Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface adhesion property between graphene film and surface of nanometric microstructure

Bai Qing-Shun Shen Rong-Qi He Xin Liu Shun Zhang Fei-Hu Guo Yong-Bo

Citation:

Interface adhesion property between graphene film and surface of nanometric microstructure

Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The performance of graphene can be influenced by its surface mophology, while the surface morphology of graphene is closely related to the substrate. The adsorption and peeling process of graphene on a corrugated surface can provide a theoretical basis for the functional preparation and transfer of graphene. In this work, the adhesion properties and peeling process of graphene on nanostructured substrate are investigated by using molecular dynamics (MD) simulation. As an effective tool of atomic collision theory, MD simulation can provide detailed information about the adsorption configuration and peeling properties of graphene on the nanostructure surface, making up for the deficiency of experiment. The results indicate that graphene can conformably coat on the surface, partially adhere to or remain flat on the top of the stepped substrate. We find that the continuous transition occurs in the adsorption configuration of graphene on the stepped substrate, but the repeated process appears in the transition from partial adherence to conformable coating. When graphene coats on the nanostructured substrate conformably, the adsorption energy can reach its peak value. The adsorption configuration of graphene can change from suspension to partial adhesion after the adsorption energy has exceeded 360 eV -2. It is also shown that the average peeling force fluctuates periodically when the absorption configuration of graphene is conformably coated or suspended on the stepped substrate. Two kinds of behaviors can be noticed in the peeling process. The graphene can directly slide over the bottom while it is fully coated on the surface. The graphene is separated directly from the corrugated surface while it suspends or partially adheres to the surface. If the absorption configuration of graphene is in the suspension state, the average peeling force appears to change drastically within a section of peeling distance and then decreases immediately below zero. Although the flexural stiffness of graphene can be overcome, the interfacial friction between graphene and the substrate is also an essential factor affecting the final adsorption configuration. In this paper, we propose a theoretical formula for the average peeling force according to the changes of size parameters on the nanostructured substrate. The theoretical formula is validated by the simulation results. In addition, with the increase of peeling angle, the average peeling force first increases and then becomes smaller. As a result, a larger average peeling force can be found when the graphene with Stone-Wales defect structure is peeled from the flat substrate. With the increase of double vacancy defect, the maximum peeling force decreases in a certain range, whereas it increases beyond this range. This work can provide a theoretical reference for exploring the peeling property and the adhesion mechanism of graphene on nanostructure surface.
      Corresponding author: Bai Qing-Shun, qshbai@hit.edu.cn;srqlanzhou@126.com ; Shen Rong-Qi, qshbai@hit.edu.cn;srqlanzhou@126.com
    • Funds: Project supported by the Key Project of National Natural Science Foundation of China (Grant No. 51535003) and the National Natural Science Foundation of China (Grant Nos. 51575138, 51775146, 51405111).
    [1]

    Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P 2012 Science 336 61

    [2]

    Xia S, Ponson L, Ravichandran G, Bhattacharya K 2012 Phys. Rev. Lett. 108 196101

    [3]

    Das S, Lahiri D, Lee D, Agarwal A, Choi W 2013 Carbon 59 121

    [4]

    Neek-Amal M, Peeters F M 2012 Phys. Rev. B 85 195445

    [5]

    Gao W, Huang R 2011 J. Phys. D: Appl. Phys. 44 452001

    [6]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [7]

    Wang W D, Li S, Min J J, Shen C L 2015 J. Nanosci. Nanotechnol. 15 2970

    [8]

    Wang W D, Min J J, Li S, Yi C L, Shen C L 2014 Nanotechnology (IEEE-NANO) 13th IEEE Conference on IEEE Beijing, China, August 5-8, 2013 p1071

    [9]

    Tang X Q, Zhang K, Deng X H, Zhang P, Pei Y 2016 Mol. Simul. 42 1

    [10]

    Chen H, Chen S 2013 J. Phys. D: Appl. Phys. 46 435305

    [11]

    He Y, Yu W, Ouyang G 2014 Phys. Chem. Chem. Phys. 16 11390

    [12]

