Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation on the glass transition temperature and mechanical properties of polyimide/functional graphene composites

Yang Wen-Long Han Jun-Sheng Wang Yu Lin Jia-Qi He Guo-Qiang Sun Hong-Guo

Citation:

Molecular dynamics simulation on the glass transition temperature and mechanical properties of polyimide/functional graphene composites

Yang Wen-Long, Han Jun-Sheng, Wang Yu, Lin Jia-Qi, He Guo-Qiang, Sun Hong-Guo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Polyimide (PI) and the functional graphene modified with nano-composite models of hydroxyl,carboxyl and amino groups are realized by a multi-scale modeling method.The influences of the functional graphenes with different functional groups on the microstructure,mechanical and thermodynamic performances of polyimide-based composite models are investigated by the molecular dynamics simulation.The cell parameters,solubility parameters,elastic coefficients, Young's moduli,shear moduli,and the values of glass-transition temperature (Tg) of polyimide-based composite models are calculated with the COMPASS force field.Moreover,the interaction energies and hydrogen bonds of composites are analyzed to explore the internal mechanisms for improving mechanical and thermodynamic properties.The results demonstrate that the density of PI matrix is 1.312 g·cm-3 and the solubility parameter of PI matrix is 21.84 J1/2·cm-3/2, which are in accord with the actual PI parameters.The Young's moduli of the composites increase obviously with the increase of the interaction energy between the PI matrix and the functional graphenes with hydroxyl,carboxyl and amino groups at 298 K and 1 atm.The Young's moduli of PI and PI/graphene with carboxyl groups are respectively 3.174 GPa and 4.946 GPa and the shear moduli are respectively 1.139 GPa and 1.816 GPa.Comparing with pure PI/graphene composite,the average hydrogen bonds increase obviously after graphene has been functionalized.Because the interaction between the functional graphene and PI matrix increases,the movement of PI molecular chain needs more energy,and the rigidity of the composite is enhanced.The Tg of the composite also relates to the interaction energy.It is also found that the Tg of the nano-composite effectively decreases by the hybrid functional graphene.The Tg of pure PI is 663.57 K,while the Tg values of PI/graphene and PI/graphene with carboxyl groups nanocomposites are 559.30 K and 601.61 K,respectively.Moreover,the density and interaction energy of hydrogen bonds of the PGCOOH are 784.81 kcal/mol and 1.396 g/cm3,respectively,which are the largest among their counterparts of the composite systems.The elastic coefficients show that the PGCOOH is more uniform than that other composites.All of these indicate that the graphene with carboxyl group can greatly enhance the interaction between graphene and PI,improve the mechanical properties and adjust the Tg value of the PI matrix.The chemical modification of interaction energy in matrix is deemed to be of benefit to the improvement in composite performance,and the interaction energy calculation is considered to be an effective method of predicting the structures and performances of new composites.
      Corresponding author: Yang Wen-Long, wlyang@hrbust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372013) and Natural Science Foundation of Heilongjiang Province, China (Grant No. E201258).
    [1]

    Hernández M, Bernal M D M, Verdejo R, Ezquerra T A, López-Manchado M A 2012 Compos. Sci. Technol. 73 40

    [2]

    Yang X, Tu Y, Li L, Shang S, Tao X M 2010 ACS Appl. Mater. Inter. 2 1707

    [3]

    Gong L, Kinloch I A, Young R J, Riaz I, Jalil R,Novoselov K S 2010 Physics 22 2694

    [4]

    Kuilla T, Bhadra S, Yao D, Kim N H, Bose S, Lee J H 2010 Prog. Polym. Sci. 35 1350

    [5]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [6]

    Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y 2011 J. Mater. Chem. 21 13290

    [7]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [8]

    Chen D, Zhu H, Liu T 2010 ACS Appl. Mater. Inter. 2 3702

    [9]

    Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T 2012 ACS Appl. Mater. Inter. 4 2699

    [10]

    Awasthi A P, Lagoudas D C, Hammerand D C 2009 Model. Simul. Mater. Sci. Eng. 17 015002

    [11]

