Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Review on 1/f noise and its research progress in two-dimensional material graphene

Liu Ying Guo Si-Lin Zhang Yong Yang Peng Lyu Ke-Hong Qiu Jing Liu Guan-Jun

Citation:

Review on 1/f noise and its research progress in two-dimensional material graphene

Liu Ying, Guo Si-Lin, Zhang Yong, Yang Peng, Lyu Ke-Hong, Qiu Jing, Liu Guan-Jun
PDF
HTML
Get Citation
  • Noise is a signal. Low-frequency noise with a 1/f-type spectral density (1/f noise) has been observed in a wide variety of systems. There are plenty of physical processes under the 1/f noise phenomenon. It is not only a useful tool for scientific research, but also a quantitative probe for the performance of electronic devices. In this paper, the 1/f noise models are summarized from the general mathematical forms to physical processes. Based on Markov process and diffusion process, two general mathematical models of 1/f noise are introduced respectively. On this basis, tracing the development history, several typical physical models are described, including Mc Whorter model, Hooge model, Voss-Clarker model, Dutta-horn model, interference model and unified Hung model. The advent of the two-dimensional material graphene offers unique opportunities for studying the mechanism of 1/f noise. In the fact of the cloudy and even contradictory conclusions from different reports, this paper combs the consensus accepted widely. An analysis model based on three-level classification for the graphene low-frequency noise study is built, which divides the noise into intrinsic background 1/f noise, 1/f-like noise and Lorentz-like noise. Typical research on the related mechanism at each level is analyzed, and the dominant mechanisms are summarized. Further, we focus on the gate-modulated characteristic spectrum shape of 1/f noise from different reported experiments, which may be a key to the material internal scattering mechanism and charge distribution. The experimental measurements show that the characteristic shape is variable, and mainly exists in three forms: V-type, Λ-type and M-type. Through the comparative analysis of graphene cleanliness, bias current (voltage) and other experimental parameters, the possible causes of the complexity and variability of the characteristic shape are analyzed, showing that the main reason may be that the experimental parameters are not strictly controlled, and the selection of measuring point is unreasonable. In order to capture the accurate noise characteristics and reveal the noise mechanism clearly, a standard 1/f noise measurement paradigm is proposed in this work to guide the effective research on graphene 1/f noise and the distinction betweenintrinsic noise and extrinsic noise. The standard paradigm includes three processes. The first process is to prepare suspended graphene samples, the second one is to remove the surface contamination by using the methods such as current annealing, and the third one is to test the curve of the 1/f noise amplitude versus the bias voltage or current. Based on this curve, suitable test points can be selected for different measurement schemes. The proposed standard intrinsic background 1/f noise measurement paradigm may be expected to clarify and reveal the characteristics of graphene 1/f noise.
      Corresponding author: Liu Ying, liuying@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12102461).
    [1]

    Vandamme L, Hooge F 2005 Phys. B Condens. Matter 357 507Google Scholar

    [2]

    Wilamowski B M, Irwin J D 2011 Fundamentals of Industrial Electronics: The Industrial Electronics Handbook (1st Ed.) (CRC Press) p11

    [3]

    Liu G, Stillman W, Rumyantsev S, Shur M, Balandin A A 2011 Int. J. High Speed Electron. Syst. 20 161Google Scholar

    [4]

    Johnson J B 1925 Phys. Rev. 26 71Google Scholar

    [5]

    Voss R F, Clarke J 1975 Nature 258 317Google Scholar

    [6]

    Daniel A 2015 Ph D Dissertation (Nottingham: The University of Nottingham)

    [7]

    庄奕琪, 马中发, 杜磊 1999 世界科技研究与发展 21 69Google Scholar

    Zhuang Y Q, Ma Z F, Du L 1999 World Sci-Tech R. D. 21 69Google Scholar

    [8]

    Dutta P, Dimon P, Horn P 1979 Phys. Rev. Lett. 43 646Google Scholar

    [9]

    Clarke J, Voss R F 1974 Phys. Rev. Lett. 33 24Google Scholar

    [10]

    Burstein E, McWhorter A L, Miller P H, Stevenson D T, Weisz P B 1957 Semiconductor Surface Physics (University of Pennsylvania Press) p207

    [11]

