Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional theory studies on the excited-state properties of Bilirubin molecule

Li Yuan-Yuan Hu Zhu-Bin Sun Hai-Tao Sun Zhen-Rong

Citation:

Density functional theory studies on the excited-state properties of Bilirubin molecule

Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong
PDF
HTML
Get Citation
  • Bilirubin is the main pigment in human bile, which is closely related to human health. Bilirubin combining with fluorescent protein represents a new type of fluorescent chromophore and has important applications in the field of biological imaging and biosensor. Due to the lack of efficient and accurate electronic structure methods, the electronic structure and excited-state properties of bilirubin molecule are not characterized quantitatively and accurately. Firstly, the vertical absorption energy, oscillator strength and vertical emission energy of the lowest singlet excited state of bilirubin molecule are calculated by combining the implicit solvent model and the linear response time-dependent density functional theory (TDDFT) method. Compared to the experimental data and high-level RI-ADC(2) calculation, the prediction performance of a series of density functional methods is systematically investigated. The results show that the optimally-tuned range separated density functional method has the best overall performance and the minimum absolute and relative errors. This is obviously due to the fact that the suitable proportion of exact exchange included in density functionals can produce neither delocalized nor localized electronic structures. Based on the produced wavefunction by the optimally-tuned method, the excited-state characteristics of the S1 state of bilirubin molecule indicate a hybrid local and charge transfer excitation, based on the quantitative characterization using hole-electron analysis and interfragment charge transfer method. This work can provide a theoretical basis for the study of excited-state dynamics and spectral properties of bilirubin molecules and the optimally tuned range-separated DFT method also provide a reliable and efficient theoretical tool to study the excited-state properties of other biomolecular systems in the future.
    [1]

    Stocker R, Yamamoto Y, Mcdonagh A F, Glazer A N, Ames B N 1987 Science 235 1043Google Scholar

    [2]

    Fevery J 2008 Liver Int. 28 592Google Scholar

    [3]

    Hissi E G V, Martinez J C G, Zamarbide G N, Estrada M R, Jensen S J K, Tomas-Vert F, Csizmadia I G 2009 J. Mol. Struc.: THEOCHEM 911 24Google Scholar

    [4]

    Carreira-Blanco C, Singer P, Diller R, Lustres J L P 2016 Phys. Chem. Chem. Phys. 18 7148Google Scholar

    [5]

    Person R V, Peterson B R, Lightner D A 1994 J. Am. Chem. Soc. 116 42Google Scholar

    [6]

    Nogales D, Lightner D A 1995 J. Biol. Chem. 270 73Google Scholar

    [7]

    Boiadjiev S E, Watters K, Wolf S, Lai B N, Welch W H, McDonagh A F, Lightner D A 2004 Biochemistry 43 15617Google Scholar

    [8]

    Lightner D A, Holmes D L, McDonagh A F 1996 J. Biol. Chem. 271 2397Google Scholar

    [9]

    Braslavsky S E, Holzwarth A R, Schaffner K 1983 Angew. Chem. Int. Ed. 22 656Google Scholar

    [10]

    Zietz B, Macpherson A N, Gillbro T 2004 Phys. Chem. Chem. Phys. 6 4535Google Scholar

    [11]

    Zietz B, Gillbro T 2007 J. Phys. Chem. B 111 11997Google Scholar

    [12]

    Cao X D, Zhang C C, Gao Z H, Liu Y Y, Zhao Y Z, Yang Y, Chen J Q, Jimenez R, Xu J H 2019 Phys. Chem. Chem. Phys. 21 2365Google Scholar

    [13]

    Zietz B, Blomgren F 2006 Chem. Phys. Lett. 420 556Google Scholar

    [14]

    Fabiano E, Della Sala F, Cingolani R, Weimer M, Görling A 2005 J. Phys. Chem. A 109 3078Google Scholar

    [15]

    Hammond J R, Kowalski K 2009 J. Chem. Phys. 130 194108Google Scholar

    [16]

    Budzák Š, Scalmani G, Jacquemin D 2017 J. Chem. Theory Comput. 13 6237Google Scholar

    [17]

    Hedin L 1965 Phys. Rev. 139 A796Google Scholar

    [18]

    Hybertsen M S, Louie S G 1986 Phys. Rev. B 34 5390Google Scholar

    [19]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [20]

