-
The China Spallation Neutron Source Phase-II Project (CSNS-II) includes the construction of a muon source, namely “Muon station for sciEnce technoLOgy and inDustrY” (MELODY). A muon target station and a surface muon beam line will be completed as scheduled in 2029, making MELODY the first Chinese muon facility. This beam line mainly focuses on the application of muon spin relaxation/rotation/resonance (μSR) spectroscopy. The MELODY also reserves the tunnels for building a negative muon beam line and a decay muon beam line in the future, thereby further expanding the research field to muon-induced X-ray emission (MIXE) elemental analysis and μSR measurements in thick cells, respectively. The two types of material characterization technologies keep their uniqueness in multi-disciplinary researches, and also provide complementary insights for other techniques, such as neutron scattering, nuclear magnetic resonance, and X-ray fluorescence analysis. The μSR spectroscopy is a mature technology for injecting highly spin polarized muon beams into various types of materials. The subsequent precession and relaxation of muon spin in its surrounding atomic environment reflect the static and dynamical properties of the material of interest, which are then measured by detecting the asymmetric emission of positrons from the decay of those muons, with an average lifetime of approximately 2.2 μs. This enables μSR to develop into a powerful quantum magnetic probe for investigating materials related to magnetism, superconductivity, and molecular dynamics. The combination of a positive muon and an electron is known as muonium, which is a unique and sensitive probe in studying semiconductors, new energy materials, free radical chemistry, etc. As the production of muon beams strongly relies on proton accelerator, only five muon facilities in the world are available for μSR experiments. This limits the large-scale application of muon related sciences. Especially, Chinese researchers face fierce competition and can only apply for precious and limited muon beam time from international muon sources to characterize the key properties of their materials. The construction of the MELODY muon facility at CSNS-II aims to provide intense and pulsed muon beams for Chinese and international users to conduct their μSR measurements with high quality data in a low repetition rate operation mode. To achieve this goal, as shown in Fig. 1 , the μSR spectrometer is designed with 1) over 3000 detector units to obtain a sufficient counting rate of 80 Million/h to significantly suppress statistical fluctuations in a short measuring time, 2) a high asymmetry of 0.3 to greatly amplify μSR signals so as to further reduce statistical fluctuations, and 3) extendable low temperature devices to cover most μSR applications and also fulfill experiments with extreme condition requirements.The MIXE elemental analysis is a type of particle induced X-ray emission (PIXE) technology. Due to the heavier mass of negative muon, the energy of muonic X-ray is around 207 higher than that of X-ray or electron induced fluorescence X-ray. Thus, the MIXE technology is more sensitive to materials with low atomic numbers, and thick samples can be effectively studied without scratching their surfaces. Due to these advantages, the MIXE has been successfully applied to the elemental analysis of cultural heritages, meteorites, Li-ion batteries, etc. MELODY reserves tunnels for