    Hooge F, Kleinpenning T, Vandamme L 1981 Rep. Prog. Phys. 44 479Google Scholar

    [12]

    Hooge F 1972 Physica 60 130Google Scholar

    [13]

    Hung K K, Ko P K, Hu C, Cheng Y C 1990 IEEE Trans. Electron Devices 37 1323Google Scholar

    [14]

    Peransin J, Vignaud P, Rigaud D, Vandamme L K J 1990 IEEE Trans. Electron Devices 37 2250Google Scholar

    [15]

    Pellegrini B 1988 Phys. Rev. B 38 8279Google Scholar

    [16]

    Dmitriev A P, Levinshtein M E, Rumyantsev S L, Shur M S 2005 J. Appl. Phys. 97 123706Google Scholar

    [17]

    Liu Y, Tan Z, Kumar M, Abhilash T S, Liu G J, Hakonen P 2018 APL Mater. 6 091102Google Scholar

    [18]

    杜磊, 庄奕琪, 薛丽君 2002 物理学报 51 2836Google Scholar

    Du L, Zhuang Y Q, Xue L J 2002 Acta Phys. Sin. 51 2836Google Scholar

    [19]

    Song X X, Li H O, You J, Han T Y, Cao G, Tu T, Xiao M, Guo G C, Jiang H W, Guo G P 2015 Sci. Rep. 5 8142Google Scholar

    [20]

    Paladino E, Galperin Y M, Falci G, Altshuler B L 2014 Rev. Mod. Phys. 86 361Google Scholar

    [21]

    Dutta P, Horn P 1981 Rev. Mod. Phys. 53 497Google Scholar

    [22]

    Macdonald K C, Lindsay R B 1963 Phys. Today 16 74

    [23]

    Landauer R 1998 Nature 392 658Google Scholar

    [24]

    Kogan S 2008 Electronic Noise and Fluctuations in Solids (Cambridge University Press) pp24

    [25]

    Surdin M 1939 J. Phys. Radium 10 188Google Scholar

    [26]

    M. Richardson J 1950 Bell Syst. Tech. J. 29 117Google Scholar

    [27]

    Weissman M B 1975 Phys. Rev. Lett. 35 689Google Scholar

    [28]

    Kirton M J, Uren M J 1989 Adv. Phys. 38 367Google Scholar

    [29]

    Hooge F N 1994 IEEE Trans. Electron Devices 41 1926Google Scholar

    [30]

    Voss R F, Clarke J 1976 Phys. Rev. Lett. 36 42Google Scholar

    [31]

    Voss R F, Clarke J 1976 Phys. Rev. B 13 556Google Scholar

    [32]

    Hershfield S 1988 Phys. Rev. B 37 8557Google Scholar

    [33]

    Raychaudhuri A K 2002 Curr. Opin. Solid State Mater. Sci. 6 67Google Scholar

    [34]

    Pelz J, Clarke J 1987 Phys. Rev. B 36 4479Google Scholar

    [35]

    Ralls K S, Buhrman R A 1991 Phys. Rev. B 44 5800Google Scholar

    [36]

    Hung K K, Ko P K, Hu C, Cheng Y C 1990 IEEE Trans. Electron Devices 37 654Google Scholar

    [37]

    Koga J, Takagi S, Toriumi A Proceedings of 1994 IEEE International Electron Devices Meeting, San Francisco, USA 11-14 Dec. 1994 pp475–478

    [38]

    Vandamme E P, Vandamme L K 2000 IEEE Trans. Electron Devices 47 2146Google Scholar

    [39]

    Xi'an: Xidian University) 张鹏 2010 博士学位论文 (西安: 西安电子科技大学

    Zhang P 2010 Ph. D. Dissertation (in Chinese)

    [40]

    Lin Y-M, Avouris P 2008 Nano Lett. 8 2119Google Scholar

    [41]

    Heller I, Chatoor S, Männik J, Zevenbergen M A, Oostinga J B, Morpurgo A F, Dekker C, Lemay S G 2010 Nano Lett. 10 1563Google Scholar

    [42]

    Liu G, Stillman W, Rumyantsev S, Shao Q, Shur M, Balandin A 2009 Appl. Phys. Lett. 95 033103Google Scholar

    [43]

    Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Phys. E (Amsterdam, Neth. ) 40 228Google Scholar

