-
With the development of microelectronics and the miniaturization of electronic devices, the use of molecular materials to construct various components in electronic circuits has become a most likely development trend. Compared with silicon-based semiconductor components, molecular electronic device has the advantages of small size, high integration, low energy consumption and fast response. In recent years, more and more molecules have been used to design molecular devices such as molecular diodes, molecular switches, molecular field effect transistors and molecular memories. In this paper, sandwich structure devices based on graphene nanoribbon electrodes are constructed. The first-principles calculation method combining density functional theory and non-equilibrium Green’s function is adopted to design the molecular devices with functional characteristics. The effects of redox reactions on the electrical transport properties of molecular devices are systematically discussed. The main research contents of this paper are as follows. The switching characteristics of an anthraquinone molecular device based on graphene electrode are studied. The zigzag-edge nanoribbons and armchair-edge graphene nanoribbons are selected as electrodes. Considering the two isomers of anthraquinone (HQ) and anthraquinone (AQ) molecules in the redox reaction, the double electrode molecular junction is constructed. The effects of redox reaction and electrode structure on the switching characteristics of anthraquinone molecular devices are discussed. It is found that the current in the HQ configuration is significantly greater than that in the AQ configuration, regardless of the zigzag-edge graphene electrode or the armchair-edge graphene electrode. That is, under the redox reaction, the anthraquinone molecules show significant switching characteristics. The switching ratio of zigzag-edge graphene electrode is selected to reach a maximum of 3125, and that of armchair-edge graphene electrode is selected to maximum of 1538. In addition, when the armchair-edge graphene is used as an electrode in the HQ configuration, the negative differential resistance is obviously between 0.7 and 0.9 V.
-
Keywords:
- molecular switching device /
- density functional theory /
- nonequilibrium Green’s function /
- graphene
[1] Jalili S, Rafii-Tabar H 2005 Phys. Rev. B 71 165410Google Scholar
[2] Seminario J M, Zacarias A G, Tour J M 1999 J. Am. Chem. Soc. 121 411Google Scholar
[3] Ren Y, Chen K Q, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 183506Google Scholar
[4] Soudi A, Aivazian G, Shi S F, Xu X D, Gu Y 2012 Appl. Phys. Lett. 100 033115Google Scholar
[5] Guisinger N P, Basu R, Baluch A S, Hersam M C 2004 Nanotechnology 15 452Google Scholar
[6] Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar
[7] Long M Q, Chen K Q, Wang L L 2007 Appl. Phys. Lett. 91 233512Google Scholar
[8] Fan Z Q, Chen K Q, Wan Q, Duan W H, Zou B S, Shuai Z 2008 Appl. Phys. Lett. 92 263304Google Scholar
[9] Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar
[10] Wang Z C, Gu T, Tada T, Watanabe S 2008 Appl. Phys. Lett. 93 152106Google Scholar
[11] Donhauser Z J, Mantooth B A, Kelly L A, Monmell J D 2001 Science 292 2303Google Scholar
[12] Jiang P, Gustavo M, You W 2004 Angew. Chem. Int. Ed. 43 4471Google Scholar
[13] Oleynik I I, Kozhushner M A, Posvyanskii V S, Yu L 2006 Phys. Rev. Lett. 96 096803Google Scholar
[14] Stephane L, Christophe K, Christophe D, Guy A, Dominique V 2003 Nano Lett. 3 741Google Scholar
[15] Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101Google Scholar
[16] van Dijk E H, Myles D J T, van der Veen M H, Hummelen J C 2006 Org. Lett. 8 2333Google Scholar
[17] Zhao P, Liu D S, Wang P J, Zhang Z, Fang C F, Ji G M 2011 Physica B 406 895