    Cohen A J, Mori-Sanchez P, Yang W T 2011 Chem. Rev. 112 289

    [21]

    Jacquemin D, Wathelet V, Perpète E A, Adamo C 2009 J. Chem. Theory Comput. 5 2420Google Scholar

    [22]

    Tian X H, Sun H T, Zhang Q S, Adachi C 2016 Chin. Chem. Lett. 27 1445Google Scholar

    [23]

    Sun H T, Autschbach J 2013 ChemPhysChem 14 2450Google Scholar

    [24]

    Jiang Y R, Hu Z B, Zhou B, Zhong C, Sun Z R, Sun H T 2019 J. Phys. Chem. C 123 5616Google Scholar

    [25]

    Sutton C, Sears J S, Coropceanu V, Brédas J 2013 J. Phys. Chem. Lett. 4 919Google Scholar

    [26]

    Stein T, Kronik L, Baer R 2009 J. Am. Chem. Soc. 131 2818Google Scholar

    [27]

    Sun H T, Zhong C, Brédas J 2015 J. Chem. Theory Comput. 11 3851Google Scholar

    [28]

    Penfold T J 2015 J. Phys. Chem. C 119 13535Google Scholar

    [29]

    Kronik L, Stein T, Refaely-Abramson S, Baer R 2012 J. Chem. Theory Comput. 8 1515Google Scholar

    [30]

    孙海涛, 钟成, 孙真荣 2016 物理化学学报 32 2197Google Scholar

    Sun H T, Zhong C, Sun Z R 2016 Acta Phys.-Chim. Sin. 32 2197Google Scholar

    [31]

    Körzdörfer T, Sears J S, Sutton C, Brédas J 2011 J. Chem. Phys. 135 204107Google Scholar

    [32]

    Baer R, Livshits E, Salzner U 2010 Annu. Rev. Phys. Chem. 61 85Google Scholar

    [33]

    Stein T, Kronik L, Baer R 2009 J. Chem. Phys. 131 244119Google Scholar

    [34]

    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar

    [35]

    Lee C, Yang W T, Parr R G 1988 Phys. Rev. B 37 785Google Scholar

    [36]

    Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456Google Scholar

    [37]

    Ditchfield R, Hehre W J, Pople J A 1971 J. Chem. Phys. 54 724Google Scholar

    [38]

    Hehre W J, Ditchfield R, Pople J A 1972 J. Chem. Phys. 56 2257Google Scholar

    [39]

    Hariharan P C, Pople J A 1973 Theor. Chim. Acta 28 213Google Scholar

    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Yu H S, He X, Li S L, Truhlar D G 2016 Chem. Sci. 7 5032Google Scholar

    [42]

    Zhao Y, Truhlar D G 2008 Theor. Chem. Acc. 120 215Google Scholar

    [43]

    Zhao Y, Truhlar D G 2006 J. Phys. Chem. A 110 13126Google Scholar

    [44]

    Yanai T, Tew D P, Handy N C 2004 Chem. Phys. Lett. 393 51Google Scholar

    [45]

    Vydrov O A, Scuseria G E 2006 J. Chem. Phys. 125 234109Google Scholar

    [46]

    Chai J D, Head-Gordon M 2008 Phys. Chem. Chem. Phys. 10 6615Google Scholar

    [47]

    Peverati R, Truhlar D G 2011 J. Phys. Chem. Lett. 2 2810Google Scholar

    [48]

    Goerigk L, Grimme S 2010 J. Chem. Phys. 132 184103Google Scholar

    [49]

    Trofimov A B, Schirmer J 1995 J. Phys. B: At., Mol. Opt. Phys. 28 2299Google Scholar

    [50]

    Schäfer A, Horn H, Ahlrichs R 1992 J. Chem. Phys. 97 2571Google Scholar

    [51]

    Schäfer A, Huber C, Ahlrichs R 1994 J. Chem. Phys. 100 5829Google Scholar

    [52]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [53]

    Kumagai A, Ando R, Miyatake H, Greimel P, Kobayashi T, Hirabayashi Y, Shimogori T, Miyawaki A 2013 Cell 153 1602Google Scholar

    [54]

    Mennucci B 2012 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2 386Google Scholar

    [55]

    Tomasi J, Mennucci B, Cammi R 2005 Chem. Rev. 105 2999Google Scholar

    [56]