    [44]

    Kumar M, Laitinen A, Cox D, Hakonen P J 2015 Appl. Phys. Lett. 106 263505Google Scholar

    [45]

    Rumyantsev S, Liu G, Stillman W, Shur M, Balandin A A 2010 J. Phys. Condens. Matter 22 395302 7

    [46]

    Liu G X, Rumyantsev S, Shur M S, Balandin A A 2013 Appl. Phys. Lett. 102 093111Google Scholar

    [47]

    Zhang Y, Mendez E E, Du X 2011 ACS nano 5 8124Google Scholar

    [48]

    Cheng Z, Li Q, Li Z, Zhou Q, Fang Y 2010 Nano Lett. 10 1864Google Scholar

    [49]

    Zahid Hossain M, Rumyantsev S, Shur M S, Balandin A A 2013 Appl. Phys. Lett. 102 153512Google Scholar

    [50]

    Rehman A, Delgado Notario J A, Salvador Sanchez J, Meziani Y M, Cywiński G, Knap W, Balandin A A, Levinshtein M, Rumyantsev S 2022 Nanoscale 14 7242Google Scholar

    [51]

    Kamada M, Laitinen A, Zeng W, Will M, Sarkar J, Tappura K, Seppä H, Hakonen P 2021 Nano Lett. 21 7637Google Scholar

    [52]

    Pal A N, Ghatak S, Kochat V, Sneha E, Sampathkumar A, Raghavan S, Ghosh A 2011 ACS Nano 5 2075Google Scholar

    [53]

    Kaverzin A A, Mayorov A S, Shytov A, Horsell D W 2012 Phys. Rev. B 85 075435 5

    [54]

    Macucci M, Marconcini P 2020 J. Sens. 2020 2850268

    [55]

    Pellegrini B, Marconcini P, Macucci M, Fiori G, Basso G 2016 J. Stat. Mech. Theory Exp. 2016 054017Google Scholar

    [56]

    Pellegrini B 2013 Eur. Phys. J. B 86 373Google Scholar

    [57]

    Rumyantsev S, Liu G X, Shur M S, Potyrailo R A, Balandin A A 2012 Nano Lett. 12 2294Google Scholar

    [58]

    Kazi R A, Aveek B 2014 Curr. Sci. India 107 430

    [59]

    Cui Y, Liu Y M, Yu J C, Hayasaka T, Li X Q, Cai W H, Liu H L, Lin L W 2017 Ieee 19th International Conference on Solid-State Sensors, Actuators and Microsystems Taiwan China pp246–249

    [60]

    Xu G, Torres C M, Jr., Zhang Y, Liu F, Song E B, Wang M, Zhou Y, Zeng C, Wang K L 2010 Nano Lett. 10 3312Google Scholar

    [61]

    Takeshita S, Matsuo S, Tanaka T, Nakaharai S, Tsukagoshi K, Moriyama T, Ono T, Arakawa T, Kobayashi K 2016 Appl. Phys. Lett. 108 103106Google Scholar

    [62]

    Arnold H N, Sangwan V K, Schmucker S W, Cress C D, Luck K A, Friedman A L, Robinson J T, Marks T J, Hersam M C 2016 Appl. Phys. Lett. 108 073108Google Scholar

    [63]

    Kayyalha M, Chen Y P 2015 Appl. Phys. Lett. 107 113101Google Scholar

    [64]

    Stolyarov M A, Liu G, Rumyantsev S L, Shur M, Balandin A A 2015 Appl. Phys. Lett. 107 023106Google Scholar

    [65]

    Karnatak P, Sai T P, Goswami S, Ghatak S, Kaushal S, Ghosh A 2016 Nat. Commun. 7 13703Google Scholar

    [66]

    Mavredakis N, Garcia Cortadella R, Bonaccini Calia A, Garrido J A, Jiménez D 2018 Nanoscale 10 14947Google Scholar

  • 图 1  1/f 噪声模型研究时间线和趋势

    Figure 1.  Timeline of the important events in the history of 1/f noise model research and its trend.

    图 2  (a)载流子随机隧穿示意图; (b)单次隧穿产生G-R噪声; (c)集体隧穿形成1/f噪声

    Figure 2.  (a) The diagram of carrier random tunneling; (b) generation of G-R noise by single tunneling event; (c) 1/f type noise formation by collective tunneling events.

