-
Polyimide (PI) and the functional graphene modified with nano-composite models of hydroxyl,carboxyl and amino groups are realized by a multi-scale modeling method.The influences of the functional graphenes with different functional groups on the microstructure,mechanical and thermodynamic performances of polyimide-based composite models are investigated by the molecular dynamics simulation.The cell parameters,solubility parameters,elastic coefficients, Young's moduli,shear moduli,and the values of glass-transition temperature (Tg) of polyimide-based composite models are calculated with the COMPASS force field.Moreover,the interaction energies and hydrogen bonds of composites are analyzed to explore the internal mechanisms for improving mechanical and thermodynamic properties.The results demonstrate that the density of PI matrix is 1.312 g·cm-3 and the solubility parameter of PI matrix is 21.84 J1/2·cm-3/2, which are in accord with the actual PI parameters.The Young's moduli of the composites increase obviously with the increase of the interaction energy between the PI matrix and the functional graphenes with hydroxyl,carboxyl and amino groups at 298 K and 1 atm.The Young's moduli of PI and PI/graphene with carboxyl groups are respectively 3.174 GPa and 4.946 GPa and the shear moduli are respectively 1.139 GPa and 1.816 GPa.Comparing with pure PI/graphene composite,the average hydrogen bonds increase obviously after graphene has been functionalized.Because the interaction between the functional graphene and PI matrix increases,the movement of PI molecular chain needs more energy,and the rigidity of the composite is enhanced.The Tg of the composite also relates to the interaction energy.It is also found that the Tg of the nano-composite effectively decreases by the hybrid functional graphene.The Tg of pure PI is 663.57 K,while the Tg values of PI/graphene and PI/graphene with carboxyl groups nanocomposites are 559.30 K and 601.61 K,respectively.Moreover,the density and interaction energy of hydrogen bonds of the PGCOOH are 784.81 kcal/mol and 1.396 g/cm3,respectively,which are the largest among their counterparts of the composite systems.The elastic coefficients show that the PGCOOH is more uniform than that other composites.All of these indicate that the graphene with carboxyl group can greatly enhance the interaction between graphene and PI,improve the mechanical properties and adjust the Tg value of the PI matrix.The chemical modification of interaction energy in matrix is deemed to be of benefit to the improvement in composite performance,and the interaction energy calculation is considered to be an effective method of predicting the structures and performances of new composites.
-
Keywords:
- polyimide /
- graphene /
- molecular dynamics /
- glass transition temperature
[1] Hernández M, Bernal M D M, Verdejo R, Ezquerra T A, López-Manchado M A 2012 Compos. Sci. Technol. 73 40
[2] Yang X, Tu Y, Li L, Shang S, Tao X M 2010 ACS Appl. Mater. Inter. 2 1707
[3] Gong L, Kinloch I A, Young R J, Riaz I, Jalil R,Novoselov K S 2010 Physics 22 2694
[4] Kuilla T, Bhadra S, Yao D, Kim N H, Bose S, Lee J H 2010 Prog. Polym. Sci. 35 1350
[5] Mortazavi B, Ahzi S 2013 Carbon 63 460