    Marenich A V, Cramer C J, Truhlar D G 2009 J. Phys. Chem. B 113 6378Google Scholar

    [57]

    Klamt A, Schüürmann G 1993 J. Chem. Soc., Perkin Trans. 2 799

    [58]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J J A, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J 2013 Gaussian 09 Revision E. 01 Wallingford: Gaussian Inc

    [59]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J J A, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J 2016 Gaussian 16 Revision A. 03 Wallingford: Gaussian Inc

    [60]

    Neese F 2012 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2 73Google Scholar

    [61]

    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C 1989 Chem. Phys. Lett. 162 165Google Scholar

    [62]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [63]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

  • 图 1  本文研究的胆红素分子结构

    Figure 1.  The molecular structure of bilirubin studied in this work.

    图 2  本文中各种密度泛函中所含准确交换项比例(eX%)与电子间距离(r12)关系示意图

    Figure 2.  Percentages of exact-exchange (eX%) included in various density functionals as a function of intereletronic distance (r12, Bohr).

    图 3  胆红素分子最低单重激发态的空穴-电子分布示意图

    Figure 3.  Diagram of hole-electron distribution for the lowest singlet excited state (isovalue=0.001).

    图 4  胆红素分子的三个片段划分及各片段对最低单重激发态的空穴和电子的贡献

    Figure 4.  The divided three fragments of bilirubin molecule and contribution of each fragment to the hole and electron for the lowest singlet excited state.

    图 5  胆红素分子最低单重激发态的各片段电子转移矩阵热图

    Figure 5.  Diagram of electron transfer matrix for each fragment of lowest singlet excited state of bilirubin molecule.

    表 1  基组对计算的垂直激发能(EVA)的影响

    Table 1.  Influence of basis set on the calculated vertical excitation energy (EVA).

    Basis setEVA/eV
    CAM-B3 LYPRI-ADC(2)
    PCMGASCOSMOGAS
    def-SV(P)2.983.112.802.97
    def-TZVP2.913.052.692.86
    def2-TZVP2.903.042.81
    EXP a2.73
    a Experimental values are taken from Refs. [12,53].
    DownLoad: CSV

    表 2  各种理论方法计算胆红素分子的垂直激发能(EVA)、振子强度(f )和垂直发射能(EVE)以及与实验值相比的绝对误差和相对误差

    Table 2.  Vertical absorption energies (EVA), oscillator strength (f ) and vertical emission energies (EVE) of bilirubin and the absolute errors and relative errors compared to the available experimental data.

    ωEVA/eVf (S1)AE/eVRE/%E VE/eVAE/eVRE/%
    PBE1.830.02-0.90331.68-0.7130
    B3LYP2.480.12-0.2592.25-0.146
    MN152.811.210.0832.400.010.4
    M062X2.911.300.1872.460.073
    M06HF3.121.420.39142.520.136
    CAM-B3LYP0.3302.911.330.1872.450.063
    LC-ωPBE0.4003.111.430.38142.540.156
    ω B97XD0.2002.941.360.2182.460.073
    M110.2503.011.400.28102.490.104
    LC-ω PBE*0.1782.761.200.0312.36-0.031
    ω B97XD*0.1372.851.280.1242.430.042
    B2 GPPLYP2.921.130.197
    RI-ADC(2)2.691.06-0.041
    EXP a2.732.39
    a Experimental values are taken from Refs. [12,53].
    DownLoad: CSV

    表 3  胆红素分子最低单重激发态的各片段电子净变化量以及片段间电子转移量

    Table 3.  Net change of each fragment and electron transfer between fragments for lowest singlet excited state of bilirubin molecule.

    Electron transfer between fragments
    123
    10.1090.4180.002
    20.0950.3640.002
    30.0020.0080.000
    Net change of
    each fragment
    –0.3230.329–0.006
    DownLoad: CSV
  • [1]

    Stocker R, Yamamoto Y, Mcdonagh A F, Glazer A N, Ames B N 1987 Science 235 1043Google Scholar

    [2]

    Fevery J 2008 Liver Int. 28 592Google Scholar

    [3]

    Hissi E G V, Martinez J C G, Zamarbide G N, Estrada M R, Jensen S J K, Tomas-Vert F, Csizmadia I G 2009 J. Mol. Struc.: THEOCHEM 911 24Google Scholar

