAADF图像; (b) [110]晶带轴下的SAED; (c) [100]晶带轴下的SAED; (d) HRTEM图像

    Figure 7.  Structural characterization of mestable μ phase formed under 22 μm ultrasound amplitude: (a) HAADF image; (b) SAED pattern under [110] zone axis; (c) SAED pattern under [100] zone axis; (d) HRTEM image.

    图 8  (FeCoNiCrMn)92Mo8合金凝固过程中的热力学计算 (a) 初生γ相吉布斯自由能随超声振幅的变化; (b) Fe16Co17Ni17Cr20Mn19Mo11相体积分数随温度的变化

    Figure 8.  Thermodynamic calculations during solidification process of (FeCoNiCrMn)92Mo8 alloy: (a) Gibbs free energy of primary γ phase versus ultrasonic amplitude; (b) phase volume fractions of Fe16Co20Ni17Cr20Mn19Mo11 versus temperature.

    图 9  (FeCoNiCrMn)92Mo8合金的力学性能及屈服强度贡献 (a) 压缩应力应变曲线; (b) 共晶组织、固溶以及细晶强化对于屈服强度的贡献度

    Figure 9.  Mechanical properties and calculation of yield strength contribution value of (FeCoNiCrMn)92Mo8 alloy: (a) Stress-strain curves; (b) the contribution of eutectic structure, solid solution and grain strengthening to yield strength.

    表 1  (FeCoNiCrMn)92Mo8合金声场计算使用的物理参数

    Table 1.  Physical parameters used for acoustic field calculations of (FeCoNiCrMn)92Mo8 alloy.

    参数 数值 参考文献
    初始气泡半径 R0/μm 3 [5,31]
    初始气泡密度 N/m–3 1.9×109 [5]
    密度 ρL/(kg·m–3) 8230 CALPHAD
    黏度 ηL/(Pa·s) 8.2×10–3 CALPHAD
    声速 cL/(m·s–1) 5170 [5]
    表面张力 σL/(N·m–1) 1.5 CALPHAD
    石墨铸模密度 ρm/(kg·m–3) 1820 [5]
    石墨铸模声速 cm/(m·s–1) 3000 [5]
    DownLoad: CSV

    表 2  形核率计算使用的物理参数

    Table 2.  Physical parameters used for nucleation rate calculations.

    参数 数值 参考文献
    合金体积变化 ∆V/(cm3·mol–1) 0.26 [35]
    合金熔化焓 ∆H/( J·mol–1) 12982 CALPHAD
    润湿角因子 f(θ) 0.0001 [36]
    γ 相摩尔体积 Vm/(cm3·mol–1) 7.80 [35]
    γ 相摩尔焓变 ∆Hm/(J·mol–1) 13297 CALPHAD
    DownLoad: CSV

    表 3  屈服强度贡献值计算所使用的参数

    Table 3.  Parameters used for calculating the contribution value of yield strength.

    符号 数值 参考文献
    剪切模量G0/GPa 81.3 [42,45]
    拟合系数Z 0.0074 [42]
    γ 枝晶Hall-Petch系数
    ky/(MPa·μm1/2)
    497 [43,44,46]
    共晶Hall-Petch系数
    kh/(MPa·μm1/2)
    750 [43,44,4749]
    共晶层片间距λ/μm 0.9 本文统计
    γ 相体积分数fγ/% 91.2, 77.4, 68.4, 35.4 本文统计
    共晶体积分数feu/% 0, 22.6, 31.6, 58.8 本文统计
    初生相平均尺寸d/μm 7622, 656, 537, 45 本文统计
    DownLoad: CSV

    表 4  (FeCoNiCrMn)92Mo8合金屈服强度的各项贡献值(单位: MPa)

    Table 4.  Strengthening contributions of (FeCoNiCrMn)92Mo8 alloy (in MPa).

    静态 A3D = 14 μm A3D = 18 μm A3D = 22 μm
    晶格摩擦 210.0 210.0 210.0 210.0
    固溶强化 109.3 95.0 89.2 47.0
    细晶强化 5.7 19.4 21.5 27.0
    σ相强化 70.4
    共晶强化 202.6 283.3. 527.1
    理论计算
    屈服强度
    415.4 547.0 624.0 831.1
    实际屈服
    强度
    442.6 605.6 677.4 876.2
    DownLoad: CSV
  • [1]

    Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S, Feuerbacher M, Steurer W, Dolinšek J 2014 Phys. Rev. Lett. 113 107001Google Scholar

    [2]

    Feng T, Jiang S M, Hu X T, Zhang Z J, Huang Z J, Dong S G, Zhang J 2024 Chin. Phys. B 33 076501Google Scholar

    [3]

    王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏 2023 物理学报 72 076102Google Scholar

    Wang K L, Yang W K, Shi X C, Hou H, Zhao Y H 2023 Acta Phys. Sin. 72 076102Google Scholar

    [4]

