Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional theory calculation of spectrum and excitation properties of mer-Alq3

Peng Jie Zhang Si-Jie Wang Ke Dove Martin

Citation:

Density functional theory calculation of spectrum and excitation properties of mer-Alq3

Peng Jie, Zhang Si-Jie, Wang Ke, Dove Martin
PDF
HTML
Get Citation
  • Meridional tris(8-hydroxyquinoline)aluminum (III) (mer-Alq3) is an organometallic semiconductor material with phenomenal photo-electric properties. In order to understand the molecular luminescence properties of mer-Alq3, the density functional theoretical (B3LYP) method with 6-31G* basis set is employed to calculate its structure, infrared spectrum and Raman spectrum and the frontier molecular orbital of its ground state. The UV-vis absorption and the excited state characteristics are investigated by the time-dependent density functional theory (TD-DFT) method. The results show that the calculated spectral characteristics are in good agreement with the experimental data. The electron cloud of the highest occupied molecular orbital (HOMO) is located mostly on the phenoxide ring, whereas that of the lowest unoccupied molecular orbital (LUMO) sits on the pyridine ring. The absorption peaks of the UV-visible absorption spectrum are located in the visible and ultraviolet region. S0→S2 is attributed to the superposition of the π-π* local excitation in the direction from benzene ring to pyridine ring and the n-π* local excitation in the direction from oxygen atom to pyridine ring. The π-π* local excitation from benzene ring to pyridine ring is S0→S4. The superposition of π-n local excitation from benzene to carbon and n-n local excitation from oxygen to carbon are excited by S0→S11. S0→S14 is charge-transfer excitation and contributed by the superposition of π-π* in the direction from benzene ring to pyridine ring and n-π* in the direction from oxygen atom to pyridine ring. This work is significant for understanding the basic properties of mer-Alq3 and the mechanisms of electron excitations. It provides a deeper insight into the luminescence mechanism of mer-Alq3, thus playing a guidance role in further improving the luminescence efficiency and regulating the spectral range of the light-emitting mer-Alq3.
      Corresponding author: Zhang Si-Jie, sijie.zhang@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61871451), the Natural Science Foundation for Young Scientists of Sichuan Province, China (Grant No. 2017JQ0021), and the Awards of the Ministry of Science and Technology and the Natural Science Foundation of Guizhou Education University, China (Grant No. QKHPTRC[2017]5790-03)
    [1]

    段炼, 邱勇 2015 材料研究学报 29 321Google Scholar

    Duan L, Qiu Y 2015 Chin. J. Mater. Res. 29 321Google Scholar

    [2]

    周瑞, 安忠维, 柴生勇 2004 光谱学与光谱分析 08 922Google Scholar

    Zhou R, An Z W, Chai S Y 2004 Spectrosc. Spect. Anal. 08 922Google Scholar

    [3]

    Xu H, Chen R F, Sun Q, Lai W Y, Su Q Q, Huang W, Liu X G 2014 Chem. Soc. Rev. 43 3259Google Scholar

    [4]

    Tang C W, VanSlyke S A 1987 Appl. Phys. Lett. 51 913Google Scholar

    [5]

    Liao S H, Shiu J R, Liu S W, Yeh S J, Chen Y H, Chen C T, Chow T J, Wu C I 2009 J. Am. Chem. Soc. 131 763Google Scholar

    [6]

    Liu R, Gan Z Q, Shinar R, Shinar J 2011 Phys. Rev. B 83 245302Google Scholar

    [7]

    Katakura R, Koide Y 2006 Inorg. Chem. 45 5730Google Scholar

    [8]

    许金钩, 王尊本 2006 荧光分析法 (北京: 科学出版社) 第42页

    Xu J G, Wang Z B 2006 Fluorescence Analysis (Beijing: Science Press) p42 (in Chinese)

    [9]

    张蕾, 张学俊 2011 化工中间体 7 28

    Zhang L, Zhang X J 2011 Chem. Intermed. 7 28

    [10]

    Xu B S, Chen L Q, Liu X G, Zhou H F, Xu H F, Fang X H, Wang Y L 2008 Appl. Phys. Lett. 92 103305Google Scholar

    [11]

