Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adsorption behavior of 9,9′-Dixanthylidene and moiré superstructure on Ru(0001)

Huang De-Rao Song Jun-Jie He Pi-Mo Huang Kai-Kai Zhang Han-Jie

Citation:

Adsorption behavior of 9,9′-Dixanthylidene and moiré superstructure on Ru(0001)

Huang De-Rao, Song Jun-Jie, He Pi-Mo, Huang Kai-Kai, Zhang Han-Jie
PDF
HTML
Get Citation
  • This paper reports the adsorption behavior of the 9,9′-Dixanthylidene on Ru(0001), the bottom-up fabrication of graphene is also investigated through a scanning tunneling microscope (STM). We analyze the spatial structure of 9,9′-Dixanthylidene molecules which are randomly dispersed on a Ru(0001) substrate in the sub-monolayer coverage. Then we bottom-up fabricate the graphene on the Ru(0001) substrate with the 9,9′-Dixanthylidene molecules as the precursor. Three kinds of moiré superstructures with different rotation angles (6.3°, 13.9°, and 16.1°) are found after implementing high temperature annealing in ultrahigh vacuum. This result provides data support for the study of moiré superstructures on Ru(0001) substrate and lays a solid foundation for further scientific research based on graphene/Ru(0001).
      Corresponding author: Song Jun-Jie, songjunjiezd@163.com ; Zhang Han-Jie, zhj_fox@zju.edu.cn
    [1]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Yi M, Shen Z G 2015 J. Mater. Chem. A 3 11700Google Scholar

    [4]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [5]

    Sun Z Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M 2010 Nature 468 549Google Scholar

    [6]

    Li Z C, Wu P, Wang C X, Fan X D, Zhang W H, Zhai X F, Zeng C G, Li Z Y, Yang J L, Hou J G 2011 ACS Nano 5 3385Google Scholar

    [7]

    Chen Q Y, Song J J, Jing L W, Huang K K, He P M, Zhang H J 2020 Chin. Phys. B 29 026801Google Scholar

    [8]

    Song J J, Zhang H J, Zhang Y X, Cai Y L, Bao S N, He P M 2016 Appl. Surf. Sci. 367 424Google Scholar

    [9]

    Zhang H J, Lü B, Lu Y H, Huang H, Li H Y, Bao S N, He P M 2006 Chin. Phys. 15 1892Google Scholar

    [10]

    N'Diaye A T, Bleikamp S, Feibelman P J, Michely T 2006 Phys. Rev. Lett. 97 215501Google Scholar

    [11]

    Hattab H, N’Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J, Horn-von Hoegen M 2011 Appl. Phys. Lett. 98 141903Google Scholar

    [12]

    Ueta H, Saida M, Nakai C, Yamada Y, Sasaki M, Yamamoto S 2004 Surf. Sci. 560 183Google Scholar

    [13]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406Google Scholar

    [14]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530Google Scholar

    [15]

    Martoccia D, Willmott P R, Brugger T, Björck M, Günther S, Schlepütz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102Google Scholar

    [16]

    Vázquez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F, Miranda R 2008 Phys. Rev. Lett. 100 056807Google Scholar

    [17]

    Zhang L N, Dong J C, Guan Z Y, Zhang X Y, Ding F 2020 Nanoscale 12 12831Google Scholar

    [18]

    Wang B, Bocquet M L 2012 Nanoscale 4 4687Google Scholar

    [19]

    Zhang L Z, Du S X, Sun J T, Huang L, Meng L, Xu W Y, Pan L D, Pan Y, Wang Y L, Hofer W A, Gao H J 2014 Adv. Mater. Interfaces 1 1300104Google Scholar

    [20]

    Han Y and Evans J W 2015 J. Chem. Phys. 143 164706Google Scholar

    [21]

    Juan D A, Mariano D J S, Jose M G R 2019 J. Phys. Chem. C 123 5525Google Scholar

    [22]

    Ren J D, Guo H M, Pan J B, Zhang Y F, Yang Y F, Wu X, Du S X, Ouyang M, Gao H J 2017 Phys. Rev. Lett. 119 176806Google Scholar

    [23]

    张志模, 张文号, 付英双 2019 物理学报 68 226801Google Scholar

    Zhang Z M, Zhang W H, Fu Y S 2019 Acta Phys. Sin. 68 226801Google Scholar

    [24]