negative muon extractions and transport to a MIXE terminal. The MELODY research team is developing a new detection technology with high energy resolution and high counting capability to shorten the measuring time to an acceptable amount based on the 1-Hz repetition rate of muon pulses. The μSR spectroscopy and MIXE are the two most important application fields of accelerator muon beams. The MELODY muon facility aims to develop and promote these technologies in China by constructing dedicated muon beam lines in CSNS-II and in the future. In this overview, we introduce the principles and advantages of the μSR and MIXE technologies, as well as the physical design and application prospects of the μSR and MIXE spectrometers based on the CSNS-II muon source. Finally, discussions and expectations are made regarding the future upgrade of the CSNS-II muon source’s muon beamline and its broader applications. -
Keywords:
- China Spallation Neutron Source (CSNS) /
- muon experimental terminal /
- muon spin relaxation/rotation/resonance spectroscopy /
- muon-induced X-ray emission
[1] Neddermeyer S H, Anderson C D 1937 Phys. Rev. 51 884Google Scholar
[2] Conversi M, Pancini E, Piccioni O 1947 Phys. Rev. 71 209Google Scholar
[3] Meyer S L, Anderson E W, Bleser E, Lederman I M, Rosen J L, Rothberg J, Wang I T 1963 Phys. Rev. 132 2693Google Scholar
[4] 唐健, 李亮, 袁野 2021 物理 50 239Google Scholar
Tang J, Li L, Yuan Y 2021 Physics 50 239Google Scholar
[5] Baldini A M, Bao Y, Baracchini E, et al. 2016 Eur. Phys. J. C 76 434Google Scholar
[6] Bellgardt U, Otter G, Eichler R, et al. 1988 Nucl. Phys. B 299 1Google Scholar
[7] Bertl W, Engfer R, Hermes E A, Kurz G, Kozlowski T, Kuth J, Otter G, Rosenbaum F, Ryskulov N M, van der Schaaf A, Wintz P, Zychor I (The SINDRUM II Collaboration) 2006 Eur. Phys. J. C 47 337Google Scholar
[8] Hincks E P, Pontecorvo B 1948 Phys. Rev. 73 257Google Scholar
[9] Aoyama T, Asmussen N, Benayoun M, et al. 2020 Phys. Rep. 887 1Google Scholar
[10] Abe M, Bae S, Beer G, et al. 2019 Prog. Theor. Exp. Phys. 2019 053C02Google Scholar
[11] Bennett G W, Bousquet B, Brown H N, et al. 2009 Phys. Rev. D 80 52008Google Scholar
[12] Bennett G W, Bousquet B, Brown H N, et al. 2006 Phys. Rev. D 73 72003Google Scholar
[13] Abi B, Albahri T, Al-Kilani S, et al. 2021 Phys. Rev. Lett. 126 141801Google Scholar
[14] Hillier A D, Blundell S J, McKenzie I, Umegaki I, Shu L, Wright J A, Prokscha T, Bert F, Shimomura K, Berlie A, Alberto H, Watanabe I 2022 Nat. Rev. Methods Primers 2 4Google Scholar
[15] Tan C, Ding Z F, Zhang J, Zhu Z H, Bernal O O, Ho P C, Hillier A D, Koda A, Luetkens H, Morris G D, MacLaughlin D E, Shu L 2020 Phys. Rev. B 101 195108Google Scholar
[16] Shu L, MacLaughlin D E, Varma C M, Bernal O O, Ho P C, Fukuda R H, Shen X P, Maple M B 2014 Phys. Rev. Lett. 113 166401Google Scholar
[17] Gheidi S, Akintola K, Akella K S, Côté A M, Dunsiger S R, Broholm C, Fuhrman W T, Saha S R, Paglione J, Sonier J E 2019 Phys. Rev. Lett. 123 197203Google Scholar
[18] Tan C, Ying T P, Ding Z F, Zhang J, MacLaughlin D E, Bernal O O, Ho P C, Huang K, Watanabe I, Li S Y, Shu L 2018 Phys. Rev. B 97 174524Google Scholar
[19] Heffner R H, Sonier J E, MacLaughlin D E, Nieuwenhuys G J, Ehlers G, Mezei F, Cheong S W, Gardner J S, Röder H 2000 Phys. Rev. Lett. 85 3285Google Scholar
[20] Li Y, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J, Tsirlin A A, Gegenwart P, Zhang Q 2016 Phys. Rev. Lett. 117 97201Google Scholar