    图 3  载流子干涉示意图 (a)局域干涉; (b)UCF干涉

    Figure 3.  schamatic of carrier interference: (a) local interference effect; (b) the universal-conductance-fluctuation interference effect.

    图 4  (a)不同温度下悬空石墨烯电阻栅极调控特性曲线; (b)不同温度下石墨烯1/f噪声栅极调控特征谱型

    Figure 4.  (a) Resistivity vs. gate voltage in suspended device at different temperatures; (b) noise amplitude vs. gate voltage in suspended device at different temperatures.

    图 5  (a) 300 K下石墨烯噪声谱密度磁场调控特性; (b) 200 K下石墨烯噪声谱密度磁场调控特性

    Figure 5.  (a) Relative noise spectral density as a function of the magnetic field at T = 300 K; (b) relative noise spectral density as a function of the magnetic field at T = 200 K.

    图 6  (a)不同偏置电流下的石墨烯1/f噪声; (b)石墨烯噪声幅值与电流关系; (c)噪声幅值(蓝色)及电阻(红色)与载流子浓度关系

    Figure 6.  (a) 1/f noise in graphene under different current bias values; (b) the relation between noise power and bias current; (c) resistance and low frequency noise characteristics with respect to charge carrier density.

    图 7  (a)石墨烯晶体管及两种噪声机制示意图; (b)不同载流子浓度下时域电导涨落; (c)不同栅压下典型电导归一化噪声功率谱; (d)1 Hz处噪声幅值的栅极调控特性及模型拟合结果

    Figure 7.  (a) Schematic of the GraFET device showing two different charge noise mechanisms; (b) time domain conductivity fluctuations at different carrier densities; (c) typical noise power spectra at various backgate voltages; (d) noise amptitude at 1 Hz vs. density, fitted by the equation.

    图 8  (a)悬空单层Corbino结构石墨烯; (b) 10 Hz处归一化电流噪声栅控特性

    Figure 8.  (a) Suspended single-layer Corbino graphene sample; (b) noise characteristics with respect to gate voltage.

    图 9  (a)不考虑puddle的噪声幅值随n-p变化特性曲线; (b)考虑puddle的噪声幅值随n-p变化特性曲线

    Figure 9.  (a) Noise characteristics with respect to n-p in the absence of potential disorder; (b) noise characteristics with respect to n-p with various potential disorders.

    图 10  (a)1/f噪声应用于生化检测; (b)1/f噪声应用于电子隧穿监测

    Figure 10.  (a) Biosensing application; (b) electron-tunneling monitoring.

    图 11  石墨烯3种典型栅极调控特征谱型 (a)${{\Lambda }} $型; (b)M型; (c)V型

    Figure 11.  Three characteristic shape of gate dependence of 1/f noise in the graphene: (a) ${{\Lambda }} $ shape; (b) M shape; (c) V shape.

    图 12  1/f 噪声测点位置选取

    Figure 12.  Selection of possible test points.

    图 13  石墨烯本征背景1/f噪声实验研究范式

    Figure 13.  Paradigm of exprimental research on graphene intrinsic background 1/f noise.

    表 1  不同研究层次石墨烯噪声主导机制

    Table 1.  The main noise mechanisms for graphene at different levels.

    层次分类散射截面(迁移率)涨落载流子数
    涨落
    短程无序散射长程无序散射随机隧穿
    本征背景噪声靠近DP
    (结合电阻网络模型)
    远离DP
    类1/f噪声靠近DP
    (结合电阻网络模型)
    远离DP
    洛伦兹类噪声
    DownLoad: CSV

    表 2  石墨烯1/f噪声特征谱型对比

    Table 2.  comparison of the characteristic shape of 1/f noise in graphene.