    Peng J P, Zhang H M, Song C L, Jiang Y P, Wang L L, He K, Xue Q K, Ma X C 2015 Chin. Phys. Lett. 32 068104Google Scholar

    [25]

    Horcas I, Fernández R, Gomez-Rodriguez J M, Colchero G, Baro A M 2007 Rev. Sci. Instrum. 78 013705Google Scholar

    [26]

    Lu B, Zhang H J, Tao Y S, Huang H, Li H Y, Bao S N, He P, Chen Q 2005 Appl. Phys. Lett. 86 061915Google Scholar

    [27]

    Cui Y, Fu Q, Zhang H, Bao X H 2011 Chem. Commun. 47 1470Google Scholar

    [28]

    Bacon M, Bradley S J, Nann T 2014 Part. Part. Syst. Charact. 31 415Google Scholar

    [29]

    Feng W, Lei S L, Li Q X, Zhao A D 2011 J. Phys. Chem. C 115 24858Google Scholar

    [30]

    Jiang D E, Du M H, Dai S 2009 J. Chem. Phys. 130 074705Google Scholar

    [31]

    Thiemann F L, Rowe P, Zen A, Muller E A, Michaelides A 2021 Nano Lett. 21 8143Google Scholar

    [32]

    Bhattarai B, Biswas P, Raymond A F, Drabold D A 2018 Phys. Chem. Chem. Phys. 20 19546Google Scholar

    [33]

    Kumar A, Wilson M, Thorpe M F 2012 J. Phys. Condens. Matter 24 485003Google Scholar

    [34]

    Yan Y B, Gong J, Chen J, Zeng Z P, Huang W, Pu K Y, Liu J Y and Chen P 2019 Adv. Mater. 31 1808283Google Scholar

    [35]

    Ye R Q, Peng Z W, Metzger A, Lin J, Mann J A, Huang K W, Xiang C S, Fan X J, Samuel E L G, Alemany L B, Martí A A, Tour J M 2015 ACS Appl. Mater. Interfaces. 7 7041Google Scholar

    [36]

    Tomanek D, Louie S G, Mamin H J, Abraham D W, Thomson R E, Ganz E, Clarke J 1987 Phys. Rev. B 35 7790Google Scholar

    [37]

    Wan X, Chen K, Liu D Q, Chen J, Miao Q, Xu J B 2012 Chem. Mater. 24 3906Google Scholar

    [38]

    Talirz L, Ruffieux P, Fasel R 2016 Adv. Mater. 28 6222Google Scholar

    [39]

    Talirz L, Söde H, Cai J M, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X L, Müllen K, Passerone D, Fasel R, Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060Google Scholar

    [40]

    Jing L W, Song J J, Zhang Y X, Chen Q Y, Huang K K, Zhang H J, He P M 2019 Chin. Phys. B 28 076801Google Scholar

    [41]

    N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033Google Scholar

  • 图 1  (a) 大量9,9′-二亚呫吨分子吸附于Ru(0001)上的STM图($75\;{\rm nm}\times75\;{\rm nm} $, 隧穿电压 ${V}_{\mathrm{T}}=-0.093\;\rm{V} $, 隧穿电流${I}_{\mathrm{T}}=0.465\;\rm{n}\mathrm{A} $); (b) 9,9′-二亚呫吨分子的高清STM图$\left(20\;{\rm nm\times 20\; nm}, \;{V}_{\mathrm{T}}=-0.002\;{\rm V},\; {I}_{\mathrm{T}}=0.285\;\rm{nA}\right)$, 白色实线圆圈指出有机分子, 白色虚线圆圈指出了石墨烯量子点; (c) 9,9′-二亚呫吨分子模型的正视图和一些参数标识; (d) 9,9′-二亚呫吨分子模型的侧视图

    Figure 1.  (a) STM image of a large number of 9,9′-Dixanthylidene molecules on Ru(0001)($75\;{\rm nm}\times75\;{\rm nm} $, ${V}_{\mathrm{T}}= $$ -0.093\;\rm{V}$, ${I}_{\mathrm{T}}=0.465\;\rm{n}\mathrm{A} $); (b) high-resolution-STM image of 9,9′-Dixanthylidene molecules $\left(20\;{\rm nm}\times 20\;{\rm nm},\; {V}_{\mathrm{T}}= $$ -0.002\;\rm{V},\; {I}_{\mathrm{T}}=0.285\;\rm{n}\mathrm{A}\right)$, the white solid circles indicate the molecules, and the white dashed circles indicate the graphene quantum dots; (c) front view of 9,9′-Dixanthylidene molecular simulation diagram and display of necessary parameters; (d) side view of 9,9′-Dixanthylidene molecule simulation diagram.