    Fang J Z, Li R, Yao S L, Chen J, Wang K 2024 J. Appl. Phys. 136 245901Google Scholar

    [5]

    Wang X, Zhai W, Li H, Wang J Y, Wei B B 2023 Acta Mater. 252 118900Google Scholar

    [6]

    Song H Q, Feng C S, Guan Z, Zhang W, Yang H Y, Tang Y, Zeng K, Yuan X, Zhang J W, Liu J, Zhang F X 2025 Appl. Phys. Lett. 126 031903Google Scholar

    [7]

    Yu Z H, Wang H Y, Sun L G, Li Z H, Zhu L L 2024 Chin. Phys. B 33 116201Google Scholar

    [8]

    闻鹏, 陶钢 2022 物理学报 71 246101Google Scholar

    Wen P, Tao G 2022 Acta Phys. Sin. 71 246101Google Scholar

    [9]

    Cantor B 2021 Prog. Mater. Sci. 120 100754Google Scholar

    [10]

    Han D Z, Luan H W, Zhao S F, Chen N, Peng R X, Shao Y, Yao K F 2018 Chin. Phys. Lett. 35 036102Google Scholar

    [11]

    Xing R L, Liu X P 2024 Chin. Phys. B 33 016202Google Scholar

    [12]

    安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋 2022 物理学报 71 243101Google Scholar

    An M R, Li S L, Su M J, Deng Q, Song H Y 2022 Acta Phys. Sin. 71 243101Google Scholar

    [13]

    Qin G, Chen R R, Zheng H T, Fang H Z, Wang L, Su Y Q, Guo J J, Fu H Z 2019 J. Mater. Sci. Technol. 35 578Google Scholar

    [14]

    Sathiyamoorthi P, Kim H S 2022 Prog. Mater. Sci. 123 100709Google Scholar

    [15]

    Azhagarsamy P, Sekar K, Murali K P 2022 Mater. Sci. Technol. 137 88

    [16]

    Wang H, He Q F, Yang Y 2022 Rare Met. 41 6

    [17]

    Li T, Chen H, Ma H, Zhou Z, Xu N, Song C, Niu Y, Li R, Li S, Wang Y D 2024 J. Mater. Sci. Technol. 194 15

    [18]

    Wang W L, Meng L J, Li L H, Hu L, Zhou K, Kong Z H, Wei B B 2016 Chin. Phys. Lett. 33 116102Google Scholar

    [19]

    Khosro Aghayani M, Niroumand B 2011 J. Alloys Compd. 509 114Google Scholar

    [20]

    张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波 2024 物理学报 73 184301Google Scholar

    Zhang X Y, Wu W H, Wang J Y, Zhang Y, Zhai W, Wei B B 2024 Acta Phys. Sin. 73 184301Google Scholar

    [21]

    Lou B G, Lee D R, Kwon K 2006 Appl. Phys. Lett. 89 18

    [22]

    杜人君, 解文军 2011 物理学报 60 114302Google Scholar

    Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar

    [23]

    El Ghani N, Miralles S, Botton V, Henry D, Ben Hadid H, Ter Ovanessian B, Marcelin S 2021 Int. J. Heat Mass Transfer 172 121090Google Scholar

    [24]

    Xu N X, Yu Y, Zhai W, Wang J Y, Wei B B 2023 Ultrason. Sonochem. 94 106343Google Scholar

    [25]

    马艳, 林书玉, 徐洁 2018 物理学报 67 034301Google Scholar

    Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301Google Scholar

    [26]

    Patel B, Chaudhari G P, Bhingole P P 2012 Mater. Lett. 66 1Google Scholar

    [27]

    Zhao M M, Wang X, Zhai W, Wang J Y 2024 J. Alloys Compd. 1008 176619Google Scholar

    [28]

    Jamshidi R, Brenner G 2013 Ultrasonics 53 842Google Scholar

    [29]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar

    [30]

    Lebon G S B, Salloum-Abou-Jaoude G, Eskin D, Tzanakis I, Pericleous K, Jarry P 2019 Ultrason. Sonochem. 54 171Google Scholar

    [31]

    Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74 425Google Scholar

    [32]

    Kurz W, Fisher D J 1998 Fundamentals of Solidification (5th Ed.) (Baech: Trans Tech Publications

    [33]

    Turnbull D, Cech R E 1950 J. Appl. Phys. 21 804Google Scholar

    [34]

    Thompson C V, Greer A L, Spaepen F 1983 Acta Metall. 31 1883Google Scholar

    [35]

    Gale W F, Totemeier T C 1983 Smithells Metals Reference Book (8th Ed.) (Oxford: Butterworth-Heinemann

    [36]

    Lin M J, Hu L, Zhu X N, Yan P X, Wei B B 2023 J. Alloys Compd. 968 171912Google Scholar

    [37]

    Tzanakis I, Xu W W, Eskin D G, Lee P D, Kotsovinos N 2015 Ultrason. Sonochem. 27 72Google Scholar

    [38]

