- 
				The growth of high-quality graphene is always a focused issue in the field of two-dimensional materials, and the growth of graphene on brand new substrates has received considerable attention from scholars especially. The research on the nucleation mechanism of graphene deposited on a polycrystalline diamond substrate is of significance in the large-scale preparation of graphene in practice. Here in this work, the direct growth without transfer process of graphene on a diamond substrate is used to obtain the high-quality graphene. The reactive molecular dynamics simulation technology is adopted to imitate the process of graphene deposition and growth on bi-crystal diamond assisted by nickel catalyzed at an atomic level. The effect of the bi-crystal diamond grain boundary on the dynamic behavior of graphene nucleation and growth process is studied. The results demonstrate that the grain boundary carbon atoms can be used as a supplementary carbon source to diffuse into the nickel free surface and participate in the nucleation and growth of graphene. Furthermore, the effect of temperature on the diffusion behavior of carbon atoms is explored, finding that high temperature facilitates the dissociation of atoms in the grain boundary. When the deposition temperature equals 1700 K, it is most conducive to the diffusion of grain boundary carbon atoms in the nickel lattice, which effectively enhances the nucleation density of graphene. Besides, the effect of the deposition carbon source flow rate on the surface quality of graphene is explored, finding that the high-quality graphene surface can be obtained by adopting a lower carbon deposit rate of 1 ps–1 at 1700 K. In brief, the research results obtained not only provide an effective theoretical model and analysis of the mechanism for diamond grain boundary assisted graphene deposition and growth, but also reveal the regular pattern of influence of deposition temperature and deposition carbon source flow rate on the surface quality of synthesized graphene. The present study can lay a theoretical foundation for the fabrication and application of new functional graphene-polycrystalline diamond heterostructures in the fields of ultra-precision manufacturing and microelectronics.- 
										Keywords:
										
- graphene /
- diamond grain boundary /
- deposition and growth /
- molecular dynamics
 [1] He X, Bai Q, Shen R 2018 Carbon 130 672  Google Scholar Google Scholar[2] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385  Google Scholar Google Scholar[3] Zhu L, Wang J, Zhang T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494  Google Scholar Google Scholar[4] Paolicelli G, Tripathi M, Corradini V, Candini A, Valeri S 2015 Nanotechnology 26 055703  Google Scholar Google Scholar[5] Peng Y, Zeng X, Liu L, Cao X, Zou K, Chen R 2017 Carbon 124 541  Google Scholar Google Scholar[6] Egberts P, Han G H, Liu X Z, Johnson A T C, Carpick R W 2014 ACS Nano 8 5010  Google Scholar Google Scholar[7] Freitag M 2010 Phys. Status Solidi B 247 2895  Google Scholar Google Scholar[8] He L, Wang J, Hou K, Yang S 2019 Appl. Surf. Sci. 475 389  Google Scholar Google Scholar[9] Lui C H, Liu L, Mak K F, Flynn G W, Heinz T F 2009 Nature 462 339  Google Scholar Google Scholar[10] Zapol P, Sternberg M, Curtiss L A, Frauenheim T, Gruen D M 2002 Phys. Rev. B 65 045403  Google Scholar Google Scholar[11] Ueda K, Aichi S, Asano H 2016 Diam. Relat. Mater. 63 148  Google Scholar Google Scholar[12] Berman D, Deshmukh S A, Narayanan B, Sankaranarayanan S K R S, Yan Z, Balandin A A, Zinovev A, Rosenmann D, Sumant A V 2016 Nat. Commun. 7 12099  Google Scholar Google Scholar[13] Kanada S, Nagai M, Ito S, Matsumoto T, Ogura M, Takeuchi D, Yamasaki S, Inokuma T, Tokuda N 2017 Diam. Relat. Mater. 75 105  Google Scholar Google Scholar[14] Barnard A S, Sternberg M 2008 J. Comput. Theor. Nanosci. 5 2089  Google Scholar Google Scholar[15] Tokuda N, Makino T, Inokuma T, Yamsaki S, Inokuma T 2012 Jpn. J. Appl. Phys. 51 090107  Google Scholar Google Scholar[16] Rasuli R, Mostafavi K, Davoodi J 2014 J. Appl. Phys. 115 185503  Google Scholar Google Scholar[17] Syuhada I, Rosikhin A, Fikri A, Noor F A, Winata T 2016 API Conf. Proc. 1710 185503  Google Scholar Google Scholar[18] Xu Z, Yan T, Liu G, Qiao G, Ding F 2015 Nanoscale 8 921  Google Scholar Google Scholar[19] 王浪, 冯伟, 杨连乔, 张建华 2014 物理学报 63 176801  Google Scholar Google ScholarWang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801  Google Scholar Google Scholar[20] Mueller J E, Van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396  Google Scholar Google Scholar[21] L Meng, Q Sun, J Wang, F Ding 2012 J. Phys. Chem. C 116 6097  Google Scholar Google Scholar[22] Neyts E C, Van Duin A C T, Bogaerts A 2013 Nanoscale 5 7250  Google Scholar Google Scholar[23] Mueller J E, Van Duin A C T, Goddard W A 2010 J. Phys. Chem. C 114 4939  Google Scholar Google Scholar[24] Neyts E C, Van Duin A C T, Bogaerts A 2011 J. Am. Chem. Soc. 133 17225  Google Scholar Google Scholar[25] Neyts E C, Shibuta Y, van Duin A C T, Bogaerts A 2010 ACS Nano 4 6665  Google Scholar Google Scholar[26] Van Duin A C T, Strachan A, Stewman S, Zhang Q S, Xu X, Goddard W A 2003 J. Phys. Chem. A 107 3803  Google Scholar Google Scholar[27] Tao C G, Feng H J, Zhou J, Lue L H, Lu X H 2009 Acta Phys-Chim. Sin. 25 1373  Google Scholar Google Scholar[28] Gao J, Yuan Q, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 16795  Google Scholar Google Scholar[29] Wang L, Zhang X, Chan H L W, Yan F, Ding F 2013 J. AM. Chem. Soc. 135 4476  Google Scholar Google Scholar[30] Reina A, Jia X, Ho J, Neizich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2008 Nano Lett. 9 30  Google Scholar Google Scholar[31] Page A J, Ohta Y, Okamoto Y, Irle S, Morokuma K 2009 J. Phys. Chem. C 113 20198  Google Scholar Google Scholar
- 
				
