-
With the experimental advances in microscale fabrication technology, the designing of functional devices by using single molecules has become one of the most promising methods for the next generation of electronic devices. Molecular rectifier, as a basic component almost for any electronic device, has become a research hotspot in molecular electronics. Recently, one-dimensional graphene nanoribbons (GNRs) which cut off from the novel two-dimensional material-graphene were used as the electrodes for several molecular devices due to their unique electronic structures and transport characteristics. The GNRs have less serious contact problems than metallic electrode materials like gold. In this paper, we investigate the rectifying performances of oligo phenylene ethynylene molecular devices based on graphene electrodes by using the density-functional theory and the non-equilibrium Green's function method. The effect of functional group on the rectifying performances of molecular device is discussed. The results show that the functional group plays a significant role in determining the rectifying performances of oligo phenylene ethynylene molecular device. The rectifying ratio can be effectively tuned by the functional group: adding the donor group (NH2) can lead to the positive rectifying phenomenon, adding the acceptor group (NO2) can trigger the negative rectifying phenomenon, and simultaneously adding NH2 and NO2 groups can bring about an alternate phenomenon between positive and reverse rectifying . The physical mechanism of the rectifying behavior is explained based on the transmission spectra and molecular projected self-consistent Hamiltonian. The transmission spectra of four models (M1-M4) bias voltages in range from-1.0 V to 1.0 V are given. The main transmission peak of M1 for positive bias is similar to that for negative bias, resulting in a weak rectification ratio. However, for M2 and M3, the main transmission peaks for positive and negative bias are significantly different from each other, which shows obviously a rectifying behavior. For M4, the main transmission peak is higher for the bias of (0.44-0.83 V) and also for the bias (0.95-1.00 V), showing an alternate phenomenon between positive and reverse rectifying. The maximum rectification ratio reaches 2.71 by adding an acceptor group (NO2), which suggests that this system has attractive potential applications in future molecular circuit.
-
Keywords:
- molecular rectifier /
- density functional theory /
- nonequilibrium Green' /
- s function
[1] Jalili S, Rafii-Tabar H 2005 Phys. Rev. B 71 165410
[2] Seminario J M, Zacarias A G, Tour J M 1999 J. Am. Chem. Soc. 121 411
[3] Ren Y, Chen K Q, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 183506
[4] Soudi A, Aivazian G, Shi S F, Xu X D, Gu Y 2012 Appl. Phys. Lett. 100 033115
[5] Guisinger N P, Basu R, Baluch A S, Hersam M C 2004 Nanotechnology 15 452
[6] Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509
[7] Long M Q, Chen K Q, Wang L L, Zou B S 2007 Appl. Phys. Lett. 91 233512
[8] Fan Z Q, Chen K Q, Wan Q, Duan W H, Zou B S, Shuai Z 2008 Appl. Phys. Lett. 92 263304
[9] Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252
[10] Wang Z C, Gu T, Tada T, Watanabe S 2008 Appl. Phys. Lett. 93 152106
[11] Donhauser Z J, Mantooth B A, Kelly L A, et al. 2001 Science 292 2303
[12] Jiang P, Morales G M, You W, Yu L 2004 Angew. Chem. Int. Ed. 43 4471
[13] Oleynik I I, Kozhushner M A, Posvyanskii V S, Yu L 2006 Phys. Rev. Lett. 96 096803
[14] Stephane L, Christophe K, Christophe D, Guy A, Dominique V 2003 Nano Lett. 3 741
[15] Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101
[16] Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277
[17] Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501(in Chinese) [俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501]
[18] Zhitenev N B, Meng H, Bao Z 2002 Phys. Rev. Lett. 88 226801
[19] Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148(in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰, 赵明文 2008 物理学报 57 3148]
[20] Reddy P, Jang S Y, Majumdar A 2007 Science 315 1568
[21] Zou B, Li Z L, Wang C K, Xue Q K 2005 Acta Phys. Sin. 54 1341(in Chinese) [邹斌, 李宗良, 王传奎, 薛其坤 2005 物理学报 54 1341]
[22] Chen J, Wang W, Reed M A, Rawlett A M, Price D W, Tour J M 2000 Appl. Phys. Lett. 77 1224
[23] Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550
[24] Martn S, Grace I, Bryce M R, Wang C, Jitchati R, Batsanov A S, Higgins S J, Lambert C J, Nichols R J 2010 J. Am. Chem. Soc. 132 9157
[25] Gonzalez C, Simn-Manso Y, Batteas J, Marquez M, Ratner M, Mujica V 2004 J. Phys. Chem. B 108 18414
[26] Wan H Q, Xu Y, Zhou G H 2012 J. Chem. Phys. 136 184704
[27] Tour J M, Kozaki M, Seminario J M 1998 J. Am. Chem. Soc. 120 8486
[28] Chen C S, Chen X H, Li X Q, Zhang G, Yi G J, Zhang H, Hu J 2004 Acta Phys. Sin. 53 0531(in Chinese) [陈传盛, 陈小华, 李学谦, 张刚, 易国军, 张华, 胡静 2004 物理学报 53 0531]