    参考文献 特征谱型
    ${{\Lambda }} $型V型M型
    Kaverzin et al.[53]√, T = 60 K, Vb = ?, D√, T = 40 K, Vb = ?, D√, T=40 K, Vb=?, H2O 吸附, D
    Heller et al.[41]√, RT, Vb < 5 mV, D√, RT, Vb < 5 mV, D
    Lin el al.[40]√, RT, Vb=100 mV, Bi , D√, RT, Vb=100 mV, D
    Pal el al.[52]√, T = 78–290 K, Ib=50 μA, D√, T = 100 K, Ib=50 μA, Bi, D√, T = 262–275 K,
    Ib=50 μA , Bi, D
    √, T = 150–300 K, Ib=50 μA , Sus, D√, T = 78–90 K, Ib=50 μA, Multi, D
    Zhang el al.[47]√, T = 30–50 K, Vb = ?, D√, T = 145–300 K, Vb = ?, D
    √, T = 30–300 K, Vb = ?, Sus, C
    Xu el al.[60]√, T = 70–300 K, Vb = ?, Bi, D√, T = 90-300 K, Vb = ?, D
    Takeshita el al.[61]√, T = 1.6 K,
    Vb < 0.6 mV, D
    作者认为Heller, Zhang Y, Xu G S,
    Rumyantsev, Kaverzin, Stolyarov
    等实验偏置电压过大
    √, T = 1.6 K, Vb > 0.6 mV, D
    Arnold el al.[62]√, RT, Vb = 0.3 V, D√, RT, Vb=0.3 V, D√, RT, Vb = 0.3 V, D
    Mavredakis el al.[66]√, RT, Vb = 20–60 mV, D
    Kayyalha el al.[64]√, RT, Vb = 40 mV,
    C, BN-encapsulated
    √, RT, Vb = 40 mV, D
    Stolyarov el al.[65]√, RT, Vb = ?, C, BN-encapsulated√, RT, Vb = ?, D,
    Pellegrini el al.[55]理论仿真模型
    Karnatak el al.[66]√, T = 80–300 K,
    Ib = 100 nA, C,
    BN-encapsulated
    Vb表示样品偏置电压, Vb = ?表示偏置电流未知; Ib表示样品偏置电流; RT表示室温; Bi表示双层石墨烯, Multi表示多层石墨烯, 其他未标注的均为单层石墨烯; Sus表示悬浮石墨烯, BN-encapsulated表示六方氮化硼(h-BN)包覆的石墨烯, 其他未标注的均为二氧化硅基底上的石墨烯; D表示非洁净石墨烯, C表示洁净石墨烯.
    DownLoad: CSV
  • [1]

    Vandamme L, Hooge F 2005 Phys. B Condens. Matter 357 507Google Scholar

    [2]

    Wilamowski B M, Irwin J D 2011 Fundamentals of Industrial Electronics: The Industrial Electronics Handbook (1st Ed.) (CRC Press) p11

    [3]

    Liu G, Stillman W, Rumyantsev S, Shur M, Balandin A A 2011 Int. J. High Speed Electron. Syst. 20 161Google Scholar

    [4]

    Johnson J B 1925 Phys. Rev. 26 71Google Scholar

    [5]

    Voss R F, Clarke J 1975 Nature 258 317Google Scholar

    [6]

    Daniel A 2015 Ph D Dissertation (Nottingham: The University of Nottingham)

    [7]

    庄奕琪, 马中发, 杜磊 1999 世界科技研究与发展 21 69Google Scholar

    Zhuang Y Q, Ma Z F, Du L 1999 World Sci-Tech R. D. 21 69Google Scholar

    [8]

    Dutta P, Dimon P, Horn P 1979 Phys. Rev. Lett. 43 646Google Scholar

    [9]

    Clarke J, Voss R F 1974 Phys. Rev. Lett. 33 24Google Scholar

    [10]

    Burstein E, McWhorter A L, Miller P H, Stevenson D T, Weisz P B 1957 Semiconductor Surface Physics (University of Pennsylvania Press) p207

    [11]

    Hooge F, Kleinpenning T, Vandamme L 1981 Rep. Prog. Phys. 44 479Google Scholar

    [12]

    Hooge F 1972 Physica 60 130Google Scholar

    [13]

    Hung K K, Ko P K, Hu C, Cheng Y C 1990 IEEE Trans. Electron Devices 37 1323Google Scholar

    [14]

    Peransin J, Vignaud P, Rigaud D, Vandamme L K J 1990 IEEE Trans. Electron Devices 37 2250Google Scholar

    [15]

    Pellegrini B 1988 Phys. Rev. B 38 8279Google Scholar

    [16]

