-
The experiment of neutron single event effect was carried out at China Spallation Neutron Source (CSNS) back-n on 13 kinds of commercial SRAM. The single event upset (SEU) cross section of each device was obtained, and multiple cell upsets (MCU) were extracted from the SEUs using a statistical method without layout information. The influences of the test pattern, feature size and device layout on the SEU cross section and MCU were studied. The results show that the test pattern has little influence on the SEU cross section of the devices, but has a great influence on the MCU ratio of some devices. The feature size has influence both on the SEU cross section and the MCU ratio of the devices. The influence on SEU cross section is not definite. The influence on the MCU ratio is definite. Both the ratio and the maximum size of the MCUs increase with the decrease of the feature size. The difference of layout has great influence both on the SEU cross section and the MCU ratio of the device. In addition, compared with the results of plateau irradiation, the ratio of MCU in CSNS back-n is less than that of plateau irradiation. There are two reasons for this difference. One is that the energy spectrum of CSNS back-n is softer than that of the atmospheric neutron. The other is the neutron beam at CSNS back-n is perpendicular to the device under test. Therefore, evaluating the atmospheric neutron SEE using CSNS back-n line may underestimate the MCU ratio of the device under test. The experimental data, analytical methods and results obtained in this paper are valuable for the researchers to carry out the atmospheric neutron SEE test and the evaluation of devices on atmospheric neutron SEE.
-
Keywords:
- China spallation neutron source /
- neutron single event effect /
- single event upset /
- multiple cell upsets
[1] Wrobel F, Palau J M, Calvet M C, Bersillon O, Duarte H 2000 IEEE Trans. Nucl. Sci. 47 2580Google Scholar
[2] Hubert G, Bezerra F, Nicot J M, Artola L, Cheminet A, Valdivia J N, Mouret J M, Meyer J R, Cocquerez P 2014 IEEE Trans. Nucl. Sci. 61 1703Google Scholar
[3] Autran J L, Munteanu D 2015 Microelectron. Reliab. 55 2147Google Scholar
[4] Juan A C, Guillaume H, Francisco J F, Francesca V, Maud B, Hortensia M, Helmut P, Raoul V 2017 IEEE Trans. Nucl. Sci. 64 2188
[5] Azambuja J R, Nazar G, Rech P, Carro L, Kastensmidt F L, Fairbanks T, Quinn H 2013 IEEE Trans. Nucl. Sci. 60 4243Google Scholar
[6] Normand E 1996 IEEE Trans. Nucl. Sci. 43 2742Google Scholar
[7] Quinn H, Graham P, Manuzzato A, Fairbanks T, Dallmann N, DesGeorges R 2010 IEEE Trans. Nucl. Sci. 57 3547
[8] Abe S, Watanabe Y 2014 IEEE Trans. Nucl. Sci. 61 3519Google Scholar
[9] Granlund T, Granbom B, Olsson N 2003 IEEE Trans. Nucl. Sci. 50 2065Google Scholar
[10] Chen W, Guo X, Wang C, Zhang F, Qi C, Wang X, Jin X, Wei Y, Yang S, Song Z 2019 IEEE Trans. Nucl. Sci. 66 856Google Scholar
[11] Lee U T, Monga S, Choi U, Lee J, Pae S 2018 IEEE Trans. Nucl. Sci. 65 1255Google Scholar
[12] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar
Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar
[13] Dyer C S, Clucas S N, Sanderson C, Frydland A D, Green R T 2004 IEEE Trans. Nucl. Sci. 51 2817Google Scholar
