-
Selective laser melting (SLM) has potential to prepare complex shaped amorphous alloy parts , however, the almost inevitable crystallization makes it very difficult to obtain excellent performance parts. Most of studies focus on improving properties by optimizing parameters such as laser power, scanning speed, and scanning strategy . As is well known, the substrate is an important component in SLM devices, which directly supports and contacts the initial powder and melting pool, affecting the absorption and transfer of heat, the formation and cooling of the melting pool, and therefore exerts a significant influence on the quality and microstructure of printed parts. However, there is relatively little research on its influence. It is important and necessary to understand the influence of substrate temperature on crystallization behavior of Fe-based amorphous alloy during SLM process. Molecular dynamics (MD) simulations can provide direct evidence for the evolution of clusters and band pairs, which can help clarify the crystallization mechanism and alleviate the crystallization. In this work, the influence of substrate temperature on the crystallization and evolution of atomic clusters in Fe50Cu25Ni25 amorphous alloy during SLM is investigated on an atomic scale, using MD simulation under different substrate temperatures (300–900 K), laser power values (500–800 eV/ps), and scanning speeds (0.1–1.0 nm/ps). The research results show that when the substrate temperature is lower than 750 K, the content of characteristic bond pair 1421 and the corresponding $ \left\langle{0,{\mathrm{ }}4,{\mathrm{ }}4,{\mathrm{ }}6}\right\rangle $ cluster increase with the substrate temperature rising, thereby increasing face-centered cubic bond pair and cluster and promoting the crystallization. When the substrate temperature rises to a value close to the glass transition temperature, the evolution of bond pairs and clusters becomes complex, which is influenced by the collaborative and competitive effects, such as the ability to form glass, melting and cooling rate. This work reveals the evolution of atomic clusters and band pairs in the SLM process of Fe-based amorphous alloys, and the initiation of crystal phases at different substrate temperatures, providing new ideas for understanding and regulating crystallization.
-
Keywords:
- Fe-based amorphous alloy /
- selective laser melting /
- molecular dynamics simulation /
- substrate temperature /
- crystallization
-
图 5 熔池温度随基板温度的变化 (a) 300 K; (b) 450 K; (c) 600 K; (d) 750 K; (e) 900 K; (f) 熔体峰值温度、熔体停留时间和冷却速率随基板温度的变化
Figure 5. Variation of the molten pool temperature with substrate temperatures: (a) 300 K; (b) 450 K; (c) 600 K; (d) 750 K; (e) 900 K; (f) the variation of the melt peak temperature, melting duration, and cooling rate.
表 1 基板温度对样品晶体和非晶键对的影响
Table 1. Effects of substrate temperatures on crystal and amorphous bond pairs.
样品 基板
温度
/K扫描
速率
/(nm·ps–1)激光
能量密度/
(J·mm–3)晶体
键对含量
/%非晶
键对含量
/%1 300 0.1 39.2 62.1 16.4 2 0.5 7.8 37.7 31.2 3 0.8 4.9 33.4 31.8 4 1 3.9 27.9 36.5 5 450 0.1 39.2 64.6 12.8 6 0.5 7.8 40.3 27.2 7 0.8 4.9 46.7 21.6 8 1 3.9 34.2 30.4 9 600 0.1 39.2 64.9 18.4 10 0.5 7.8 54.8 17.2 11 0.8 4.9 49.7 18.4 12 1 3.9 46.0 19.6 13 750 0.1 39.2 72.0 5.1 14 0.5 7.8 54.0 16.5 15 0.8 4.9 48.7 20.8 16 1.0 3.9 61.6 13.0 17 900 0.1 39.2 65.7 5.7 18 0.5 7.8 59.3 10.8 19 0.8 4.9 43.5 22.6 20 1 3.9 55.0 13.1 -
[1] 张建强, 秦彦军, 方铮, 范晓珍, 杨慧雅, 邝富丽, 翟耀, 苗艳龙, 赵梓翔, 何佳俊, 叶慧群, 方允樟 2022 物理学报 71 247501Google Scholar
Zhang J Q, Qin Y J, Fang Z, Fan X Z, Yang H Y, Kuang F L, Zhai Y, Miao Y L, Zhao Z X, He J J, Ye H Q, Fang Y Z 2022 Acta Phys. Sin. 71 247501Google Scholar
[2] Zou Y M, Qiu Z G, Zheng Z G, Wang G, Yan X C, Yin S, Liu M, Zeng D C 2021 Tribol. Int. 162 107112Google Scholar