    Reserbat-Plantey A, Kalita D, Han Z, Ferlazzo L, Autier-Laurent S, Komatsu K, Li C, Weil R, Ralko A, Marty L, Guéron S, Bendiab N, Bouchiat H, Bouchiat V 2014 Nano Lett. 14 5044

    [13]

    Rasool H I, Song E B, Allen M J, Wassei J K, Kaner R B, Wang K L, Weiller B H, Gimzewski J K 2010 Nano Lett. 11 251

    [14]

    Politano A 2016 Nano Res. 9 1795

    [15]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009

    [16]

    Lauffer P, Emtsev K V, Graupner R, Seyller T, Ley L, Reshanov S A, Weber H B 2008 Phys. Rev. B 77 155426

    [17]

    Bolen M L, Harrison S E, Biedermann L B, Capano M A 2009 Phys. Rev. B 80 115433

    [18]

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302 (in Chinese) [康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302]

    [19]

    Belytschko T, Xiao S P, Schatz G C, Ruoff R S 2002 Phys. Rev. B 65 235430

    [20]

    Dewapriya M A N, Rajapakse R K N D 2016 Composites Part B Eng. 98 339

    [21]

    Kendall K 1975 J. Phys. D: Appl. Phys. 8 1449

    [22]

    Coraux J, N’Diaye A T, Busse C, Michely T 2008 Nano Lett. 8 565

    [23]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [24]

    Yoon T, Shin W C, Kim T Y, Mun J H, Kim T S, Cho B J 2012 Nano Lett. 12 1448

    [25]

    Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J 2008 Phys. Rev. Lett. 101 026803

    [26]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543

    [27]

    Ogata S, Li J, Yip S 2002 Science 298 807

  • [1]

    Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P 2012 Science 336 61

    [2]

    Xia S, Ponson L, Ravichandran G, Bhattacharya K 2012 Phys. Rev. Lett. 108 196101

    [3]

    Das S, Lahiri D, Lee D, Agarwal A, Choi W 2013 Carbon 59 121

    [4]

    Neek-Amal M, Peeters F M 2012 Phys. Rev. B 85 195445

    [5]

    Gao W, Huang R 2011 J. Phys. D: Appl. Phys. 44 452001

    [6]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 物理学报 59 3408]

    [7]

    Wang W D, Li S, Min J J, Shen C L 2015 J. Nanosci. Nanotechnol. 15 2970

    [8]

    Wang W D, Min J J, Li S, Yi C L, Shen C L 2014 Nanotechnology (IEEE-NANO) 13th IEEE Conference on IEEE Beijing, China, August 5-8, 2013 p1071

    [9]

    Tang X Q, Zhang K, Deng X H, Zhang P, Pei Y 2016 Mol. Simul. 42 1

    [10]

    Chen H, Chen S 2013 J. Phys. D: Appl. Phys. 46 435305

    [11]

    He Y, Yu W, Ouyang G 2014 Phys. Chem. Chem. Phys. 16 11390

    [12]

    Reserbat-Plantey A, Kalita D, Han Z, Ferlazzo L, Autier-Laurent S, Komatsu K, Li C, Weil R, Ralko A, Marty L, Guéron S, Bendiab N, Bouchiat H, Bouchiat V 2014 Nano Lett. 14 5044

    [13]

    Rasool H I, Song E B, Allen M J, Wassei J K, Kaner R B, Wang K L, Weiller B H, Gimzewski J K 2010 Nano Lett. 11 251

    [14]

    Politano A 2016 Nano Res. 9 1795

    [15]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009

    [16]

    Lauffer P, Emtsev K V, Graupner R, Seyller T, Ley L, Reshanov S A, Weber H B 2008 Phys. Rev. B 77 155426

    [17]

    Bolen M L, Harrison S E, Biedermann L B, Capano M A 2009 Phys. Rev. B 80 115433

    [18]

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302 (in Chinese) [康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302]

    [19]

    Belytschko T, Xiao S P, Schatz G C, Ruoff R S 2002 Phys. Rev. B 65 235430

    [20]

    Dewapriya M A N, Rajapakse R K N D 2016 Composites Part B Eng. 98 339

    [21]

    Kendall K 1975 J. Phys. D: Appl. Phys. 8 1449

    [22]