[6] Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y 2011 J. Mater. Chem. 21 13290
[7] Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878
[8] Chen D, Zhu H, Liu T 2010 ACS Appl. Mater. Inter. 2 3702
[9] Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T 2012 ACS Appl. Mater. Inter. 4 2699
[10] Awasthi A P, Lagoudas D C, Hammerand D C 2009 Model. Simul. Mater. Sci. Eng. 17 015002
[11] Boukhvalov D W, Katsnelson M I 2009 J. Phys.: Condens. Matter 21 344205
[12] Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y 2012 ACS Appl. Mater. Inter. 4 4623
[13] Luong N D, Hippi U, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L, S, Nam J D, Sinh L H, Seppälä J 2011 Polymer 52 5237
[14] Mortazavi B, Ahzi S 2013 Carbon 63 460
[15] Yoonessi M, Shi Y, Scheiman D A, Lebron-Colon M, Tigelaar D M, Weiss R A, Meador M A 2012 ACS Nano 6 7644
[16] Park O K, Kim S G, You N H, Ku B C, Hui D, Lee J H 2014 Compos. Part B: Eng. 56 365
[17] Kim H, Kobayashi S, AbdurRahim M A, Zhang M J,Khusainova A, Hillmyer M A, Abdala A A, Macosko C W 2011 Polymer 52 1837
[18] Tripathi S N, Saini P, Gupta D, Choudhary V 2013 J.Mater. Sci. 48 6223
[19] Liang J, Yi H, Long Z, Yan W, Ma Y, Guo T, Chen Y 2009 Adv. Funct. Mater. 19 2297
[20] Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S 2011 Carbon 49 198
[21] Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M 2011 J. Mater. Chem. 21 13569
[22] Park O K, Hwang J Y, Goh M, Lee J H, Ku B C, You N H 2013 Macromolecules 46 3505
[23] Wang J, Li L, Wei Z D (in Chinese) [王俊, 李莉, 魏子栋 2016 物理化学学报 32 321]
[24] Hu J, Ruan X, Jiang Z, Chen Y 2009 Nano Lett. 9 2730
[25] Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B 2010 ACS Nano 4 2300
[26] Rissanou A N, Harmandaris V 2014 Soft Matter 10 2876
[27] Rissanou A N, Harmandaris V 2013 J. Nanopart. Res. 5 1
[28] Lin J Q, Li X K, Yang W L, Sun H G, Xie Z B, Xiu H J, Lei Q Q 2015 Acta Phys. Sin. 64 126202 (in Chinese) [林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉 2015 物理学报 64 126202]
[29] Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J, Nguyen S T 2011 ACS Nano 6 2008
[30] Sheng Y Z, Hua Y, Li J Y, Miao S 2013 Chem. Res. Chin. U. 29 788
[31] Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H 2014 Compos. Sci. Technol. 97 41
[32] Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878
[33] Zhang C, Hao R, Liao H, Hou Y 2013 Nano Energy 2 88
[34] Fu Y Z, Hu S Q, Lan Y H, Liu Y Q 2010 Acta Chim. Sin. 68 809 (in Chinese) [付一政, 胡双启, 兰艳花, 刘亚青 2010 化学学报 68 809]
[35] Zhou G D, Duan L Y 2008 Basic of Structural Chemistry (4th Ed.) (Beijing: Peking University Press) p324 (in Chinese) [周公度, 段连运 2008 结构化学基础 (第4版) (北京: 北京大学出版社) 第324页]
[36] Chen Z L 2007 Theory and Practice of Molecular Simulation (Beijing: Chemical Industry Press) p110 [陈正隆 2007分子模拟的理论与实践(北京: 化学工业出版社) 第110–112页]
[37] Ding M X 2006 Polyimide: Chemistry, Relationship between Structure and Properties and Materials (Beijing: Science Press) pp225, 226 (in Chinese) [丁孟贤 2006 聚酰亚胺––化学、结构与性能的关系及材料(北京: 科学出版社)第225, 226页]
-
[1] Hernández M, Bernal M D M, Verdejo R, Ezquerra T A, López-Manchado M A 2012 Compos. Sci. Technol. 73 40
[2] Yang X, Tu Y, Li L, Shang S, Tao X M 2010 ACS Appl. Mater. Inter. 2 1707
[3] Gong L, Kinloch I A, Young R J, Riaz I, Jalil R,Novoselov K S 2010 Physics 22 2694