[14] Weulersse C, Guibbaud N, Beltrando A L, Galinat J, Beltrando C, Miller F, Trochet P, Alexandrescu D 2017 IEEE Trans. Nucl. Sci. 64 2268
[15] 郭晓强, 郭红霞, 王桂珍, 林东生, 陈伟, 白小燕, 杨善潮, 刘岩 2009 强激光与粒子束 21 1547
Guo X Q, Guo H X, Wang G Z, Ling D S, Chen W, Bai X Y, Yang S C, Liu Y 2009 High Power Laser Particle Beams 21 1547
[16] Yang W, Li Y, Li Y, Hu Z, Xie F, He C, Wang S, Zhou B, He H, Khan W, Liang T 2019 Microelectron. Reliab. 99 119Google Scholar
[17] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 物理学报 68 238502Google Scholar
Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar
[18] JEDEC, Measurement and Reporting of Alpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices: JESD89 A, JEDEC STANDARD, vol.89, JEDEC Solid State Technology Association
[19] Ni W, Jing H, Zhang L, Ou L 2018 Radiat. Phys. Chem. 152 43Google Scholar
[20] 鲍杰, 陈永浩, 张显鹏, 等 2019 物理学报 68 080101Google Scholar
Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar
[21] Ahlbin, J R, Atkinson N M, Gadlage M J, Gaspard N J, Bhuva B L, Loveless T D, Zhang E X, Chen L, Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2585Google Scholar
[22] Lilja K, Bounasser M, Wen S J, et al. 2013 IEEE Trans. Nucl. Sci. 60 2782Google Scholar
[23] He Y, Chen S, Chen J, Chi Y, Liang B, Liu B, Qin J, Du Y, Huang P 2012 IEEE Trans. Nucl. Sci. 59 2772Google Scholar
[24] Atkinson N M, Witulski A F, Holman W T, et al. 2011 IEEE Trans. Nucl. Sci. 58 885Google Scholar
[25] Wang X, Ding L, Luo Y, Chen W, Zhang F, Guo X 2020 IEEE Trans. Nucl. Sci. 67 1443Google Scholar
[26] 王勋, 罗尹虹, 丁李利, 张凤祁, 陈伟, 郭晓强, 王坦 2020 原子能科学技术Google Scholar
Wang X, Luo Y H, Ding L L, Zhang F Q, Chen W, Guo X Q, Wang T 2020 Atom. Energy Sci. Technol.Google Scholar
[27] Radaelli D, Puchner H, Wong S, Daniel S 2005 IEEE Trans. Nucl. Sci. 52 2433Google Scholar
[28] Yasuo Y, Hironaru Y, Eishi I, Hideaki K, Masatoshi S, Takashi A, Shigehisa Y 2007 IEEE Trans. Nucl. Sci. 54 1030Google Scholar
[29] Zhang Z G, Liu J, Hou M D, et al. 2013 Chin. Phys. B 22 086102Google Scholar
[30] Ikeda N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200Google Scholar
-
图 6 同一厂商系列不同特征尺寸SRAM器件SEU截面对比 (a) HITECHI/RENESAS HM系列SRAM; (b) Cypress CY1318系列SRAM;(c) Cypress CY62126系列SRAM; (d) ISSI IS6X系列SRAM
Figure 6. Comparison of the SEE cross sections of devices from the same manufacturer with different feature sizes: (a) HITECHI/RENESAS HM SRAM; (b) Cypress CY1318SRAM; (c) Cypress CY62126SRAM; (d) ISSI IS6X SRAM
表 1 待测SRAM器件参数
Table 1. Parameters of the SRAM devices for test.
型号 制造商 容量/bits 特征尺寸/nm 工作电压/V HM628512A HITACHI 4 M (512 K × 8) 500 5 HM628512B HITACHI 4 M (512 K × 8) 350 3.3 HM62V8100 RENESAS 8 M (1 M × 8) 180 3.3 IS62WV1288 ISSI 1 M (128 K × 8) 130 3.3 IS64WV25616 ISSI 4 M (256 K × 16) 65 3.3 IS61WV204816 ISSI 32 M (2 M × 16) 40 3.3 CY62126V Cypress 1 M (64 K × 16) 350 3.0 CY62126BV Cypress 1 M (64 K × 16) 250 3.0 CY62126DV Cypress 1 M (64 K × 16) 130 3.0 CY7C1318AV18 Cypress 18 M (1 M × 18) 150 1.8 CY7C1318BV18 Cypress 18 M (1 M × 18) 90 1.8 CY7C1318KV18 Cypress 18 M (1 M × 18) 65 1.8 M328C 国产 256 K (32 K × 8) 65 1.8 表 2 在CSNS反角白光中子源的SEU测试结果
Table 2. Test results of the SEUs at CSNS back-n.