    图 2  (a) 9,9'-二亚呫吨分子分布在未定型石墨烯上的STM图$(20\;\mathrm{nm}\times20\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.099\;{\rm V},\; {I}_{\mathrm{T}}=0.403\;\rm{n}\mathrm{A})$; (b) 图(a)周边的STM扫描图$(20\;\mathrm{nm}\times20\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.051\;{\rm V},\; {I}_{\mathrm{T}}=0.683\;\mathrm{nA})$; (c) 9,9'-二亚呫吨分子在未定型石墨烯上的模拟吸附形态; (d) 图(a)中蓝色区域的放大图像, a和b分别代表图(d)测量间距的两个碳环$(5\;\mathrm{nm}\times5\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.099\;{\rm V},\; {I}_{\mathrm{T}}=0.403\;\rm{n}\mathrm{A})$; (e) 图(d)中沿绿线的高度分布图; (f) 图(d)中沿蓝线的高度分布图

    Figure 2.  (a) STM image of 9,9'-Dixanthylidene molecules on the amorphous graphene$(20\;\mathrm{nm}\times20\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.099\;{\rm V},\; {I}_{\mathrm{T}}=0.403\;\mathrm{nA})$; (b) STM image of the around area of panel (a) $\left(20\;\mathrm{nm}\times 20\;\mathrm{nm},\; {V}_{\rm T}=-0.051\;{\rm V}, \;{I}_{\rm T}=0.683\;{\rm nA}\right);$ (c) the simulated tiled morphology of the 9,9'-Dixanthylidene molecule in panel (a); (d) enlarged image of the blue rectangle in panel (a), a and b represent the two carbon rings that measured the distance in panel (d) respectively$(5\;\mathrm{nm}\times5\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.099\;{\rm V},\; {I}_{\mathrm{T}}=0.403\;\mathrm{nA})$; (e) line profile along the green line outlined in panel (d); (f) line profile along the blue line outlined in panel (d).

    图 3  (a) 石墨烯量子点的STM图$\left(5\;\mathrm{nm}\times 5\;\mathrm{nm},\; {V}_{\mathrm{T}}= $$ -0.002\;{\rm V}, \; {I}_{\mathrm{T}}=0.149\;\rm{n}\mathrm{A}\right);$ (b) 图(a)中沿绿线的高度分布图; (c) 图(a) 中蓝框处的更高清的STM图$(2.5\;\mathrm{nm}\times2.5\;\mathrm{nm}, $$ {V}_{\mathrm{T}}=-0.002\;{\rm V},\; {I}_{\mathrm{T}}=0.263\;\mathrm{nA})$, 石墨烯量子点的球棍模型被展示在图片的下方; (d) 5C6型石墨烯量子点吸附在Ru(0001)上的理论模型(红色圆球代表扫描过程中扫描到的碳原子, 白色圆球代表扫描不到的碳原子; 黑色原子代表Ru(0001)上第一层的钌原子, 灰色原子代表第二层的钌原子)

    Figure 3.  (a) STM image of graphene quantum dots$\left(5\;\mathrm{nm}\times $$ 5\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.002\;{\rm V},\; {I}_{\mathrm{T}}=0.149\;\rm{n}\mathrm{A}\right)$; (b) line profile along the green line outlined in panel (a); (c) high-resolution STM image of the blue rectangle area in panel (a), showing the graphene quantum dots in detail $(2.5\;\mathrm{nm}\times2.5\;\mathrm{nm},\; {V}_{\mathrm{T}}= $$ -0.002\;{\rm V}, \; {I}_{\mathrm{T}}=0.263\;\rm{n}\mathrm{A})$, the ball-and-stick model of graphene quantum dot is displayed; (d) theoretical simulation image of 5C6 graphene quantum dots adsorbed on the Ru(0001) substrate (the red spheres are visible atoms, the white spheres are invisible atoms, the black atoms are the atoms of the first layer of the ruthenium substrate, and the gray atoms are the atoms of the second layer of the ruthenium substrate).