[29] Venkataraman L, Park Y S, Whalley A C, Nuckolls C, Hybertsen M S, Steigerwald M L 2007 Nano Lett. 7 502
[30] Aragones A C, Darwish N, Im J, Lim B, Choi J, Koo S, Diez-Perez I 2015 Chem. Eur. J. 21 7716
[31] Zheng J M, Guo P, Ren Z, Jiang Z, Bai J, Zhang Z 2012 Appl. Phys. Lett. 101 083101
[32] Zheng H X, Wang Z F, Luo T, Shi Q W, Chen J 2007 Phys. Rev. B 75 165414
[33] Zhao J, Zeng H, Wei J W, Li B, Xu D H 2014 Phys. Lett. A 378 416
[34] An Y P, Yang Z Q 2011 Appl. Phys. Lett. 99 192102
[35] Zheng X H, Song L L, Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129
[36] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
[37] Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748
[38] Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
[39] Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229
[40] Cai Y Q, Zhang A H, Feng Y P, Zhang C 2011 J. Chem. Phys. 135 184703
[41] Liu H M, Li P, Zhao J W 2008 J. Chem. Phys. 129 224704
[42] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407
[43] Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[44] Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745
-
[1] Jalili S, Rafii-Tabar H 2005 Phys. Rev. B 71 165410
[2] Seminario J M, Zacarias A G, Tour J M 1999 J. Am. Chem. Soc. 121 411
[3] Ren Y, Chen K Q, Wan Q, Zou B S, Zhang Y 2009 Appl. Phys. Lett. 94 183506
[4] Soudi A, Aivazian G, Shi S F, Xu X D, Gu Y 2012 Appl. Phys. Lett. 100 033115
[5] Guisinger N P, Basu R, Baluch A S, Hersam M C 2004 Nanotechnology 15 452
[6] Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509
[7] Long M Q, Chen K Q, Wang L L, Zou B S 2007 Appl. Phys. Lett. 91 233512
[8] Fan Z Q, Chen K Q, Wan Q, Duan W H, Zou B S, Shuai Z 2008 Appl. Phys. Lett. 92 263304
[9] Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252
[10] Wang Z C, Gu T, Tada T, Watanabe S 2008 Appl. Phys. Lett. 93 152106
[11] Donhauser Z J, Mantooth B A, Kelly L A, et al. 2001 Science 292 2303
[12] Jiang P, Morales G M, You W, Yu L 2004 Angew. Chem. Int. Ed. 43 4471
[13] Oleynik I I, Kozhushner M A, Posvyanskii V S, Yu L 2006 Phys. Rev. Lett. 96 096803
[14] Stephane L, Christophe K, Christophe D, Guy A, Dominique V 2003 Nano Lett. 3 741
[15] Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101
[16] Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277
[17] Zu F X, Zhang P P, Xiong L, Yin Y, Liu M M, Gao G Y 2017 Acta Phys. Sin. 66 098501(in Chinese) [俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营 2017 物理学报 66 098501]
[18] Zhitenev N B, Meng H, Bao Z 2002 Phys. Rev. Lett. 88 226801
[19] Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J, Zhao M W 2008 Acta Phys. Sin. 57 3148(in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰, 赵明文 2008 物理学报 57 3148]
[20] Reddy P, Jang S Y, Majumdar A 2007 Science 315 1568
[21] Zou B, Li Z L, Wang C K, Xue Q K 2005 Acta Phys. Sin. 54 1341(in Chinese) [邹斌, 李宗良, 王传奎, 薛其坤 2005 物理学报 54 1341]
[22] Chen J, Wang W, Reed M A, Rawlett A M, Price D W, Tour J M 2000 Appl. Phys. Lett. 77 1224
[23] Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550
[24] Martn S, Grace I, Bryce M R, Wang C, Jitchati R, Batsanov A S, Higgins S J, Lambert C J, Nichols R J 2010 J. Am. Chem. Soc. 132 9157
[25] Gonzalez C, Simn-Manso Y, Batteas J, Marquez M, Ratner M, Mujica V 2004 J. Phys. Chem. B 108 18414
[26] Wan H Q, Xu Y, Zhou G H 2012 J. Chem. Phys. 136 184704
[27] Tour J M, Kozaki M, Seminario J M 1998 J. Am. Chem. Soc. 120 8486
[28] Chen C S, Chen X H, Li X Q, Zhang G, Yi G J, Zhang H, Hu J 2004 Acta Phys. Sin. 53 0531(in Chinese) [陈传盛, 陈小华, 李学谦, 张刚, 易国军, 张华, 胡静 2004 物理学报 53 0531]
[29] Venkataraman L, Park Y S, Whalley A C, Nuckolls C, Hybertsen M S, Steigerwald M L 2007 Nano Lett. 7 502
[30] Aragones A C, Darwish N, Im J, Lim B, Choi J, Koo S, Diez-Perez I 2015 Chem. Eur. J. 21 7716
[31] Zheng J M, Guo P, Ren Z, Jiang Z, Bai J, Zhang Z 2012 Appl. Phys. Lett. 101 083101
[32] Zheng H X, Wang Z F, Luo T, Shi Q W, Chen J 2007 Phys. Rev. B 75 165414
[33] Zhao J, Zeng H, Wei J W, Li B, Xu D H 2014 Phys. Lett. A 378 416
[34] An Y P, Yang Z Q 2011 Appl. Phys. Lett. 99 192102
[35] Zheng X H, Song L L, Wang R N, Hao H, Guo L J, Zeng Z 2010 Appl. Phys. Lett. 97 153129
[36] Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
[37] Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748
[38] Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
[39] Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229
[40] Cai Y Q, Zhang A H, Feng Y P, Zhang C 2011 J. Chem. Phys. 135 184703
[41] Liu H M, Li P, Zhao J W 2008 J. Chem. Phys. 129 224704
[42] Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407
[43] Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401
[44] Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745
Catalog
Metrics
- Abstract views: 6782
- PDF Downloads: 107
- Cited By: 0