[21] Khasanov R, Evtushinsky D V, Amato A, et al. 2009 Phys. Rev. Lett. 102 187005Google Scholar
[22] Hillier A D, Quintanilla J, Mazidian B, Annett J F, Cywinski R 2012 Phys Rev Lett 109 97001Google Scholar
[23] 殳蕾, 倪晓杰, 潘子文 2021 物理 50 257
Shu L, Ni X J, Pan Z W 2021 Physics 50 257
[24] Chang W Y 1949 Rev. Mod. Phys. 21 166Google Scholar
[25] Terada K, Ninomiya K, Osawa T, Tachibana S, Miyake Y, Kubo M K, Kawamura N, Higemoto W, Tsuchiyama A, Ebihara M, Uesugi M 2014 Sci. Rep. 4 5072Google Scholar
[26] Terada K, Sato A, Ninomiya K, Kawashima Y, Shimomura K, Yoshida G, Kawai Y, Osawa T, Tachibana S 2017 Sci. Rep. 7 15478Google Scholar
[27] Clemenza M, Bonesini M, Carpinelli M, et al. 2019 J. Radioanal. Nucl. Chem. 322 1357Google Scholar
[28] Hampshire B V, Butcher K, Ishida K, Green G, Paul D M, Hillier A D 2019 Heritage 2 400Google Scholar
[29] Green G A, Ishida K, Hampshire B V, Butcher K, Pollard A M, Hillier A D 2021 J. Archaeol. Sci. 134 105470Google Scholar
[30] Cataldo M, Clemenza M, Ishida K, Hillier A D 2022 Appl. Sci. 12 4237Google Scholar
[31] Umegaki I, Higuchi Y, Kondo Y, Ninomiya K, Takeshita S, Tampo M, Nakano H, Oka H, Sugiyama J, Kubo M K, Miyake Y 2020 Anal. Chem. 92 8194Google Scholar
[32] Breunlich W H, Kammel P, Cohen J S, Leon M 1989 Annu. Rev. Nucl. Part. Sci. 39 311Google Scholar
[33] Morishima K, Kuno M, Nishio A, et al. 2017 Nature 552 386Google Scholar
[34] Shimomura K, Koda A, Pant A D, et al. 2024 Interactions 245 31Google Scholar
[35] Daum M 1982 Nucl. Instrum. Methods Phys. Res. 192 137Google Scholar
[36] Thomason J W G 2019 Nucl. Instrum. Methods Phys. Res. A 917 61Google Scholar
[37] Cook S, D’Arcy R, Edmonds A, et al. 2017 Phys. Rev. Accel. Beams 20 30101Google Scholar
[38] Beveridge J L, Doornbos J, Garner D M 1986 Hyperfine Interact. 32 907Google Scholar
[39] Bao Y, Chen J, Chen C, et al. 2023 J. Phys. Conf. Ser. 2462 12034Google Scholar
[40] Kim J C, Jeong J Y, Pak K, Kim Y H, Park J, Lee J H, Kim Y K 2023 Nucl. Eng. Technol. 55 3692Google Scholar
[41] Cai H J, He Y, Liu S, Jia H, Qin Y, Wang Z, Wang F, Zhao L, Pu N, Niu J, Chen L, Sun Z, Zhao H, Zhan W 2024 Phys. Rev. Accel. Beams 27 23403Google Scholar
[42] Lü M, Wang J, Siang Khaw K 2023 arXiv: 2307.01455 [physics. acc-ph]
[43] 唐靖宇, 周路平, 洪杨 2020 物理 49 645Google Scholar
Tang J Y, Zhou L P, Hong Y 2020 Physics 49 645Google Scholar
[44] Tang J Y, Fu S N, Jing H T, Tang H Q, Wei J, Xia H H 2010 Chinese Physics C 34 121Google Scholar
[45] Chen H, Wang X L 2016 Nat. Mater. 15 689Google Scholar
[46] Fu S N, Chen H S, Chen Y B, Ma L, Wang F W 2018 J. Phys. Conf. Ser. 1021 12002Google Scholar
[47] Gao Z R, Yu H, Chen F J, et al. 2024 Nature 628 99Google Scholar
[48] Ren Q, Qi J, Yu D, Zhang Z, Song R, Song W, Yuan B, Wang T, Ren W, Zhang Z, Tong X, Li B 2022 Nat. Commun. 13 2293Google Scholar
[49] Pan F, Ni K, Xu T, Chen H, Wang Y, Gong K, Liu C, Li X, Lin M L, Li S, Wang X, Yan W, Yin W, Tan P H, Sun L, Yu D, Ruoff R S, Zhu Y 2023 Nature 614 95Google Scholar
[50] Liu L, Vassilopoulos N, Bao Y, Zhang G, Chen C, Tan Z, He N 2023 J. Phys. Conf. Ser. 2462 012020Google Scholar
[51] Liu L, Yu Q, Wang Z, Ell J, Huang M X, Ritchie R O 2020 Science 368 1347Google Scholar
[52] L Michel 1950 Proc. Phys. Soc. A 63 514Google Scholar
[53] Amato A, Morenzoni E 2024 Introduction to Muon Spin Spectroscopy (Vol. 1) (Cham: Springer Cham) pp66–131
Amato A, Morenzoni E 2024 Introduction to Muon Spin Spectroscopy (Vol. 1) (Cham: Springer Cham) pp66–131