    Boukhvalov D W, Katsnelson M I 2009 J. Phys.: Condens. Matter 21 344205

    [12]

    Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y 2012 ACS Appl. Mater. Inter. 4 4623

    [13]

    Luong N D, Hippi U, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L, S, Nam J D, Sinh L H, Seppälä J 2011 Polymer 52 5237

    [14]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [15]

    Yoonessi M, Shi Y, Scheiman D A, Lebron-Colon M, Tigelaar D M, Weiss R A, Meador M A 2012 ACS Nano 6 7644

    [16]

    Park O K, Kim S G, You N H, Ku B C, Hui D, Lee J H 2014 Compos. Part B: Eng. 56 365

    [17]

    Kim H, Kobayashi S, AbdurRahim M A, Zhang M J,Khusainova A, Hillmyer M A, Abdala A A, Macosko C W 2011 Polymer 52 1837

    [18]

    Tripathi S N, Saini P, Gupta D, Choudhary V 2013 J.Mater. Sci. 48 6223

    [19]

    Liang J, Yi H, Long Z, Yan W, Ma Y, Guo T, Chen Y 2009 Adv. Funct. Mater. 19 2297

    [20]

    Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S 2011 Carbon 49 198

    [21]

    Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M 2011 J. Mater. Chem. 21 13569

    [22]

    Park O K, Hwang J Y, Goh M, Lee J H, Ku B C, You N H 2013 Macromolecules 46 3505

    [23]

    Wang J, Li L, Wei Z D (in Chinese) [王俊, 李莉, 魏子栋 2016 物理化学学报 32 321]

    [24]

    Hu J, Ruan X, Jiang Z, Chen Y 2009 Nano Lett. 9 2730

    [25]

    Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B 2010 ACS Nano 4 2300

    [26]

    Rissanou A N, Harmandaris V 2014 Soft Matter 10 2876

    [27]

    Rissanou A N, Harmandaris V 2013 J. Nanopart. Res. 5 1

    [28]

    Lin J Q, Li X K, Yang W L, Sun H G, Xie Z B, Xiu H J, Lei Q Q 2015 Acta Phys. Sin. 64 126202 (in Chinese) [林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉 2015 物理学报 64 126202]

    [29]

    Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J, Nguyen S T 2011 ACS Nano 6 2008

    [30]

    Sheng Y Z, Hua Y, Li J Y, Miao S 2013 Chem. Res. Chin. U. 29 788

    [31]

    Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H 2014 Compos. Sci. Technol. 97 41

    [32]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [33]

    Zhang C, Hao R, Liao H, Hou Y 2013 Nano Energy 2 88

    [34]

    Fu Y Z, Hu S Q, Lan Y H, Liu Y Q 2010 Acta Chim. Sin. 68 809 (in Chinese) [付一政, 胡双启, 兰艳花, 刘亚青 2010 化学学报 68 809]

    [35]

    Zhou G D, Duan L Y 2008 Basic of Structural Chemistry (4th Ed.) (Beijing: Peking University Press) p324 (in Chinese) [周公度, 段连运 2008 结构化学基础 (第4版) (北京: 北京大学出版社) 第324页]

    [36]

    Chen Z L 2007 Theory and Practice of Molecular Simulation (Beijing: Chemical Industry Press) p110 [陈正隆 2007分子模拟的理论与实践(北京: 化学工业出版社) 第110–112页]

    [37]

    Ding M X 2006 Polyimide: Chemistry, Relationship between Structure and Properties and Materials (Beijing: Science Press) pp225, 226 (in Chinese) [丁孟贤 2006 聚酰亚胺––化学、结构与性能的关系及材料(北京: 科学出版社)第225, 226页]

  • [1]

    Hernández M, Bernal M D M, Verdejo R, Ezquerra T A, López-Manchado M A 2012 Compos. Sci. Technol. 73 40

    [2]

    Yang X, Tu Y, Li L, Shang S, Tao X M 2010 ACS Appl. Mater. Inter. 2 1707

    [3]

    Gong L, Kinloch I A, Young R J, Riaz I, Jalil R,Novoselov K S 2010 Physics 22 2694