    图 4  (a) Ru(0001)衬底上3种摩尔超结构的STM图 $(50\; \mathrm{nm}\times 50\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; {I}_{\mathrm{T}}=0.258\;\mathrm{nA});$ (b) 图(a)中红框区域的摩尔超结构图(6.3°的摩尔超结构)$\left(10\;\mathrm{nm}\times $$ 10\;\mathrm{nm},\; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; {I}_{\mathrm{T}}=0.258\;\mathrm{nA}\right)$; (c) 图(b)中绿线的高度分布图; (d) 石墨烯与Ru(0001)衬底成6.3°夹角的摩尔超结构模拟图(其中黑色圆球代表衬底第一层钌原子, 灰色圆球代表衬底第二层钌原子, 黄色部分为石墨烯)

    Figure 4.  (a) STM image of three kinds of moiré superstructures on Ru(0001) substrate$\left(50\;{\rm n}\mathrm{m}\times 50\;{\rm n}\mathrm{m},\; {V}_{\mathrm{T}}= -0.401\;{\rm V}, $$ \; {I}_{\mathrm{T}}=0.258\;{\rm n}\mathrm{A}\right);$ (b) STM topography of the red rectangle area in panel (a) which is the moiré superstructure of graphene on Ru (0001) with the angle of 6.3°$\left(10\;{\rm n}\mathrm{m}\times 10\;{\rm n}\mathrm{m}, $$ \; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; {I}_{\mathrm{T}}=0.258\;{\rm n}\mathrm{A}\right)$; (c) line profile along the green line outlined in panel (b); (d) the simulated image of graphene at a 6.3° angle to the ruthenium substrate (the black balls represent the first layer of ruthenium atoms, the gray balls represent the second layer of ruthenium atoms, and yellow small balls represent carbon atoms).

    图 5  (a) 图4(a)中蓝框区域的摩尔超结构图(13.9°的摩尔超结构)$\left(15\;{\rm nm}\times 15\;{\rm nm},\; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; I_{\mathrm{T}}=0.258\;\rm{n A}\right);$ (b) 图(a)中沿绿线的高度分布图; (c) 石墨烯与Ru(0001)衬底成13.9°夹角的摩尔超结构模拟图(其中黑色圆球代表衬底第1层钌原子, 灰色圆球代表衬底第2层钌原子, 黄色部分为石墨烯)

    Figure 5.  (a) STM topography of the blue rectangle area in Fig. 4(a) which is the superstructure of graphene on Ru (0001) with an angle of 13.9° $\left(15\;{\rm nm}\times 15\;{\rm n m},\; {V}_{\rm{T}}=-0.401\;{\rm V},\; {I}_{\rm{T}}=0.258\;\rm{n}\rm{A}\right);$ (b) line profile along the green line outlined in panel (a); (c) the simulated image of the superstructure at a 13.9° angle to the ruthenium substrate, the unit cell is highlighted by the red rhombus (the black balls represent the first layer of ruthenium atoms, the gray balls represent the second layer of ruthenium atoms, and yellow small balls represent carbon atoms).

    图 6  (a) 图4(a)中黄框区域的摩尔超结构图(16.1°的摩尔超结构)$(15\;{\rm nm \times 15\; nm},\; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; {I}_{\mathrm{T}}=0.258\;\rm{nA})$; (b) 图(a)中沿着绿线的高度分布图; (c) 石墨烯与Ru(0001)衬底成16.1°夹角的摩尔超结构模拟图(其中黑色圆球代表衬底第一层钌原子, 灰色圆球代表衬底第二层钌原子, 黄色部分为石墨烯)

    Figure 6.  (a) STM topography of the yellow rectangle area in Fig. 4(a) which is the moiré superstructure of graphene on Ru (0001) with an angle of 16.1°$\left(15\;{\rm n}\mathrm{m}\times 15\;{\rm n}\mathrm{m},\; {V}_{\mathrm{T}}=-0.401\;{\rm V},\; {I}_{\mathrm{T}}=0.258\;\rm{n}\mathrm{A}\right)$; (b) line profile along the green line outlined in panel (a); (c) the corresponding structural model, the unit cell is also highlighted by the red rhombus (the black balls represent the first layer of ruthenium atoms, the gray balls represent the second layer of ruthenium atoms, and yellow small balls represent carbon atoms).