    Dmitriev A P, Levinshtein M E, Rumyantsev S L, Shur M S 2005 J. Appl. Phys. 97 123706Google Scholar

    [17]

    Liu Y, Tan Z, Kumar M, Abhilash T S, Liu G J, Hakonen P 2018 APL Mater. 6 091102Google Scholar

    [18]

    杜磊, 庄奕琪, 薛丽君 2002 物理学报 51 2836Google Scholar

    Du L, Zhuang Y Q, Xue L J 2002 Acta Phys. Sin. 51 2836Google Scholar

    [19]

    Song X X, Li H O, You J, Han T Y, Cao G, Tu T, Xiao M, Guo G C, Jiang H W, Guo G P 2015 Sci. Rep. 5 8142Google Scholar

    [20]

    Paladino E, Galperin Y M, Falci G, Altshuler B L 2014 Rev. Mod. Phys. 86 361Google Scholar

    [21]

    Dutta P, Horn P 1981 Rev. Mod. Phys. 53 497Google Scholar

    [22]

    Macdonald K C, Lindsay R B 1963 Phys. Today 16 74

    [23]

    Landauer R 1998 Nature 392 658Google Scholar

    [24]

    Kogan S 2008 Electronic Noise and Fluctuations in Solids (Cambridge University Press) pp24

    [25]

    Surdin M 1939 J. Phys. Radium 10 188Google Scholar

    [26]

    M. Richardson J 1950 Bell Syst. Tech. J. 29 117Google Scholar

    [27]

    Weissman M B 1975 Phys. Rev. Lett. 35 689Google Scholar

    [28]

    Kirton M J, Uren M J 1989 Adv. Phys. 38 367Google Scholar

    [29]

    Hooge F N 1994 IEEE Trans. Electron Devices 41 1926Google Scholar

    [30]

    Voss R F, Clarke J 1976 Phys. Rev. Lett. 36 42Google Scholar

    [31]

    Voss R F, Clarke J 1976 Phys. Rev. B 13 556Google Scholar

    [32]

    Hershfield S 1988 Phys. Rev. B 37 8557Google Scholar

    [33]

    Raychaudhuri A K 2002 Curr. Opin. Solid State Mater. Sci. 6 67Google Scholar

    [34]

    Pelz J, Clarke J 1987 Phys. Rev. B 36 4479Google Scholar

    [35]

    Ralls K S, Buhrman R A 1991 Phys. Rev. B 44 5800Google Scholar

    [36]

    Hung K K, Ko P K, Hu C, Cheng Y C 1990 IEEE Trans. Electron Devices 37 654Google Scholar

    [37]

    Koga J, Takagi S, Toriumi A Proceedings of 1994 IEEE International Electron Devices Meeting, San Francisco, USA 11-14 Dec. 1994 pp475–478

    [38]

    Vandamme E P, Vandamme L K 2000 IEEE Trans. Electron Devices 47 2146Google Scholar

    [39]

    Xi'an: Xidian University) 张鹏 2010 博士学位论文 (西安: 西安电子科技大学

    Zhang P 2010 Ph. D. Dissertation (in Chinese)

    [40]

    Lin Y-M, Avouris P 2008 Nano Lett. 8 2119Google Scholar

    [41]

    Heller I, Chatoor S, Männik J, Zevenbergen M A, Oostinga J B, Morpurgo A F, Dekker C, Lemay S G 2010 Nano Lett. 10 1563Google Scholar

    [42]

    Liu G, Stillman W, Rumyantsev S, Shao Q, Shur M, Balandin A 2009 Appl. Phys. Lett. 95 033103Google Scholar

    [43]

    Chen Z, Lin Y M, Rooks M J, Avouris P 2007 Phys. E (Amsterdam, Neth. ) 40 228Google Scholar

    [44]

    Kumar M, Laitinen A, Cox D, Hakonen P J 2015 Appl. Phys. Lett. 106 263505Google Scholar

    [45]

    Rumyantsev S, Liu G, Stillman W, Shur M, Balandin A A 2010 J. Phys. Condens. Matter 22 395302 7

    [46]

    Liu G X, Rumyantsev S, Shur M S, Balandin A A 2013 Appl. Phys. Lett. 102 093111Google Scholar

    [47]

    Zhang Y, Mendez E E, Du X 2011 ACS nano 5 8124Google Scholar

    [48]