    
    
- 
				
[1] He X, Bai Q, Shen R 2018 Carbon 130 672  Google Scholar Google Scholar[2] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385  Google Scholar Google Scholar[3] Zhu L, Wang J, Zhang T, Ma L, Lim C W, Ding F, Zeng X C 2010 Nano Lett. 10 494  Google Scholar Google Scholar[4] Paolicelli G, Tripathi M, Corradini V, Candini A, Valeri S 2015 Nanotechnology 26 055703  Google Scholar Google Scholar[5] Peng Y, Zeng X, Liu L, Cao X, Zou K, Chen R 2017 Carbon 124 541  Google Scholar Google Scholar[6] Egberts P, Han G H, Liu X Z, Johnson A T C, Carpick R W 2014 ACS Nano 8 5010  Google Scholar Google Scholar[7] Freitag M 2010 Phys. Status Solidi B 247 2895  Google Scholar Google Scholar[8] He L, Wang J, Hou K, Yang S 2019 Appl. Surf. Sci. 475 389  Google Scholar Google Scholar[9] Lui C H, Liu L, Mak K F, Flynn G W, Heinz T F 2009 Nature 462 339  Google Scholar Google Scholar[10] Zapol P, Sternberg M, Curtiss L A, Frauenheim T, Gruen D M 2002 Phys. Rev. B 65 045403  Google Scholar Google Scholar[11] Ueda K, Aichi S, Asano H 2016 Diam. Relat. Mater. 63 148  Google Scholar Google Scholar[12] Berman D, Deshmukh S A, Narayanan B, Sankaranarayanan S K R S, Yan Z, Balandin A A, Zinovev A, Rosenmann D, Sumant A V 2016 Nat. Commun. 7 12099  Google Scholar Google Scholar[13] Kanada S, Nagai M, Ito S, Matsumoto T, Ogura M, Takeuchi D, Yamasaki S, Inokuma T, Tokuda N 2017 Diam. Relat. Mater. 75 105  Google Scholar Google Scholar[14] Barnard A S, Sternberg M 2008 J. Comput. Theor. Nanosci. 5 2089  Google Scholar Google Scholar[15] Tokuda N, Makino T, Inokuma T, Yamsaki S, Inokuma T 2012 Jpn. J. Appl. Phys. 51 090107  Google Scholar Google Scholar[16] Rasuli R, Mostafavi K, Davoodi J 2014 J. Appl. Phys. 115 185503  Google Scholar Google Scholar[17] Syuhada I, Rosikhin A, Fikri A, Noor F A, Winata T 2016 API Conf. Proc. 1710 185503  Google Scholar Google Scholar[18] Xu Z, Yan T, Liu G, Qiao G, Ding F 2015 Nanoscale 8 921  Google Scholar Google Scholar[19] 王浪, 冯伟, 杨连乔, 张建华 2014 物理学报 63 176801  Google Scholar Google ScholarWang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801  Google Scholar Google Scholar[20] Mueller J E, Van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396  Google Scholar Google Scholar[21] L Meng, Q Sun, J Wang, F Ding 2012 J. Phys. Chem. C 116 6097  Google Scholar Google Scholar[22] Neyts E C, Van Duin A C T, Bogaerts A 2013 Nanoscale 5 7250  Google Scholar Google Scholar[23] Mueller J E, Van Duin A C T, Goddard W A 2010 J. Phys. Chem. C 114 4939  Google Scholar Google Scholar[24] Neyts E C, Van Duin A C T, Bogaerts A 2011 J. Am. Chem. Soc. 133 17225  Google Scholar Google Scholar[25] Neyts E C, Shibuta Y, van Duin A C T, Bogaerts A 2010 ACS Nano 4 6665  Google Scholar Google Scholar[26] Van Duin A C T, Strachan A, Stewman S, Zhang Q S, Xu X, Goddard W A 2003 J. Phys. Chem. A 107 3803  Google Scholar Google Scholar[27] Tao C G, Feng H J, Zhou J, Lue L H, Lu X H 2009 Acta Phys-Chim. Sin. 25 1373  Google Scholar Google Scholar[28] Gao J, Yuan Q, Hu H, Zhao J, Ding F 2011 J. Phys. Chem. C 115 16795  Google Scholar Google Scholar[29] Wang L, Zhang X, Chan H L W, Yan F, Ding F 2013 J. AM. Chem. Soc. 135 4476  Google Scholar Google Scholar[30] Reina A, Jia X, Ho J, Neizich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2008 Nano Lett. 9 30  Google Scholar Google Scholar[31] Page A J, Ohta Y, Okamoto Y, Irle S, Morokuma K 2009 J. Phys. Chem. C 113 20198  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 6700
- PDF Downloads: 109
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							 
							 
							 
							 
							 
							