[54] Staub U, Roessli B, Amato A 2000 Physica B Condens. Matter 289–290 299
[55] Luetkens H, Klauss H H, Kraken M, et al. 2009 Nat. Mater. 8 305Google Scholar
[56] de Visser A, Huy N T, Gasparini A, de Nijs D E, Andreica D, Baines C, Amato A 2009 Phys. Rev. Lett. 102 167003Google Scholar
[57] Hillier A D, Quintanilla J, Cywinski R 2009 Phys. Rev. Lett. 102 117007Google Scholar
[58] Sonier J E, Brewer J H, Kiefl R F 2000 Rev. Mod. Phys. 72 769Google Scholar
[59] Yokoyama K, Lord J S, Mengyan P W, Goeks M R, Lichti R L 2019 Appl. Phys. Lett. 115 112101Google Scholar
[60] Li Q, Pan Z, Bao Y, Yang T, Cheng H, Li Y, Hu H, Liang H, Ye B 2023 J. Phys. Conf. Ser. 2462 012022Google Scholar
[61] Fermi E, Teller E 1947 Phys. Rev. 72 399Google Scholar
[62] Mukhopadhyay N C 1977 Phys. Rep. 30 1Google Scholar
[63] Borie E, Rinker G A 1982 Rev. Mod. Phys. 54 67Google Scholar
[64] Nakamura T, Matsumoto M, Amano K, et al. 2023 Science 379 eabn8671Google Scholar
[65] Shimada-Takaura K, Ninomiya K, Sato A, Ueda N, Tampo M, Takeshita S, Umegaki I, Miyake Y, Takahashi K 2021 J. Nat. Med. 75 532Google Scholar
[66] Brown K L, Stockdale C P J, Luo H, Zhao X, Li J F, Viehland D, Xu G, Gehring P M, Ishida K, Hillier A D, Stock C 2018 J. Phys. : Condens. Matter 30 125703Google Scholar
[67] Ninomiya K, Kajino M, Nambu A, Inagaki M, Kudo T, Sato A, Terada K, Shinohara A, Tomono D, Kawashima Y, Sakai Y, Takayama T 2022 Bull. Chem. Soc. Jpn. 95 1769Google Scholar
[68] Aramini M, Milanese C, Hillier A D, Girella A, Horstmann C, Klassen T, Ishida K, Dornheim M, Pistidda C 2020 Nanomaterials 10 1260Google Scholar
[69] Rossini R, Di Martino D, Agoro T, et al. 2023 J. Anal. At. Spectrom. 38 293Google Scholar
[70] Ninomiya K, Nagatomo T, Kubo K M, Strasser P, Kawamura N, Shimomura K, Miyake Y, Saito T, Higemoto W 2010 J. Phys. Conf. Ser. 225 12040Google Scholar
[71] Hillier A D, Paul D McK, Ishida K 2016 Microchem. J. 125 203Google Scholar
[72] Mizuno R, Niikura M, Saito T Y, et al. 2024 Nucl. Instrum. Methods Phys. Res. A 1060 169029Google Scholar
[73] Terada K, Ninomiya K, Sato A, Tomono D, Kawashima Y, Inagaki M, Nambu A, Kudo T, Osawa T, Kubo M K 2024 J. Anal. Sci. Technol. 15 28Google Scholar
[74] Osawa T, Nagasawa S, Ninomiya K, et al. 2023 ACS Earth Space Chem. 7 699Google Scholar
[75] Gerchow L, Biswas S, Janka G, Vigo C, Knecht A, Vogiatzi S M, Ritjoho N, Prokscha T, Luetkens H, Amato A 2023 Rev. Sci. Instrum. 94 045106Google Scholar
[76] Sugiyama J, Umegaki I, Nozaki H, Higemoto W, Hamada K, Takeshita S, Koda A, Shimomura K, Ninomiya K, Kubo M K 2018 Phys. Rev. Lett. 121 87202Google Scholar
[77] Kato T, Tampo M, Takeshita S, Tanaka H, Matsuyama H, Hashimoto M, Miyake Y 2021 IEEE Trans. Nucl. Sci. 68 1436Google Scholar
[78] Ninomiya K, Kubo M K, Inagaki M, et al. 2024 J. Radioanal. Nucl. Chem. 333 3445Google Scholar
-
图 4 (a) 正电子计数随$ {{\text{μ}}}^{+} $衰变时间变化的原始谱; (b)消除指数衰减项并归一化到$ A $的极化函数谱[53]
Figure 4. (a) Original spectrum of positron counts measured by the detector as a function of $ {{\text{μ}}}^{+} $ decay time; (b) the polarization function removed the exponential decay term and normalized to asymmetry $ A $[53].
图 5 (a) 缪子自旋极化方向平行于反铁磁样品Li2CuO2测得的μSR谱; (b) 对μSR谱快速傅里叶变换, 3个振荡频率清晰可见[54]
Figure 5. (a) μSR signal (here called “Asymmetry”) measured in the antiferromagnetic state of Li2CuO2 with the initial muon polarization is along the a-axis; (b) in the fast Fourier transform of the μSR signal, three spontaneous frequencies are seen[54].