  • [1]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Yi M, Shen Z G 2015 J. Mater. Chem. A 3 11700Google Scholar

    [4]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [5]

    Sun Z Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M 2010 Nature 468 549Google Scholar

    [6]

    Li Z C, Wu P, Wang C X, Fan X D, Zhang W H, Zhai X F, Zeng C G, Li Z Y, Yang J L, Hou J G 2011 ACS Nano 5 3385Google Scholar

    [7]

    Chen Q Y, Song J J, Jing L W, Huang K K, He P M, Zhang H J 2020 Chin. Phys. B 29 026801Google Scholar

    [8]

    Song J J, Zhang H J, Zhang Y X, Cai Y L, Bao S N, He P M 2016 Appl. Surf. Sci. 367 424Google Scholar

    [9]

    Zhang H J, Lü B, Lu Y H, Huang H, Li H Y, Bao S N, He P M 2006 Chin. Phys. 15 1892Google Scholar

    [10]

    N'Diaye A T, Bleikamp S, Feibelman P J, Michely T 2006 Phys. Rev. Lett. 97 215501Google Scholar

    [11]

    Hattab H, N’Diaye A T, Wall D, Jnawali G, Coraux J, Busse C, van Gastel R, Poelsema B, Michely T, Meyer zu Heringdorf F J, Horn-von Hoegen M 2011 Appl. Phys. Lett. 98 141903Google Scholar

    [12]

    Ueta H, Saida M, Nakai C, Yamada Y, Sasaki M, Yamamoto S 2004 Surf. Sci. 560 183Google Scholar

    [13]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406Google Scholar

    [14]

    Wang B, Bocquet M L, Marchini S, Gunther S, Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530Google Scholar

    [15]

    Martoccia D, Willmott P R, Brugger T, Björck M, Günther S, Schlepütz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, Greber T 2008 Phys. Rev. Lett. 101 126102Google Scholar

    [16]

    Vázquez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F, Miranda R 2008 Phys. Rev. Lett. 100 056807Google Scholar

    [17]

    Zhang L N, Dong J C, Guan Z Y, Zhang X Y, Ding F 2020 Nanoscale 12 12831Google Scholar

    [18]

    Wang B, Bocquet M L 2012 Nanoscale 4 4687Google Scholar

    [19]

    Zhang L Z, Du S X, Sun J T, Huang L, Meng L, Xu W Y, Pan L D, Pan Y, Wang Y L, Hofer W A, Gao H J 2014 Adv. Mater. Interfaces 1 1300104Google Scholar

    [20]

    Han Y and Evans J W 2015 J. Chem. Phys. 143 164706Google Scholar

    [21]

    Juan D A, Mariano D J S, Jose M G R 2019 J. Phys. Chem. C 123 5525Google Scholar

    [22]

    Ren J D, Guo H M, Pan J B, Zhang Y F, Yang Y F, Wu X, Du S X, Ouyang M, Gao H J 2017 Phys. Rev. Lett. 119 176806Google Scholar

    [23]

    张志模, 张文号, 付英双 2019 物理学报 68 226801Google Scholar

    Zhang Z M, Zhang W H, Fu Y S 2019 Acta Phys. Sin. 68 226801Google Scholar

    [24]

    Peng J P, Zhang H M, Song C L, Jiang Y P, Wang L L, He K, Xue Q K, Ma X C 2015 Chin. Phys. Lett. 32 068104Google Scholar

    [25]

    Horcas I, Fernández R, Gomez-Rodriguez J M, Colchero G, Baro A M 2007 Rev. Sci. Instrum. 78 013705Google Scholar

    [26]

    Lu B, Zhang H J, Tao Y S, Huang H, Li H Y, Bao S N, He P, Chen Q 2005 Appl. Phys. Lett. 86 061915Google Scholar

    [27]

    Cui Y, Fu Q, Zhang H, Bao X H 2011 Chem. Commun. 47 1470Google Scholar

    [28]

    Bacon M, Bradley S J, Nann T 2014 Part. Part. Syst. Charact. 31 415Google Scholar

    [29]

    Feng W, Lei S L, Li Q X, Zhao A D 2011 J. Phys. Chem. C 115 24858Google Scholar

    [30]