    Hsu W L, Tsai C W, Yeh A C, Yeh J W 2024 Nat. Rev. Chem. 8 471Google Scholar

    [39]

    Komarov S V, Kuwabara M, Abramov O V 2005 ISIJ Int. 45 1765Google Scholar

    [40]

    Eskin G I, Eskin D G 2014 Ultrasonic Treatment of Light Alloy Melts (Boca Raton: CRC Press

    [41]

    Labusch R 1970 Phys. Status. Solidi 41 659Google Scholar

    [42]

    Wang S P, Xu J 2018 Intermetallics 95 59Google Scholar

    [43]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427Google Scholar

    [44]

    Ma K K, Wen H M, Hu T, Topping T D, Isheim D, Seidman D N, Lavernia E J, Schoenung J M 2014 Acta Mater. 62 141Google Scholar

    [45]

    Čižek L, Kratochvíl P, Smola B 1974 J. Mater. Sci. 9 1517Google Scholar

    [46]

    Sun S J, Tian Y Z, Lin H R, Dong X G, Wang Y H, Wang Z J, Zhan Z F 2019 J. Alloys Compd. 25 806

    [47]

    Kwon H, Asghari-Rad P, Park J M, Sathiyamoorthi P, Bae J W, Moon J, Zargaran A, Choi Y T, Son S, Kim H S 2021 Intermetallics 135 107212Google Scholar

    [48]

    Li J X, Yamanaka K, Zhang Y J, Furuhara T, Cao G Q, Hu J H, Chiba A 2024 Mater. Res. Lett. 12 399Google Scholar

    [49]

    Wu Z G, Gao Y F, Bei H B 2016 Acta Mater. 120 108Google Scholar

  • [1] WANG Bo, JIANG Hongxiang, ZHANG Lili, HE Jie. Effect of trace Mg and heat treatment on microstructure and properties of Al-7Si alloy. Acta Physica Sinica, 2025, 74(18): . doi: 10.7498/aps.74.20250776
    [2] BO Le, GAO Xiaoyu, NING Zhiliang, WANG Li, SUN Jianfei, ZHANG Zhenjiang, HUANG Yongjiang. Optimizing microstructure and mechanical properties of CoCrFeNi high-entropy alloy microfibers by electric current treatment. Acta Physica Sinica, 2025, 74(13): 138102. doi: 10.7498/aps.74.20250518
    [3] Wen Peng, Tao Gang. Molecular dynamics study of temperature effects on shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [4] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [5] Huang Wen-Jun, Qiao Jun-Wei, Chen Shun-Hua, Wang Xue-Jiao, Wu Yu-Cheng. Preparation, structures and properties of tungsten-containing refractory high entropy alloys. Acta Physica Sinica, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [6] Shen Tian-Zhan, Song Hai-Yang, An Min-Rong. Effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high-entropy alloy by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [7] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [8] Yi Jun. Fabrications and mechanical behaviors of amorphous fibers. Acta Physica Sinica, 2017, 66(17): 178102. doi: 10.7498/aps.66.178102
    [9] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [10] Pan Xin-Dong, Wei Yan, Cai Hong-Zhong, Qi Xiao-Hong, Zheng Xu, Hu Chang-Yi, Zhang Xu-Xiang. Effect of Rh content on the mechanical properties of Ir-Rh alloy based on the first principle. Acta Physica Sinica, 2016, 65(15): 156201. doi: 10.7498/aps.65.156201
    [11] Wang Hai-Yan, Hu Qian-Ku, Yang Wen-Peng, Li Xu-Sheng. Influence of metal element doping on the mechanical properties of TiAl alloy. Acta Physica Sinica, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [12] Liu Xue-Mei, Liu Guo-Quan, Li Ding-Peng, Wang Hai-Bin, Song Xiao-Yan. Preparation and properties of polycrystalline and nanocrystalline Sm3Co alloys. Acta Physica Sinica, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [13] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [14] Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei. Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation. Acta Physica Sinica, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [15] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [16] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [17] Wang Chun-Jiang, Wang Qiang, Wang Ya-Qin, Huang Jian, He Ji-Cheng. Effects of high magnetic fields on the distribution of Si in solidified structures of Al-Si alloy. Acta Physica Sinica, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [18] Li Teng, Li Wei, Pan Wei, Li Xiu-Mei. Effect of microstructure on the mechanical properties of Fe45—50 Cr30—35Co20—25Mo0—4Zr0—2 alloy. Acta Physica Sinica, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [19] Zheng Li-Jing, Li Shu-Suo, Li Huan-Xi, Chen Chang-Qi, Han Ya-Fang, Dong Bao-Zhong. Small angle x-ray scattering study on microstructure and mechanical property evo lutions of equal-channel angular pressed 7050 Al alloy. Acta Physica Sinica, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [20] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
  • supplement 17-20250657Suppl.pdf supplement
Metrics
  • Abstract views:  1040
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2025
  • Accepted Date:  24 June 2025
  • Available Online:  01 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回