    Pérez-Bolívar C, Takizawa S Y, Nishimura G, Montes V A, Anzenbacher P J 2011 Chem. Eur. J. 17 9076Google Scholar

    [12]

    Stampor W, Kalinowski J, Marco P D, Fattori V 1997 Appl. Phys. Lett. 70 1953Google Scholar

    [13]

    Xue W M, Wang Y, Chan M C W, Su Z M, Cheung K K, Chen C M 1998 Organomet. 17 1946Google Scholar

    [14]

    Xue W M, Chan M C W, Su Z M, Cheung K K, Liu S T, Chen C M 1998 Organomet. 17 1622Google Scholar

    [15]

    苏忠民, 高洪泽, 程红, 初蓓, 陈丽华, 王荣顺, 王悦, 沈家骢 2001 中国科学: 化学 31 16

    Su Z M, Gao H Z, Chen H, Chu B, Chen L H, Wang R S, Wang Y, Shen J C 2001 Sci. China: Chemistry 31 16

    [16]

    Curioni A, Boero M, Andreoni W 1998 Chem. Phys. Lett. 294 263Google Scholar

    [17]

    Sobereva http://sobereva.com/434 [2019-10-25]

    [18]

    Tangui L B, Carlo A, Ilaria C 2011 J. Chem. Theory Comput. 7 2498Google Scholar

    [19]

    Foresman J B, Frisch A 1996 Exploring chemistry with electronic structure method (2nd edn.) (Pittsburgh: Gaussian, Inc.) p64

    [20]

    Curioni A, Andreoni W 2001 IBM J. Res. Dev. 45 101Google Scholar

    [21]

    Brinkmann M, Gadret G, Muccini M, Taliani C, Masciocchi N, Sironi A 2000 J. Am. Chem. Soc. 122 5147Google Scholar

    [22]

    Chemistry Database [DB/OL]. Shanghai Institute of Organic Chemistry of CAS. http://www.organchem.csdb.cn. [1978–2019]

    [23]

    王媛媛 2006 硕士学位论文 (山东: 山东大学)

    Wang Y Y 2006 M.S. Thesis (Shangdong: Shandong University) (in Chinese)

    [24]

    解晓东, 郝玉英, 章日光, 王宝俊 2012 物理学报 61 127201Google Scholar

    Xie X D, Hao Y Y, Zhang R G, Wang B J 2012 Acta Phys. Sin. 61 127201Google Scholar

    [25]

    卢天, 陈飞武 2011 化学学报 69 2393

    Lu T, Chen F W 2011 Acta Chim. Sin. 69 2393

    [26]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [27]

    Multiwfn Manual, Lu T http://sobereva.com/multiwfn/[2019-9-2]

  • 图 1  mer-Alq3的分子结构

    Figure 1.  Structure of the mer-Alq3 molecule.

    图 2  mer-Alq3分子的红外光谱

    Figure 2.  Infrared absorption spectrum of mer-Alq3.

    图 3  mer-Alq3的拉曼光谱

    Figure 3.  Raman spectrum of mer-Alq3.

    图 4  mer-Alq3前线分子轨道分布图 (a) HOMO-2轨道分布图; (b) HOMO-1轨道分布图; (c) HOMO轨道分布图; (d) LUMO轨道分布图; (e) LUMO+1轨道分布图; (f) LUMO+2轨道分布图

    Figure 4.  Frontier molecular orbits of mer-Alq3: (a) HOMO-2 distribution; (b) HOMO-1 distribution; (c) HOMO distribution; (d) LUMO distribution; (e) LUMO+1 distribution; (f) LUMO+2 distribution.

    图 5  mer-Alq3分子的紫外-可见吸收光谱

    Figure 5.  UV-Vis absorption spectrum of mer-Alq3.

    图 6  mer-Alq3的空穴-电子、Chole-Cele、Sr示意图 (a)−(c) S2的空穴-电子, Chole-Cele, Sr图; (d)−(f) S4的空穴-电子, Chole-Cele, Sr图; (g)−(i) S11的空穴-电子, Chole-Cele, Sr图; (j)−(l) S14的空穴-电子, Chole-Cele, Sr

    Figure 6.  Electron-hole, Chole-Cele and Sr distributions of mer-Alq3 respectively: (a)−(c) Electron-hole, Chole-Cele, Sr distribution at S2 state geometry; (d)−(f) Electron-hole, Chole-Cele, Sr distribution at S4 state geometry; (g)−(i) Electron-hole, Chole-Cele, Sr distribution at S11 state geometry; (j)−(l) Electron-hole, Chole-Cele, Sr distribution at S14 state geometry

    表 1  mer-Alq3分子的键长

    Table 1.  Bond lengths of the mer-Alq3.