    Coraux J, N’Diaye A T, Busse C, Michely T 2008 Nano Lett. 8 565

    [23]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [24]

    Yoon T, Shin W C, Kim T Y, Mun J H, Kim T S, Cho B J 2012 Nano Lett. 12 1448

    [25]

    Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J 2008 Phys. Rev. Lett. 101 026803

    [26]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543

    [27]

    Ogata S, Li J, Yip S 2002 Science 298 807

  • [1] Huang De-Rao, Song Jun-Jie, He Pi-Mo, Huang Kai-Kai, Zhang Han-Jie. Adsorption behavior of 9,9′-Dixanthylidene and moiré superstructure on Ru(0001). Acta Physica Sinica, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [2] De-Rao Huang,  Jun-Jie Song,  Pi-Mo He,  Kai-Kai Huang,  Han-Jie Zhang. Adsorption Behavior of 9,9'-Dixanthylidene and Moiré Superstructure on Ru(0001). Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [3] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [4] Ming Zhi-Fei, Song Hai-Yang, An Min-Rong. Mechanical behavior of graphene magnesium matrix composites based on molecular dynamics simulation. Acta Physica Sinica, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [5] Liu Qing-Yang, Xu Qing-Song, Li Rui. Effect of N-doping on tribological properties of graphene by molecular dynamics simulation. Acta Physica Sinica, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [6] Han Rui-Qi, Song Hai-Yang, An Min-Rong, Li Wei-Wei, Ma Jia-Li. Simulation of interaction behavior between dislocation and graphene during nanoindentation of graphene/aluminum matrix nanocomposites. Acta Physica Sinica, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [7] Li Xing-Xin, Li Si-Ping. Manipulations on mechanical properties of multilayer folded graphene by annealing temperature: a molecular dynamics simulation study. Acta Physica Sinica, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [8] Chen Chao, Duan Fang-Li. Effect of functional groups on crumpling behavior and structure of graphene oxide. Acta Physica Sinica, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [9] Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [10] Wang Jun-Jun, Li Tao, Li Xiong-Ying, Li Hui. Wettability and morphology of liquid gallium on graphene surface. Acta Physica Sinica, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [11] Dong Ruo-Yu, Cao Peng, Cao Gui-Xing, Hu Guo-Jie, Cao Bing-Yang. DC electric field induced orientation of a graphene in water. Acta Physica Sinica, 2017, 66(1): 014702. doi: 10.7498/aps.66.014702
    [12] Yang Wen-Long, Han Jun-Sheng, Wang Yu, Lin Jia-Qi, He Guo-Qiang, Sun Hong-Guo. Molecular dynamics simulation on the glass transition temperature and mechanical properties of polyimide/functional graphene composites. Acta Physica Sinica, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [13] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [14] Li Yan-Ru, He Qiu-Xiang, Wang Fang, Xiang Lang, Zhong Jian-Xin, Meng Li-Jun. Dynamical evolution study of metal nanofilms on graphite substrates. Acta Physica Sinica, 2016, 65(3): 036804. doi: 10.7498/aps.65.036804
    [15] Qin Ye-Hong, Tang Chao, Zhang Chun-Xiao, Meng Li-Jun, Zhong Jian-Xin. Molecular dynamics study of ripples in graphene monolayer on silicon surface. Acta Physica Sinica, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [16] Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan. Study on thermal characteristics of phonons in graphene. Acta Physica Sinica, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [17] Zheng Bo-Yu, Dong Hui-Long, Chen Fei-Fan. Characterization of thermal conductivity for GNR based on nonequilibrium molecular dynamics simulation combined with quantum correction. Acta Physica Sinica, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [18] Wang Wei-Dong, Hao Yue, Ji Xiang, Yi Cheng-Long, Niu Xiang-Yu. Relaxation properties of graphene nanoribbons at different ambient temperatures: a molecular dynamics study. Acta Physica Sinica, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [19] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
Metrics
  • Abstract views:  8173
  • PDF Downloads:  324
  • Cited By: 0
Publishing process
  • Received Date:  29 September 2017
  • Accepted Date:  02 November 2017
  • Published Online:  05 February 2018

/

返回文章
返回