[4] Kuilla T, Bhadra S, Yao D, Kim N H, Bose S, Lee J H 2010 Prog. Polym. Sci. 35 1350
[5] Mortazavi B, Ahzi S 2013 Carbon 63 460
[6] Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y 2011 J. Mater. Chem. 21 13290
[7] Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878
[8] Chen D, Zhu H, Liu T 2010 ACS Appl. Mater. Inter. 2 3702
[9] Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T 2012 ACS Appl. Mater. Inter. 4 2699
[10] Awasthi A P, Lagoudas D C, Hammerand D C 2009 Model. Simul. Mater. Sci. Eng. 17 015002
[11] Boukhvalov D W, Katsnelson M I 2009 J. Phys.: Condens. Matter 21 344205
[12] Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y 2012 ACS Appl. Mater. Inter. 4 4623
[13] Luong N D, Hippi U, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L, S, Nam J D, Sinh L H, Seppälä J 2011 Polymer 52 5237
[14] Mortazavi B, Ahzi S 2013 Carbon 63 460
[15] Yoonessi M, Shi Y, Scheiman D A, Lebron-Colon M, Tigelaar D M, Weiss R A, Meador M A 2012 ACS Nano 6 7644
[16] Park O K, Kim S G, You N H, Ku B C, Hui D, Lee J H 2014 Compos. Part B: Eng. 56 365
[17] Kim H, Kobayashi S, AbdurRahim M A, Zhang M J,Khusainova A, Hillmyer M A, Abdala A A, Macosko C W 2011 Polymer 52 1837
[18] Tripathi S N, Saini P, Gupta D, Choudhary V 2013 J.Mater. Sci. 48 6223
[19] Liang J, Yi H, Long Z, Yan W, Ma Y, Guo T, Chen Y 2009 Adv. Funct. Mater. 19 2297
[20] Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S 2011 Carbon 49 198
[21] Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M 2011 J. Mater. Chem. 21 13569
[22] Park O K, Hwang J Y, Goh M, Lee J H, Ku B C, You N H 2013 Macromolecules 46 3505
[23] Wang J, Li L, Wei Z D (in Chinese) [王俊, 李莉, 魏子栋 2016 物理化学学报 32 321]
[24] Hu J, Ruan X, Jiang Z, Chen Y 2009 Nano Lett. 9 2730
[25] Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B 2010 ACS Nano 4 2300
[26] Rissanou A N, Harmandaris V 2014 Soft Matter 10 2876
[27] Rissanou A N, Harmandaris V 2013 J. Nanopart. Res. 5 1
[28] Lin J Q, Li X K, Yang W L, Sun H G, Xie Z B, Xiu H J, Lei Q Q 2015 Acta Phys. Sin. 64 126202 (in Chinese) [林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉 2015 物理学报 64 126202]
[29] Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J, Nguyen S T 2011 ACS Nano 6 2008
[30] Sheng Y Z, Hua Y, Li J Y, Miao S 2013 Chem. Res. Chin. U. 29 788
[31] Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H 2014 Compos. Sci. Technol. 97 41
[32] Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878
[33] Zhang C, Hao R, Liao H, Hou Y 2013 Nano Energy 2 88
[34] Fu Y Z, Hu S Q, Lan Y H, Liu Y Q 2010 Acta Chim. Sin. 68 809 (in Chinese) [付一政, 胡双启, 兰艳花, 刘亚青 2010 化学学报 68 809]
[35] Zhou G D, Duan L Y 2008 Basic of Structural Chemistry (4th Ed.) (Beijing: Peking University Press) p324 (in Chinese) [周公度, 段连运 2008 结构化学基础 (第4版) (北京: 北京大学出版社) 第324页]
[36] Chen Z L 2007 Theory and Practice of Molecular Simulation (Beijing: Chemical Industry Press) p110 [陈正隆 2007分子模拟的理论与实践(北京: 化学工业出版社) 第110–112页]
[37] Ding M X 2006 Polyimide: Chemistry, Relationship between Structure and Properties and Materials (Beijing: Science Press) pp225, 226 (in Chinese) [丁孟贤 2006 聚酰亚胺––化学、结构与性能的关系及材料(北京: 科学出版社)第225, 226页]
Catalog
Metrics
- Abstract views: 9573
- PDF Downloads: 404
- Cited By: 0