    Jiang D E, Du M H, Dai S 2009 J. Chem. Phys. 130 074705Google Scholar

    [31]

    Thiemann F L, Rowe P, Zen A, Muller E A, Michaelides A 2021 Nano Lett. 21 8143Google Scholar

    [32]

    Bhattarai B, Biswas P, Raymond A F, Drabold D A 2018 Phys. Chem. Chem. Phys. 20 19546Google Scholar

    [33]

    Kumar A, Wilson M, Thorpe M F 2012 J. Phys. Condens. Matter 24 485003Google Scholar

    [34]

    Yan Y B, Gong J, Chen J, Zeng Z P, Huang W, Pu K Y, Liu J Y and Chen P 2019 Adv. Mater. 31 1808283Google Scholar

    [35]

    Ye R Q, Peng Z W, Metzger A, Lin J, Mann J A, Huang K W, Xiang C S, Fan X J, Samuel E L G, Alemany L B, Martí A A, Tour J M 2015 ACS Appl. Mater. Interfaces. 7 7041Google Scholar

    [36]

    Tomanek D, Louie S G, Mamin H J, Abraham D W, Thomson R E, Ganz E, Clarke J 1987 Phys. Rev. B 35 7790Google Scholar

    [37]

    Wan X, Chen K, Liu D Q, Chen J, Miao Q, Xu J B 2012 Chem. Mater. 24 3906Google Scholar

    [38]

    Talirz L, Ruffieux P, Fasel R 2016 Adv. Mater. 28 6222Google Scholar

    [39]

    Talirz L, Söde H, Cai J M, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X L, Müllen K, Passerone D, Fasel R, Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060Google Scholar

    [40]

    Jing L W, Song J J, Zhang Y X, Chen Q Y, Huang K K, Zhang H J, He P M 2019 Chin. Phys. B 28 076801Google Scholar

    [41]

    N'Diaye A T, Coraux J, Plasa T N, Busse C, Michely T 2008 New J. Phys. 10 043033Google Scholar

  • [1] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] Liu Ying, Guo Si-Lin, Zhang Yong, Yang Peng, Lyu Ke-Hong, Qiu Jing, Liu Guan-Jun. Review on 1/f noise and its research progress in two-dimensional material graphene. Acta Physica Sinica, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [3] Zhang Yu-Feng, Lu Yao-Chen, Bai Meng-Meng, Li Zuo, Shi Ming-Xia, Yang Da-Xiao, Yang Xiao-Tian, Tao Min-Long, Sun Kai, Wang Jun-Zhong. Comparative studies on the thin films of dicyanoanthracene grown on metal and semimetal surfaces. Acta Physica Sinica, 2023, 72(6): 066801. doi: 10.7498/aps.72.20222197
    [4] De-Rao Huang,  Jun-Jie Song,  Pi-Mo He,  Kai-Kai Huang,  Han-Jie Zhang. Adsorption Behavior of 9,9'-Dixanthylidene and Moiré Superstructure on Ru(0001). Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [5] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [6] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai. Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Acta Physica Sinica, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [8] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [9] Guo Hui, Lu Hong-Liang, Huang Li, Wang Xue-Yan, Lin Xiao, Wang Ye-Liang, Du Shi-Xuan, Gao Hong-Jun. Intercalation and its mechanism of high quality large area graphene on metal substrate. Acta Physica Sinica, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [10] Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng. Scanning tunneling microscopy study of h-BN thin films grown on Cu foils. Acta Physica Sinica, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [11] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [12] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [13] Huang Xiang-Qian, Lin Chen-Fang, Yin Xiu-Li, Zhao Ru-Guang, Wang En-Ge, Hu Zong-Hai. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Physica Sinica, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [14] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [15] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [16] Wang Qi, Zhao Hua-Bo, Zhang Zhao-Hui. Conductance enhancement phenomenon of graphene ribbons on highly oriented pyrolytic graphite surfaces studied by scanning probe microscopy. Acta Physica Sinica, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [17] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] WANG LEI, TANG JING-CHANG, WANG XUE-SEN. SCANNING TUNNELING MICROSCOPY STUDY OF Si GROWTH ON Si3N4/Si SURFACE. Acta Physica Sinica, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
Metrics
  • Abstract views:  3440
  • PDF Downloads:  32
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2022
  • Accepted Date:  30 June 2022
  • Available Online:  25 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回