    [4]

    Carreira-Blanco C, Singer P, Diller R, Lustres J L P 2016 Phys. Chem. Chem. Phys. 18 7148Google Scholar

    [5]

    Person R V, Peterson B R, Lightner D A 1994 J. Am. Chem. Soc. 116 42Google Scholar

    [6]

    Nogales D, Lightner D A 1995 J. Biol. Chem. 270 73Google Scholar

    [7]

    Boiadjiev S E, Watters K, Wolf S, Lai B N, Welch W H, McDonagh A F, Lightner D A 2004 Biochemistry 43 15617Google Scholar

    [8]

    Lightner D A, Holmes D L, McDonagh A F 1996 J. Biol. Chem. 271 2397Google Scholar

    [9]

    Braslavsky S E, Holzwarth A R, Schaffner K 1983 Angew. Chem. Int. Ed. 22 656Google Scholar

    [10]

    Zietz B, Macpherson A N, Gillbro T 2004 Phys. Chem. Chem. Phys. 6 4535Google Scholar

    [11]

    Zietz B, Gillbro T 2007 J. Phys. Chem. B 111 11997Google Scholar

    [12]

    Cao X D, Zhang C C, Gao Z H, Liu Y Y, Zhao Y Z, Yang Y, Chen J Q, Jimenez R, Xu J H 2019 Phys. Chem. Chem. Phys. 21 2365Google Scholar

    [13]

    Zietz B, Blomgren F 2006 Chem. Phys. Lett. 420 556Google Scholar

    [14]

    Fabiano E, Della Sala F, Cingolani R, Weimer M, Görling A 2005 J. Phys. Chem. A 109 3078Google Scholar

    [15]

    Hammond J R, Kowalski K 2009 J. Chem. Phys. 130 194108Google Scholar

    [16]

    Budzák Š, Scalmani G, Jacquemin D 2017 J. Chem. Theory Comput. 13 6237Google Scholar

    [17]

    Hedin L 1965 Phys. Rev. 139 A796Google Scholar

    [18]

    Hybertsen M S, Louie S G 1986 Phys. Rev. B 34 5390Google Scholar

    [19]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [20]

    Cohen A J, Mori-Sanchez P, Yang W T 2011 Chem. Rev. 112 289

    [21]

    Jacquemin D, Wathelet V, Perpète E A, Adamo C 2009 J. Chem. Theory Comput. 5 2420Google Scholar

    [22]

    Tian X H, Sun H T, Zhang Q S, Adachi C 2016 Chin. Chem. Lett. 27 1445Google Scholar

    [23]

    Sun H T, Autschbach J 2013 ChemPhysChem 14 2450Google Scholar

    [24]

    Jiang Y R, Hu Z B, Zhou B, Zhong C, Sun Z R, Sun H T 2019 J. Phys. Chem. C 123 5616Google Scholar

    [25]

    Sutton C, Sears J S, Coropceanu V, Brédas J 2013 J. Phys. Chem. Lett. 4 919Google Scholar

    [26]

    Stein T, Kronik L, Baer R 2009 J. Am. Chem. Soc. 131 2818Google Scholar

    [27]

    Sun H T, Zhong C, Brédas J 2015 J. Chem. Theory Comput. 11 3851Google Scholar

    [28]

    Penfold T J 2015 J. Phys. Chem. C 119 13535Google Scholar

    [29]

    Kronik L, Stein T, Refaely-Abramson S, Baer R 2012 J. Chem. Theory Comput. 8 1515Google Scholar

    [30]

    孙海涛, 钟成, 孙真荣 2016 物理化学学报 32 2197Google Scholar

    Sun H T, Zhong C, Sun Z R 2016 Acta Phys.-Chim. Sin. 32 2197Google Scholar

    [31]

    Körzdörfer T, Sears J S, Sutton C, Brédas J 2011 J. Chem. Phys. 135 204107Google Scholar

    [32]

    Baer R, Livshits E, Salzner U 2010 Annu. Rev. Phys. Chem. 61 85Google Scholar

    [33]

    Stein T, Kronik L, Baer R 2009 J. Chem. Phys. 131 244119Google Scholar

    [34]

    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar

    [35]

    Lee C, Yang W T, Parr R G 1988 Phys. Rev. B 37 785Google Scholar

    [36]

    Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456Google Scholar

    [37]

    Ditchfield R, Hehre W J, Pople J A 1971 J. Chem. Phys. 54 724Google Scholar

    [38]

    Hehre W J, Ditchfield R, Pople J A 1972 J. Chem. Phys. 56 2257Google Scholar

    [39]

    Hariharan P C, Pople J A 1973 Theor. Chim. Acta 28 213Google Scholar

    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Yu H S, He X, Li S L, Truhlar D G 2016 Chem. Sci. 7 5032Google Scholar

    [42]

    Zhao Y, Truhlar D G 2008 Theor. Chem. Acc. 120 215Google Scholar

    [43]

    Zhao Y, Truhlar D G 2006 J. Phys. Chem. A 110 13126Google Scholar

    [44]

    Yanai T, Tew D P, Handy N C 2004 Chem. Phys. Lett. 393 51Google Scholar

    [45]

    Vydrov O A, Scuseria G E 2006 J. Chem. Phys. 125 234109Google Scholar

    [46]

    Chai J D, Head-Gordon M 2008 Phys. Chem. Chem. Phys. 10 6615Google Scholar

    [47]

    Peverati R, Truhlar D G 2011 J. Phys. Chem. Lett. 2 2810Google Scholar

    [48]

    Goerigk L, Grimme S 2010 J. Chem. Phys. 132 184103Google Scholar

    [49]

    Trofimov A B, Schirmer J 1995 J. Phys. B: At., Mol. Opt. Phys. 28 2299Google Scholar

    [50]

    Schäfer A, Horn H, Ahlrichs R 1992 J. Chem. Phys. 97 2571Google Scholar

    [51]

    Schäfer A, Huber C, Ahlrichs R 1994 J. Chem. Phys. 100 5829Google Scholar

    [52]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [53]

    Kumagai A, Ando R, Miyatake H, Greimel P, Kobayashi T, Hirabayashi Y, Shimogori T, Miyawaki A 2013 Cell 153 1602Google Scholar

    [54]

    Mennucci B 2012 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2 386Google Scholar

    [55]

    Tomasi J, Mennucci B, Cammi R 2005 Chem. Rev. 105 2999Google Scholar

    [56]

    Marenich A V, Cramer C J, Truhlar D G 2009 J. Phys. Chem. B 113 6378Google Scholar

    [57]

    Klamt A, Schüürmann G 1993 J. Chem. Soc., Perkin Trans. 2 799

    [58]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J J A, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J 2013 Gaussian 09 Revision E. 01 Wallingford: Gaussian Inc

    [59]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J J A, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J 2016 Gaussian 16 Revision A. 03 Wallingford: Gaussian Inc

    [60]

    Neese F 2012 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2 73Google Scholar

    [61]

    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C 1989 Chem. Phys. Lett. 162 165Google Scholar

    [62]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [63]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

  • [1] Peng Jie, Zhang Si-Jie, Wang Ke, Dove Martin. Density functional theory calculation of spectrum and excitation properties of mer-Alq3. Acta Physica Sinica, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [2] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang. Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [4] Liu Xiu-Ying, Li Xiao-Feng, Yu Jing-Xin, Li Xiao-Dong. Density functional theory study of hydrogen spillover mechanism on Pd doped covalent organic frameworks COF-108. Acta Physica Sinica, 2016, 65(15): 157302. doi: 10.7498/aps.65.157302
    [5] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [6] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [7] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [8] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [9] Wen Jun-Qing, Xia Tao, Wang Jun-Fei. A density functional theory study of small bimetallic PtnAl (n=18) clusters. Acta Physica Sinica, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [10] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [11] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [12] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [13] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] Liu Jian-Jun. The effect on electronic density of states and optical properties of ZnO by doping Ga. Acta Physica Sinica, 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [15] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [16] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Ma Jun. Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [18] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [19] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [20] Ye Zhen-Cheng, Cai Jun, Zhang Shu-Ling, Liu Hong-Lai, Hu Ying. Studies on the density profiles of square-well chain fluid confined in a slit pore by density functional theory. Acta Physica Sinica, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
Metrics
  • Abstract views:  8047
  • PDF Downloads:  154
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2020
  • Accepted Date:  18 May 2020
  • Available Online:  19 May 2020
  • Published Online:  20 August 2020

/

返回文章
返回