    BondB3LYP/6-31G*/ÅExperimental results/Å[21]
    Al-Na2.083772.0502
    Al-Nb2.125652.0872
    Al-Nc2.064312.0172
    Al-Oa1.855451.8502
    Al-Ob1.881061.8602
    Al-Oc1.883981.8572
    DownLoad: CSV

    表 2  mer-Alq3分子中部分振动模式指认

    Table 2.  Identification of partial vibration modes of mer-Alq3.

    Vexperiment/cm–1Vtheory/cm–1Vibration analysisVexperiment/cm–1Vtheory/cm–1Vibration analysis
    398408分子骨架扭曲变形12281268C—N伸缩振动, C—H平面摇摆振动, 剪式振动
    416422分子骨架扭曲变形, 环1环2环5 环6上C—H平面摇摆振动, 环3环4上C—H扭曲振动12801334C—O, C—C伸缩振动, C—H平面摇摆振动
    457470C—H扭曲振动13281376C—H平面摇摆振动, 剪式振动
    548554Al-O50伸缩振动, 环1环2呼吸振动13831422C—C伸缩振动, C—H平面摇摆振动
    642662Al-O50伸缩振动, C—H扭曲振动14241438C—N、C—C伸缩振动, C—H 平面摇摆振动, 剪式振动
    746768Al-O面外弯曲振动, 环3环4呼吸
    振动
    14681512C—N伸缩振动, C—C伸缩振动, C—H平面摇摆振动
    787796C—H扭曲振动14991550C—C伸缩振动, C—H平面摇摆振动
    803820苯环和吡啶环变形振动15791636C—N伸缩振动, C—C伸缩振动, C—H平面摇摆振动, 剪式振动
    823836C—H面外摇摆振动16061658C—N伸缩振动, C—C伸缩振动, C—H平面摇摆振动, 剪式振动
    11141140C—H剪式振动30393202苯环上C—H伸缩振动
    DownLoad: CSV

    表 3  mer-Alq3分子中部分振动模式指认

    Table 3.  Identification of partial vibration modes of mer-Alq3.

    Vexperiment/cm–1Vtheory/cm–1Vibration analysis
    507508Al—O扭曲振动, 苯环和吡啶环变形振动
    529530Al—O伸缩振动, 苯环和吡啶环呼吸振动
    545554Al—O伸缩振动, 苯环和吡啶环呼吸振动
    581586Al—O扭曲振动, 苯环和吡啶环变形振动
    760768Al—O伸缩振动, 苯环和吡啶环呼吸振动
    10621086C—H平面摇摆振动, 剪式振动
    11771172C—H平面摇摆振动, 剪式振动
    13931422C—O, C—C伸缩振动, C—H平面摇摆振动, 剪式振动
    1438C—N、C—C伸缩振动, C—H平面摇摆振动, 剪式振动
    15931638C—C伸缩振动, C—H平面摇摆振动, 剪式振动
    3216C—H伸缩振动
    DownLoad: CSV

    表 4  mer-Alq3的前线分子轨道能级(单位: arb.units)及分布(单位: %)

    Table 4.  Frontier molecular orbital energy levels (in arb.units) and distribution (in %) of mer-Alq3.

    分子轨道能级Alabc
    O吡啶O吡啶O吡啶
    H-2–0.195841.510.160.850.9320.3664.5919.940.240.741.15
    H-1–0.192041.572.058.502.560.361.181.1717.1958.3017.72
    H–0.183971.4719.2557.5217.840.360.200.243.587.262.42
    L–0.063631.600.060.180.911.6625.2864.810.294.5512.18
    L+1–0.054961.360.628.4120.900.243.247.251.3319.6447.98
    L+2–0.052181.281.7221.5756.030.541.835.130.816.3216.59
    DownLoad: CSV

    表 5  mer-Alq3分子的电子激发分析表

    Table 5.  The analysis of electron excitation of mer-Alq3.