[18] Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 047302
[19] Zheng J M, Guo P, Ren Z, Jiang Z, Bai J, Zhang Z 2012 Appl. Phys. Lett. 101 083101Google Scholar
[20] Zheng H X, Wang Z F, Luo T, Shi Q W, Chen J 2007 Phys. Rev. B 75 165414Google Scholar
[21] Zhao J, Zeng H, Wei J W, Li B, Xu D H 2014 Phys. Lett. A 378 416Google Scholar
[22] An Y P, Yang Z Q 2011 Appl. Phys. Lett. 99 192102Google Scholar
[23] Zheng X H, Song L L, Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129Google Scholar
[24] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar
[25] Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar
[26] Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar
[27] Li X L, Wang X R, Zhang L, et al. 2008 Science 319 1229Google Scholar
[28] Cai Y Q, Zhang A H, Feng Y P, Zhang C 2011 J. Chem. Phys. 135 184703Google Scholar
[29] Liu H M, Li P, Zhao J W 2008 J. Chem. Phys. 129 224704Google Scholar
[30] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar
[31] Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar
[32] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens. Matter. 14 2745Google Scholar
-
-
[1] Jalili S, Rafii-Tabar H 2005 Phys. Rev. B 71 165410Google Scholar
[2] Seminario J M, Zacarias A G, Tour J M 1999 J. Am. Chem. Soc. 121 411Google Scholar
[3] Ren Y, Chen K Q, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 183506Google Scholar
[4] Soudi A, Aivazian G, Shi S F, Xu X D, Gu Y 2012 Appl. Phys. Lett. 100 033115Google Scholar
[5] Guisinger N P, Basu R, Baluch A S, Hersam M C 2004 Nanotechnology 15 452Google Scholar
[6] Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar
[7] Long M Q, Chen K Q, Wang L L 2007 Appl. Phys. Lett. 91 233512Google Scholar
[8] Fan Z Q, Chen K Q, Wan Q, Duan W H, Zou B S, Shuai Z 2008 Appl. Phys. Lett. 92 263304Google Scholar
[9] Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252Google Scholar
[10] Wang Z C, Gu T, Tada T, Watanabe S 2008 Appl. Phys. Lett. 93 152106Google Scholar
[11] Donhauser Z J, Mantooth B A, Kelly L A, Monmell J D 2001 Science 292 2303Google Scholar
[12] Jiang P, Gustavo M, You W 2004 Angew. Chem. Int. Ed. 43 4471Google Scholar
[13] Oleynik I I, Kozhushner M A, Posvyanskii V S, Yu L 2006 Phys. Rev. Lett. 96 096803Google Scholar
[14] Stephane L, Christophe K, Christophe D, Guy A, Dominique V 2003 Nano Lett. 3 741Google Scholar
[15] Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101Google Scholar
[16] van Dijk E H, Myles D J T, van der Veen M H, Hummelen J C 2006 Org. Lett. 8 2333Google Scholar
[17] Zhao P, Liu D S, Wang P J, Zhang Z, Fang C F, Ji G M 2011 Physica B 406 895
[18] Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 047302
[19] Zheng J M, Guo P, Ren Z, Jiang Z, Bai J, Zhang Z 2012 Appl. Phys. Lett. 101 083101Google Scholar
[20] Zheng H X, Wang Z F, Luo T, Shi Q W, Chen J 2007 Phys. Rev. B 75 165414Google Scholar
[21] Zhao J, Zeng H, Wei J W, Li B, Xu D H 2014 Phys. Lett. A 378 416Google Scholar
[22] An Y P, Yang Z Q 2011 Appl. Phys. Lett. 99 192102Google Scholar
[23] Zheng X H, Song L L, Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129Google Scholar
[24] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347Google Scholar
[25] Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar
[26] Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar
[27] Li X L, Wang X R, Zhang L, et al. 2008 Science 319 1229Google Scholar
[28] Cai Y Q, Zhang A H, Feng Y P, Zhang C 2011 J. Chem. Phys. 135 184703Google Scholar
[29] Liu H M, Li P, Zhao J W 2008 J. Chem. Phys. 129 224704Google Scholar
[30] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar
[31] Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar
[32] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens. Matter. 14 2745Google Scholar
Catalog
Metrics
- Abstract views: 5834
- PDF Downloads: 86
- Cited By: 0