型号 特征尺寸/nm 测试图形 容量/Mbit 注量(>10 MeV)/108 n·cm–2 翻转数/# 翻转截面/10-14cm2·bit–1 不确定度/% HM628512A 500 0x00H 12 5.54 176 2.52 12.88 0x55H 12 7.21 262 2.89 12.13 0xAAH 12 5.38 215 3.18 12.47 0xFFH 12 5.36 205 3.04 12.56 HM628512B 350 0x00H 12 5.71 207 2.88 12.54 0x55H 8 7.03 197 3.34 12.64 0xAAH 12 8.97 303 2.69 11.92 0xFFH 12 3.26 114 2.78 14.03 HM62V8100 180 0x00H 24 5.31 343 2.57 11.75 0x55H 24 5.29 367 2.76 11.67 0xAAH 24 5.29 387 2.91 11.61 0xFFH 24 5.36 342 2.53 11.76 IS62WV1288 130 0x00H 1 9.52 55 5.51 17.05 0xAAH 3 8.05 116 4.58 13.97 0xFFH 3 10.20 151 4.68 13.24 IS64WV25616 65 0x00H 8 4.76 271 6.79 12.08 0x55H 8 4.76 339 8.49 11.77 0xAAH 8 5.23 381 8.68 11.63 0xFFH 8 4.50 275 7.28 12.06 IS61WV204816 40 0x00H 64 4.76 534 1.67 11.30 0x55H 64 4.76 523 1.64 11.32 0xAAH 64 4.76 589 1.84 11.22 0xFFH 64 6.35 707 1.66 11.10 CY62126V 350 0x55H 3 9.88 64 2.06 16.29 0xAAH 3 9.88 71 2.28 15.81 CY62126BV 250 0x55H 3 128.00 516 1.28 11.33 CY62126DV 130 0x00H 3 10.40 115 3.53 14.00 0x55H 3 10.60 139 4.16 13.45 0xAAH 3 10.40 141 4.30 13.41 0xFFH 3 9.04 106 3.73 14.26 CY7C1318AV18 150 0X55H 32 5.12 1293 7.52 10.80 CY7C1318BV18 90 0X55H 32 4.69 381 2.42 11.63 CY7C1318KV18 65 0X55H 32 5.09 374 2.19 11.65 M328C 65 0X55H 0.75 116 167 1.84 13.00 表 3 单粒子MCU提取结果
Table 3. Extraction results of the single event multiple cell upsets.
型号 特征尺寸/nm 不同测试图形时MCU占比 最大MCU位数 0x00 0x55H 0xAAH 0xFFH HM628512A 500 0 0 0 0 1 HM628512B 350 0 0 0 0 1 HM62V8100 180 2.33% 5.94% 1.09% 4.68% 2 IS62WV1288 130 — 0 4.65% 0 2 IS64WV25616 65 9.59% 9.14% 6.01% 0.73% 3 IS61WV204816 40 28.29% 24.09% 28.52% 25.00% 7 CY62126V 350 0 0 0 0 1 CY62126BV 250 0 0 0 0 1 CY62126DV 130 40.00% 35.97% 35.46% 45.28% 3 CY7C1318AV18 150 — 36.13% — — 4 CY7C1318BV18 90 — 42.31% — — 6 CY7C1318KV18 65 — 56.80% — — 7 M328C 65 — 14.37% — — 2 -
[1] Wrobel F, Palau J M, Calvet M C, Bersillon O, Duarte H 2000 IEEE Trans. Nucl. Sci. 47 2580Google Scholar
[2] Hubert G, Bezerra F, Nicot J M, Artola L, Cheminet A, Valdivia J N, Mouret J M, Meyer J R, Cocquerez P 2014 IEEE Trans. Nucl. Sci. 61 1703Google Scholar
[3] Autran J L, Munteanu D 2015 Microelectron. Reliab. 55 2147Google Scholar
[4] Juan A C, Guillaume H, Francisco J F, Francesca V, Maud B, Hortensia M, Helmut P, Raoul V 2017 IEEE Trans. Nucl. Sci. 64 2188
[5] Azambuja J R, Nazar G, Rech P, Carro L, Kastensmidt F L, Fairbanks T, Quinn H 2013 IEEE Trans. Nucl. Sci. 60 4243Google Scholar
[6] Normand E 1996 IEEE Trans. Nucl. Sci. 43 2742Google Scholar
[7] Quinn H, Graham P, Manuzzato A, Fairbanks T, Dallmann N, DesGeorges R 2010 IEEE Trans. Nucl. Sci. 57 3547
[8] Abe S, Watanabe Y 2014 IEEE Trans. Nucl. Sci. 61 3519Google Scholar
[9] Granlund T, Granbom B, Olsson N 2003 IEEE Trans. Nucl. Sci. 50 2065Google Scholar