    Cheng Z, Li Q, Li Z, Zhou Q, Fang Y 2010 Nano Lett. 10 1864Google Scholar

    [49]

    Zahid Hossain M, Rumyantsev S, Shur M S, Balandin A A 2013 Appl. Phys. Lett. 102 153512Google Scholar

    [50]

    Rehman A, Delgado Notario J A, Salvador Sanchez J, Meziani Y M, Cywiński G, Knap W, Balandin A A, Levinshtein M, Rumyantsev S 2022 Nanoscale 14 7242Google Scholar

    [51]

    Kamada M, Laitinen A, Zeng W, Will M, Sarkar J, Tappura K, Seppä H, Hakonen P 2021 Nano Lett. 21 7637Google Scholar

    [52]

    Pal A N, Ghatak S, Kochat V, Sneha E, Sampathkumar A, Raghavan S, Ghosh A 2011 ACS Nano 5 2075Google Scholar

    [53]

    Kaverzin A A, Mayorov A S, Shytov A, Horsell D W 2012 Phys. Rev. B 85 075435 5

    [54]

    Macucci M, Marconcini P 2020 J. Sens. 2020 2850268

    [55]

    Pellegrini B, Marconcini P, Macucci M, Fiori G, Basso G 2016 J. Stat. Mech. Theory Exp. 2016 054017Google Scholar

    [56]

    Pellegrini B 2013 Eur. Phys. J. B 86 373Google Scholar

    [57]

    Rumyantsev S, Liu G X, Shur M S, Potyrailo R A, Balandin A A 2012 Nano Lett. 12 2294Google Scholar

    [58]

    Kazi R A, Aveek B 2014 Curr. Sci. India 107 430

    [59]

    Cui Y, Liu Y M, Yu J C, Hayasaka T, Li X Q, Cai W H, Liu H L, Lin L W 2017 Ieee 19th International Conference on Solid-State Sensors, Actuators and Microsystems Taiwan China pp246–249

    [60]

    Xu G, Torres C M, Jr., Zhang Y, Liu F, Song E B, Wang M, Zhou Y, Zeng C, Wang K L 2010 Nano Lett. 10 3312Google Scholar

    [61]

    Takeshita S, Matsuo S, Tanaka T, Nakaharai S, Tsukagoshi K, Moriyama T, Ono T, Arakawa T, Kobayashi K 2016 Appl. Phys. Lett. 108 103106Google Scholar

    [62]

    Arnold H N, Sangwan V K, Schmucker S W, Cress C D, Luck K A, Friedman A L, Robinson J T, Marks T J, Hersam M C 2016 Appl. Phys. Lett. 108 073108Google Scholar

    [63]

    Kayyalha M, Chen Y P 2015 Appl. Phys. Lett. 107 113101Google Scholar

    [64]

    Stolyarov M A, Liu G, Rumyantsev S L, Shur M, Balandin A A 2015 Appl. Phys. Lett. 107 023106Google Scholar

    [65]

    Karnatak P, Sai T P, Goswami S, Ghatak S, Kaushal S, Ghosh A 2016 Nat. Commun. 7 13703Google Scholar

    [66]

    Mavredakis N, Garcia Cortadella R, Bonaccini Calia A, Garrido J A, Jiménez D 2018 Nanoscale 10 14947Google Scholar