[3] Suryanarayana C, Inoue A 2013 Int. Mater. Rev. 58 131Google Scholar
[4] 余秀冬, 刘海顺, 薛琳, 张响, 杨卫明 2024 物理学报 73 098801Google Scholar
Yu X D, Liu H S, Xue L, Zhang X, Yang W M 2024 Acta Phys. Sin. 73 098801Google Scholar
[5] Inoue A, Takeuchi A 2004 Mater. Sci. Eng. , A 375 16
[6] Li H S, Jiang Y Y, Yang D F, Jiang Q, Yang W M 2023 J. Mater. Res. Technol. 26 3070Google Scholar
[7] Liu H S, Jiang Q, Huo J T, Zhang Y, Yang W M, Li X P 2020 Addit. Manuf. 36 101568
[8] Li X P, Roberts M P, O’Keeffe S, Sercombe T B 2016 Mater. Des. 112 217Google Scholar
[9] Li X P, Kang C W, Huang H, Sercombe T B 2014 Mater. Des. 63 407Google Scholar
[10] Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013 Mater. Today 16 37Google Scholar
[11] Mahbooba Z, Thorsson L, Unosson M, Skoglund P, West H, Horn T, Rock C, Vogli E, Harrysson O 2018 Appl. Mater. Today 11 264Google Scholar
[12] Nong X D, Zhou X L, Ren Y X 2019 Opt. Laser Technol. 109 20Google Scholar
[13] Żrodowski Ł, Wysocki B, Wróblewski R, Krawczyńska A, Adamczyk-Cieślak B, Zdunek J, Błyskun P, Ferenc J, Leonowicz M, Święszkowski W 2019 J. Alloys Compd. 771 769Google Scholar
[14] Luo N, Scheitler C, Ciftci N, Galgon F, Fu Z, Uhlenwinkel V, Schmidt M, Körner C 2020 Mater. Charact. 162 110206Google Scholar
[15] Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015 Mater. Des. 86 703Google Scholar
[16] Li N, Zhang J, Xing W, Ouyang D, Liu L 2018 Mater. Des. 143 285Google Scholar
[17] 糜晓磊, 胡亮, 武博文, 龙强, 魏炳波 2024 物理学报 73 097102Google Scholar
Lei M X, Hu L, Wu B W, Long Q, Wei B B 2024 Acta Phys. Sin. 73 097102Google Scholar
[18] Kempen K, Vrancken B, Buls S, Thijs L, Van Humbeeck J, Kruth J P 2014 J. Manuf. Sci. Eng. 136 061026Google Scholar
[19] Malý M, Koutný D, Pantělejev L, Pambaguian L, Paloušek D 2022 J. Manuf. Processes 73 924Google Scholar
[20] Mertens R, Dadbakhsh S, Humbeeck J V, Kruth J P 2018 Procedia CIRP 74 5Google Scholar
[21] Wang W H, Lin W H, Yang R, Wu Y N, Li J P, Zhang Z B, Zhai Z R 2022 Mater. Des. 213 110355Google Scholar
[22] Xing W, Ouyang D, Li N, Liu L 2018 Materials 11 1480Google Scholar
[23] Li X P, Roberts M, Liu Y J, Kang C W, Huang H, Sercombe T B 2015 Mater. Des. 65 1Google Scholar
[24] Wang M Z, Lu S L, Wu S S, Chen X H, Guo W 2022 J. Mater. Res. Technol. 20 3355Google Scholar
[25] Dong B, Zhou S X, Pan S P, Wang Y G, Qin J Y, Xing Y X 2024 J. Alloys Compd. 626 122770
[26] Zhang Y, Liu H S, Mo J Y, Wang M Z, Chen Z, He Y Z, Yang W M, Tang C G 2018 Comput. Mater. Sci. 150 62Google Scholar
[27] Jiang Q, Liu H S, Li J Y, Yang D F, Zhang Y, Yang W M 2020 Addit. Manuf. 34 101369
[28] Bonny G, Pasianot R C, Castin N, Malerba L 2009 Philos. Mag. 89 3531Google Scholar
[29] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[30] Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar
[31] Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar
[32] Sheng H W, Cheng Y Q, Lee P L, Shastri S D, Ma E 2008 Acta Mater. 56 6264Google Scholar
[33] Yang D F, Liu H S, Jiang Q, Jiang Y Y, Wang X, Yang W M 2022 J. Non-Cryst. Solids 582 121435Google Scholar
[34] Wang H Z, Cheng Y H, Yang J Y, Liang X B 2023 J. Non-Cryst. Solids 602 122081Google Scholar
[35] Wu W H, Ye S X, Wang R D, Zhang C, Zhang Y W, Lu X G 2023 J. Mater. Res. Technol. 23 1609Google Scholar
[36] 汪卫华 2023 非晶物质(上卷) (北京: 科学出版社) 第408页
Wang W H 2023 Amphorous Matter (Vol. 1) (Beijing: Science Press) p408
[37] Na M Y, Kim W C, Hong S H, Park S H, Kim K C, Kim W T, Kim D H 2019 J. Alloys Compd. 788 5
[38] Cui X, Zhang Q D, Li X Y, Zu F Q 2016 J. Non-Cryst. Solids 452 15
[39] Li W, Liu J, Zhou Y, Wen S, Wei Q, Yan C, Shi Y 2016 Scr. Mater. 118 13Google Scholar
[40] Xu J J, Lin X, Guo P F, Hua Y L, Wen X L, Xue L, Liu J R, Huang W D 2017 Mater. Sci. Eng. , A 691 71Google Scholar
Metrics
- Abstract views: 126
- PDF Downloads: 3
- Cited By: 0