    [4]

    Kuilla T, Bhadra S, Yao D, Kim N H, Bose S, Lee J H 2010 Prog. Polym. Sci. 35 1350

    [5]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [6]

    Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y 2011 J. Mater. Chem. 21 13290

    [7]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [8]

    Chen D, Zhu H, Liu T 2010 ACS Appl. Mater. Inter. 2 3702

    [9]

    Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T 2012 ACS Appl. Mater. Inter. 4 2699

    [10]

    Awasthi A P, Lagoudas D C, Hammerand D C 2009 Model. Simul. Mater. Sci. Eng. 17 015002

    [11]

    Boukhvalov D W, Katsnelson M I 2009 J. Phys.: Condens. Matter 21 344205

    [12]

    Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y 2012 ACS Appl. Mater. Inter. 4 4623

    [13]

    Luong N D, Hippi U, Korhonen J T, Soininen A J, Ruokolainen J, Johansson L, S, Nam J D, Sinh L H, Seppälä J 2011 Polymer 52 5237

    [14]

    Mortazavi B, Ahzi S 2013 Carbon 63 460

    [15]

    Yoonessi M, Shi Y, Scheiman D A, Lebron-Colon M, Tigelaar D M, Weiss R A, Meador M A 2012 ACS Nano 6 7644

    [16]

    Park O K, Kim S G, You N H, Ku B C, Hui D, Lee J H 2014 Compos. Part B: Eng. 56 365

    [17]

    Kim H, Kobayashi S, AbdurRahim M A, Zhang M J,Khusainova A, Hillmyer M A, Abdala A A, Macosko C W 2011 Polymer 52 1837

    [18]

    Tripathi S N, Saini P, Gupta D, Choudhary V 2013 J.Mater. Sci. 48 6223

    [19]

    Liang J, Yi H, Long Z, Yan W, Ma Y, Guo T, Chen Y 2009 Adv. Funct. Mater. 19 2297

    [20]

    Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S 2011 Carbon 49 198

    [21]

    Wang J Y, Yang S Y, Huang Y L, Tien H W, Chin W K, Ma C C M 2011 J. Mater. Chem. 21 13569

    [22]

    Park O K, Hwang J Y, Goh M, Lee J H, Ku B C, You N H 2013 Macromolecules 46 3505

    [23]

    Wang J, Li L, Wei Z D (in Chinese) [王俊, 李莉, 魏子栋 2016 物理化学学报 32 321]

    [24]

    Hu J, Ruan X, Jiang Z, Chen Y 2009 Nano Lett. 9 2730

    [25]

    Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B 2010 ACS Nano 4 2300

    [26]

    Rissanou A N, Harmandaris V 2014 Soft Matter 10 2876

    [27]

    Rissanou A N, Harmandaris V 2013 J. Nanopart. Res. 5 1

    [28]

    Lin J Q, Li X K, Yang W L, Sun H G, Xie Z B, Xiu H J, Lei Q Q 2015 Acta Phys. Sin. 64 126202 (in Chinese) [林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉 2015 物理学报 64 126202]

    [29]

    Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J, Nguyen S T 2011 ACS Nano 6 2008

    [30]

    Sheng Y Z, Hua Y, Li J Y, Miao S 2013 Chem. Res. Chin. U. 29 788

    [31]

    Chen J, Zhao D, Jin X, Wang C, Wang D, Ge H 2014 Compos. Sci. Technol. 97 41

    [32]

    Huang T, Xin Y, Li T, Nutt S, Su C, Chen H, Liu P, Lai Z 2013 ACS Appl. Mater. Inter. 5 4878

    [33]

    Zhang C, Hao R, Liao H, Hou Y 2013 Nano Energy 2 88

    [34]

    Fu Y Z, Hu S Q, Lan Y H, Liu Y Q 2010 Acta Chim. Sin. 68 809 (in Chinese) [付一政, 胡双启, 兰艳花, 刘亚青 2010 化学学报 68 809]

    [35]