  • [1] Zheng Qin-Ren, Zhan Fu-Zhi, She Jun-Yi, Wang Jian-Yu, Shi Ruo-Li, Meng Guo-Dong. Influence of morphological characteristics of graphene on its field emission properties. Acta Physica Sinica, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [2] Bai Zhan-Bin, Wang Rui, Zhou Ya-Zhou, Wu Tian-Ru, Ge Jian-Lei, Li Jing, Qin Yu-Yuan, Fei Fu-Cong, Cao Lu, Wang Xue-Feng, Wang Xin-Ran, Zhang Shuai, Sun Li-Ling, Song You, Song Feng-Qi. Selective enhancement of Kane Mele-type spin-orbit interaction in graphene. Acta Physica Sinica, 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [3] Chen Shan-Deng, Bai Qing-Shun, Dou Yu-Hao, Guo Wan-Min, Wang Hong-Fei, Du Yun-Long. Simulation research on nucleation mechanism of graphene deposition assisted by diamond grain boundary. Acta Physica Sinica, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [4] Mimicing the Kane-Mele type spin orbit interaction by spin-flexual phonon coupling in graphene devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211815
    [5] Bai Qing-Shun, Dou Yu-Hao, He Xin, Zhang Ai-Min, Guo Yong-Bo. Deposition and growth mechanism of graphene on copper crystal surface based on molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [6] Hao Rui-Jing, Guo Hong-Xia, Pan Xiao-Yu, Lü Ling, Lei Zhi-Feng, Li Bo, Zhong Xiang-Li, Ouyang Xiao-Ping, Dong Shi-Jian. Neutron-induced displacement damage effect and mechanism of AlGaN/GaN high electron mobility transistor. Acta Physica Sinica, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [7] Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [8] Wang Jun-Jun, Li Tao, Li Xiong-Ying, Li Hui. Wettability and morphology of liquid gallium on graphene surface. Acta Physica Sinica, 2018, 67(14): 149601. doi: 10.7498/aps.67.20172717
    [9] Li Hao, Fu Zhi-Bing, Wang Hong-Bin, Yi Yong, Huang Wei, Zhang Ji-Cheng. Preperetions of bi-layer and multi-layer graphene on copper substrates by atmospheric pressure chemical vapor deposition and their mechanisms. Acta Physica Sinica, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [10] Deng Xin-Hua, Liu Jiang-Tao, Yuan Ji-Ren, Wang Tong-Biao. A new characteristics matrix method based on conductivity and its application in the optical properties of graphene in THz frequency range. Acta Physica Sinica, 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [11] Yang Jing-Jing, Li Jun-Jie, Deng Wei, Cheng Cheng, Huang Ming. Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular. Acta Physica Sinica, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [12] Li Qiao-Qiao, Zhang Xin, Wu Jiang-Bin, Lu Yan, Tan Ping-Heng, Feng Zhi-Hong, Li Jia, Wei Cui, Liu Qing-Bin. The second-order combination Raman modes of bilayer graphene in the range of 1800-2150 cm-1. Acta Physica Sinica, 2014, 63(14): 147802. doi: 10.7498/aps.63.147802
    [13] Li Feng, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Deng Kai-Ming. Density functional study on the different behaviors of Pd and Pt coating on graphene. Acta Physica Sinica, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [14] Yao Zhi-Dong, Li Wei, Gao Xian-Long. Electronic properties on the point vacancy of armchair edged graphene quantum dots. Acta Physica Sinica, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [15] Chen Dong-Meng. Variation of graphene Raman G peak splitting with strain. Acta Physica Sinica, 2010, 59(9): 6399-6404. doi: 10.7498/aps.59.6399
    [16] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [17] Yang Li-Xia, Du Lei, Bao Jun-Lin, Zhuang Yi-Qi, Chen Xiao-Dong, Li Qun-Wei, Zhang Ying, Zhao Zhi-Gang, He Liang. The effect of 60Co γ-ray irradiation on the 1/f noise of Schottky barrier diodes. Acta Physica Sinica, 2008, 57(9): 5869-5874. doi: 10.7498/aps.57.5869
    [18] Li Rui-Min, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin. A 1/f noise based research of radiation induced interface trap buildup process. Acta Physica Sinica, 2007, 56(6): 3400-3406. doi: 10.7498/aps.56.3400
    [19] Sun Tao, Chen Xing-Guo, Hu Xiao-Ning, Li Yan-Jin. Analysis of surface leakage and 1/f noise on long-wavelength infrared HgCdTe photodiodes. Acta Physica Sinica, 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
    [20] Bao Jun-Lin, Zhuang Yi-Qi, Du Lei, Li Wei-Hua, Wan Chang-Xing, Zhang Ping. A unified model for 1/f noise in n-channel and p-channel MOSFETs. Acta Physica Sinica, 2005, 54(5): 2118-2122. doi: 10.7498/aps.54.2118
Metrics
  • Abstract views:  3619
  • PDF Downloads:  114
  • Cited By: 0
Publishing process
  • Received Date:  27 June 2022
  • Accepted Date:  21 September 2022
  • Available Online:  19 October 2022
  • Published Online:  05 January 2023

/

返回文章
返回