    Excited stateλ/nmfTransition nature (contribution > 10%)Transition energy/eV
    2427.150.0672119→121 (45.9956%); 119→122 (23.0683%);
    118→120 (21.1263%)
    2.9026
    4417.310.0425117→120 (88.1022%)2.9710
    11304.030.0151119→124 (38.2445%); 119→125 (23.0208%)4.0781
    12302.870.0214117→123 (66.2078%); 114→120 (20.1638%)4.0937
    DownLoad: CSV

    表 6  mer-Alq3分子的激发态参数

    Table 6.  Excited state parameters of mer-Alq3.

    DSr/arb.unitsHt
    S0 → S20.180.613.570.12
    S0 → S40.990.592.950.41
    S0 → S110.880.793.84–1.38
    S0 → S140.680.433.472.00
    DownLoad: CSV
  • [1]

    段炼, 邱勇 2015 材料研究学报 29 321Google Scholar

    Duan L, Qiu Y 2015 Chin. J. Mater. Res. 29 321Google Scholar

    [2]

    周瑞, 安忠维, 柴生勇 2004 光谱学与光谱分析 08 922Google Scholar

    Zhou R, An Z W, Chai S Y 2004 Spectrosc. Spect. Anal. 08 922Google Scholar

    [3]

    Xu H, Chen R F, Sun Q, Lai W Y, Su Q Q, Huang W, Liu X G 2014 Chem. Soc. Rev. 43 3259Google Scholar

    [4]

    Tang C W, VanSlyke S A 1987 Appl. Phys. Lett. 51 913Google Scholar

    [5]

    Liao S H, Shiu J R, Liu S W, Yeh S J, Chen Y H, Chen C T, Chow T J, Wu C I 2009 J. Am. Chem. Soc. 131 763Google Scholar

    [6]

    Liu R, Gan Z Q, Shinar R, Shinar J 2011 Phys. Rev. B 83 245302Google Scholar

    [7]

    Katakura R, Koide Y 2006 Inorg. Chem. 45 5730Google Scholar

    [8]

    许金钩, 王尊本 2006 荧光分析法 (北京: 科学出版社) 第42页

    Xu J G, Wang Z B 2006 Fluorescence Analysis (Beijing: Science Press) p42 (in Chinese)

    [9]

    张蕾, 张学俊 2011 化工中间体 7 28

    Zhang L, Zhang X J 2011 Chem. Intermed. 7 28

    [10]

    Xu B S, Chen L Q, Liu X G, Zhou H F, Xu H F, Fang X H, Wang Y L 2008 Appl. Phys. Lett. 92 103305Google Scholar

    [11]

    Pérez-Bolívar C, Takizawa S Y, Nishimura G, Montes V A, Anzenbacher P J 2011 Chem. Eur. J. 17 9076Google Scholar

    [12]

    Stampor W, Kalinowski J, Marco P D, Fattori V 1997 Appl. Phys. Lett. 70 1953Google Scholar

    [13]

    Xue W M, Wang Y, Chan M C W, Su Z M, Cheung K K, Chen C M 1998 Organomet. 17 1946Google Scholar

    [14]

    Xue W M, Chan M C W, Su Z M, Cheung K K, Liu S T, Chen C M 1998 Organomet. 17 1622Google Scholar

    [15]

    苏忠民, 高洪泽, 程红, 初蓓, 陈丽华, 王荣顺, 王悦, 沈家骢 2001 中国科学: 化学 31 16

    Su Z M, Gao H Z, Chen H, Chu B, Chen L H, Wang R S, Wang Y, Shen J C 2001 Sci. China: Chemistry 31 16

    [16]

    Curioni A, Boero M, Andreoni W 1998 Chem. Phys. Lett. 294 263Google Scholar

    [17]

    Sobereva http://sobereva.com/434 [2019-10-25]

    [18]

    Tangui L B, Carlo A, Ilaria C 2011 J. Chem. Theory Comput. 7 2498Google Scholar

    [19]