    Zhou G D, Duan L Y 2008 Basic of Structural Chemistry (4th Ed.) (Beijing: Peking University Press) p324 (in Chinese) [周公度, 段连运 2008 结构化学基础 (第4版) (北京: 北京大学出版社) 第324页]

    [36]

    Chen Z L 2007 Theory and Practice of Molecular Simulation (Beijing: Chemical Industry Press) p110 [陈正隆 2007分子模拟的理论与实践(北京: 化学工业出版社) 第110–112页]

    [37]

    Ding M X 2006 Polyimide: Chemistry, Relationship between Structure and Properties and Materials (Beijing: Science Press) pp225, 226 (in Chinese) [丁孟贤 2006 聚酰亚胺––化学、结构与性能的关系及材料(北京: 科学出版社)第225, 226页]

  • [1] Zha Jun-Wei, Wang Fan. Research progress of high thermal conductivity polyimide dielectric films. Acta Physica Sinica, 2022, 71(23): 233601. doi: 10.7498/aps.71.20221398
    [2] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] Ming Zhi-Fei, Song Hai-Yang, An Min-Rong. Mechanical behavior of graphene magnesium matrix composites based on molecular dynamics simulation. Acta Physica Sinica, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [4] Liu Qing-Yang, Xu Qing-Song, Li Rui. Effect of N-doping on tribological properties of graphene by molecular dynamics simulation. Acta Physica Sinica, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [5] Huang Duo-Hui, Wan Ming-Jie, Yang Jun-Sheng. Mmolecular dynamics study of glass transition and nonlinear mechanical behavior of poly(methyl methacrylate)/carbon nanotubes nanocomposites. Acta Physica Sinica, 2021, 70(21): 218101. doi: 10.7498/aps.70.20210752
    [6] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [7] Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [8] Wang Jun-Jun, Li Tao, Li Xiong-Ying, Li Hui. Wettability and morphology of liquid gallium on graphene surface. Acta Physica Sinica, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [9] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [10] Dong Ruo-Yu, Cao Peng, Cao Gui-Xing, Hu Guo-Jie, Cao Bing-Yang. DC electric field induced orientation of a graphene in water. Acta Physica Sinica, 2017, 66(1): 014702. doi: 10.7498/aps.66.014702
    [11] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [12] Wang Song, Wu Zhan-Cheng, Tang Xiao-Jin, Sun Yong-Wei, Yi Zhong. Study on temperature and electric field dependence of conductivity in polyimide. Acta Physica Sinica, 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [13] Qin Ye-Hong, Tang Chao, Zhang Chun-Xiao, Meng Li-Jun, Zhong Jian-Xin. Molecular dynamics study of ripples in graphene monolayer on silicon surface. Acta Physica Sinica, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [14] Lin Jia-Qi, Li Xiao-Kang, Yang Wen-Long, Sun Hong-Guo, Xie Zhi-Bin, Xiu Han-jiang, Lei Qing-Quan. Molecular dynamics simulation study on the structure and mechanical properties of polyimide/KTa0.5Nb0.5O3 nanoparticle composites. Acta Physica Sinica, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [15] Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan. Study on thermal characteristics of phonons in graphene. Acta Physica Sinica, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [16] Sun Wei-Feng, Wang Xuan. Molecular dynamics simulation study of polyimide/copper-nanoparticle composites. Acta Physica Sinica, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [17] Wang Wei-Dong, Hao Yue, Ji Xiang, Yi Cheng-Long, Niu Xiang-Yu. Relaxation properties of graphene nanoribbons at different ambient temperatures: a molecular dynamics study. Acta Physica Sinica, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [18] Fan Yong, Bu Wen-Bin, Liu Xiao-Xu, Cheng Wei-Dong, Wu Zhong-Hua, Yin Jing-Hua. Research on interface and fractal characteristics of PI/Al2O3Films by SAXS. Acta Physica Sinica, 2011, 60(5): 056101. doi: 10.7498/aps.60.056101
    [19] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
Metrics
  • Abstract views:  9573
  • PDF Downloads:  404
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2017
  • Accepted Date:  20 August 2017
  • Published Online:  05 November 2017

/

返回文章
返回