[10] Chen W, Guo X, Wang C, Zhang F, Qi C, Wang X, Jin X, Wei Y, Yang S, Song Z 2019 IEEE Trans. Nucl. Sci. 66 856Google Scholar
[11] Lee U T, Monga S, Choi U, Lee J, Pae S 2018 IEEE Trans. Nucl. Sci. 65 1255Google Scholar
[12] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar
Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar
[13] Dyer C S, Clucas S N, Sanderson C, Frydland A D, Green R T 2004 IEEE Trans. Nucl. Sci. 51 2817Google Scholar
[14] Weulersse C, Guibbaud N, Beltrando A L, Galinat J, Beltrando C, Miller F, Trochet P, Alexandrescu D 2017 IEEE Trans. Nucl. Sci. 64 2268
[15] 郭晓强, 郭红霞, 王桂珍, 林东生, 陈伟, 白小燕, 杨善潮, 刘岩 2009 强激光与粒子束 21 1547
Guo X Q, Guo H X, Wang G Z, Ling D S, Chen W, Bai X Y, Yang S C, Liu Y 2009 High Power Laser Particle Beams 21 1547
[16] Yang W, Li Y, Li Y, Hu Z, Xie F, He C, Wang S, Zhou B, He H, Khan W, Liang T 2019 Microelectron. Reliab. 99 119Google Scholar
[17] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄 2019 物理学报 68 238502Google Scholar
Hu Z L, Yang W T, Li Y H, Li Y, He C H, Wang S L, Zhou B, Yu Q Z, He H, Xie F, Bai Y R, Liang T J 2019 Acta Phys. Sin. 68 238502Google Scholar
[18] JEDEC, Measurement and Reporting of Alpha Particles and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices: JESD89 A, JEDEC STANDARD, vol.89, JEDEC Solid State Technology Association
[19] Ni W, Jing H, Zhang L, Ou L 2018 Radiat. Phys. Chem. 152 43Google Scholar
[20] 鲍杰, 陈永浩, 张显鹏, 等 2019 物理学报 68 080101Google Scholar
Bao J, Chen Y H, Zhang X P, et al. 2019 Acta Phys. Sin. 68 080101Google Scholar
[21] Ahlbin, J R, Atkinson N M, Gadlage M J, Gaspard N J, Bhuva B L, Loveless T D, Zhang E X, Chen L, Massengill L W 2011 IEEE Trans. Nucl. Sci. 58 2585Google Scholar
[22] Lilja K, Bounasser M, Wen S J, et al. 2013 IEEE Trans. Nucl. Sci. 60 2782Google Scholar
[23] He Y, Chen S, Chen J, Chi Y, Liang B, Liu B, Qin J, Du Y, Huang P 2012 IEEE Trans. Nucl. Sci. 59 2772Google Scholar
[24] Atkinson N M, Witulski A F, Holman W T, et al. 2011 IEEE Trans. Nucl. Sci. 58 885Google Scholar
[25] Wang X, Ding L, Luo Y, Chen W, Zhang F, Guo X 2020 IEEE Trans. Nucl. Sci. 67 1443Google Scholar
[26] 王勋, 罗尹虹, 丁李利, 张凤祁, 陈伟, 郭晓强, 王坦 2020 原子能科学技术Google Scholar
Wang X, Luo Y H, Ding L L, Zhang F Q, Chen W, Guo X Q, Wang T 2020 Atom. Energy Sci. Technol.Google Scholar
[27] Radaelli D, Puchner H, Wong S, Daniel S 2005 IEEE Trans. Nucl. Sci. 52 2433Google Scholar
[28] Yasuo Y, Hironaru Y, Eishi I, Hideaki K, Masatoshi S, Takashi A, Shigehisa Y 2007 IEEE Trans. Nucl. Sci. 54 1030Google Scholar
[29] Zhang Z G, Liu J, Hou M D, et al. 2013 Chin. Phys. B 22 086102Google Scholar
[30] Ikeda N, Kuboyama S, Matsuda S, Handa T 2005 IEEE Trans. Nucl. Sci. 52 2200Google Scholar
Catalog
Metrics
- Abstract views: 6412
- PDF Downloads: 77
- Cited By: 0