    Foresman J B, Frisch A 1996 Exploring chemistry with electronic structure method (2nd edn.) (Pittsburgh: Gaussian, Inc.) p64

    [20]

    Curioni A, Andreoni W 2001 IBM J. Res. Dev. 45 101Google Scholar

    [21]

    Brinkmann M, Gadret G, Muccini M, Taliani C, Masciocchi N, Sironi A 2000 J. Am. Chem. Soc. 122 5147Google Scholar

    [22]

    Chemistry Database [DB/OL]. Shanghai Institute of Organic Chemistry of CAS. http://www.organchem.csdb.cn. [1978–2019]

    [23]

    王媛媛 2006 硕士学位论文 (山东: 山东大学)

    Wang Y Y 2006 M.S. Thesis (Shangdong: Shandong University) (in Chinese)

    [24]

    解晓东, 郝玉英, 章日光, 王宝俊 2012 物理学报 61 127201Google Scholar

    Xie X D, Hao Y Y, Zhang R G, Wang B J 2012 Acta Phys. Sin. 61 127201Google Scholar

    [25]

    卢天, 陈飞武 2011 化学学报 69 2393

    Lu T, Chen F W 2011 Acta Chim. Sin. 69 2393

    [26]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [27]

    Multiwfn Manual, Lu T http://sobereva.com/multiwfn/[2019-9-2]

  • [1] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [2] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] Li Shi-Xiong, Zhang Zheng-Ping, Long Zheng-Wen, Qin Shui-Jie. Ground state properties and spectral properties of borospherene B40 under different external electric fields. Acta Physica Sinica, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [4] Jiang Peng, Bi Wei-Hong, Qi Yue-Feng, Fu Xing-Hu, Wu Yang, Tian Peng-Fei. Theoretical model and spectrum characteristics of superimposed photonic crystal fiber grating. Acta Physica Sinica, 2016, 65(20): 204208. doi: 10.7498/aps.65.204208
    [5] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [6] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [7] Wu Yong-Gang, Li Shi-Xiong, Hao Jin-Xin, Xu Mei, Sun Guang-Yu, Linghu Rong-Feng. Properties of ground state and spectrum of CdSe in different external electric fields. Acta Physica Sinica, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [8] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [9] Xu Ying-Ying, Kan Yu-He, Wu Jie, Tao Wei, Su Zhong-Min. Theoretical study on the electronic structures and photophysical properties of carbon nanorings and their analogues. Acta Physica Sinica, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [10] Wang Sen, Zhou Ya-Xun, Dai Shi-Xun, Wang Xun-Si, Shen Xiang, Chen Fei-Fei, Xu Xing-Chen. The fabrication of Er3+/Ce3+ co-doped tellurite- bismuth glasses and the improvement of spectroscopic properties. Acta Physica Sinica, 2012, 61(10): 107802. doi: 10.7498/aps.61.107802
    [11] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] Gao Tao, Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Xiao Yan. Spatial configurations and X-ray absorption of Ti catalyzing on NaAlH4 surfaces: Car-Parrinello molecular dynamics and density functional theory study. Acta Physica Sinica, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [13] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] Li Xue-Mei, Zhang Jian-Ping. Theoretical study on the structure, spectra and thermodynamic property of 5-(2-aryloxy-methylbenzimidazole-1-carbadehyde)-1,3,4-oxadiazole-2-thione. Acta Physica Sinica, 2010, 59(11): 7736-7742. doi: 10.7498/aps.59.7736
    [15] Sun Jian-Min, Zhao Gao-Feng, Wang Xian-Wei, Yang Wen, Liu Yan, Wang Yuan-Xu. Study of structural and electronic properties of Cu-adsorbed (SiO2)n(n=1—8) clusters with the DFT. Acta Physica Sinica, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [16] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [17] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [18] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Pu Zhong-Sheng. Density functional theory study of the structures and properties of (Li3N)n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [19] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Yuan Li-Hua, Li Yan-Long. Density functional theory study on the structures and properties of (Ca3N2)n(n=1—4) clusters. Acta Physica Sinica, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [20] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
Metrics
  • Abstract views:  10779
  • PDF Downloads:  133
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2019
  • Accepted Date:  30 October 2019
  • Published Online:  20 January 2020

/

返回文章
返回