图 7 顺磁态磁场分布服从(a)高斯“Kubo-Toyabe”公式和(b)洛伦兹“Kubo-Toyabe”公式的缪子去极化函数[53]
Figure 7. Time evolution of the muon polarization $ P\left(t\right) $ in a system where the magnetic moments are randomly oriented. The field distribution produces the so-called (a) Gaussian and (b) Lorentzian “Kubo-Toyabe” function[53].
图 8 (a) ZF-μSR揭示了巨磁阻La0.67Ca0.33MnO3中缪子自旋涨落存在快慢两个成分, 即存在两个空间分离区域具有非常不同的Mn离子自旋动力学; (b) μSR实验观察到超导体UCoGe (TSC = 0.8 K) 在T = 3 K以下出现长程磁有序, 与超导电性共存[56]; (c) 非中心对称金属间超导体LaNiC的μSR实验发现了超导性与自发磁性出现的温度一致, 意味着超导状态下时间反演对称性被打破[57]
Figure 8. (a) Two components of fast and slow muon spin fluctuation in La0.67Ca0.33MnO3 were revealed by ZF-μSR, i.e., there are two separated regions with very different Mn spin kinetics; (b) in μSR experiments, it was observed that the superconductor UCoGe (TSC = 0.8 K) exhibited a long-range magnetic order below T = 3 K, which coexisted with superconductivity; (c) the μSR experiments of the non-centrally symmetric intermetallic superconductor LaNiC found that the occurrence of superconductivity coincided well with the appearance of spontaneous magnetism, which means that the time reversal symmetry was broken in its superconducting state[57].
图 13 (a) MIXE和XRF技术研究文物药瓶元素成分优势互补, MIXE谱清晰检测到了汞和氯成分的存在, 而XRF谱检测到了铅、硅成分[65]; (b) J-PARC利用MIXE技术测量锂金属在锂离子电池阳极沉积的实验示意图, 他们调节缪子能量对样品进行深度分析, 观察到了锂金属层的存在[31]
Figure 13. (a) MIXE and XRF techniques were used to study the elemental composition of an antiquities vial, and the presence of Hg and Cl elements was detected by the MIXE, while Pb and Si elements were detected by the XRF[65]; (b) J-PARC measured the deposition of Li metal at the anode of Li-ion batteries using the MIXE technique, and they adjusted the muon energy to perform a depth analysis of the sample and observed the presence of a Li metal layer[31].
表 1 经人工智能优化算法模拟得到的不同束斑下SMT1和SMT2实验终端的缪子束流强度
Table 1. Muon beam intensity of SMT1 and SMT2 under different beam spots simulated by using artificial intelligence optimization algorithm.
束斑尺寸/mm 10 20 30 50 100 SMT1终端流强/(μ·s–1) 1.1×105 7.3×105 2×106 8.2×106 1.6×107 SMT2终端流强/(μ·s–1) 5.9×104 1.7×105 8.4×105 6.5×106 1.8×107 -
[1] Neddermeyer S H, Anderson C D 1937 Phys. Rev. 51 884Google Scholar
[2] Conversi M, Pancini E, Piccioni O 1947 Phys. Rev. 71 209Google Scholar
[3] Meyer S L, Anderson E W, Bleser E, Lederman I M, Rosen J L, Rothberg J, Wang I T 1963 Phys. Rev. 132 2693Google Scholar
[4] 唐健, 李亮, 袁野 2021 物理 50 239Google Scholar
Tang J, Li L, Yuan Y 2021 Physics 50 239Google Scholar
[5] Baldini A M, Bao Y, Baracchini E, et al. 2016 Eur. Phys. J. C 76 434Google Scholar
[6] Bellgardt U, Otter G, Eichler R, et al. 1988 Nucl. Phys. B 299 1Google Scholar
[7] Bertl W, Engfer R, Hermes E A, Kurz G, Kozlowski T, Kuth J, Otter G, Rosenbaum F, Ryskulov N M, van der Schaaf A, Wintz P, Zychor I (The SINDRUM II Collaboration) 2006 Eur. Phys. J. C 47 337Google Scholar
[8] Hincks E P, Pontecorvo B 1948 Phys. Rev. 73 257Google Scholar
[9] Aoyama T, Asmussen N, Benayoun M, et al. 2020 Phys. Rep. 887 1Google Scholar
[10] Abe M, Bae S, Beer G, et al. 2019 Prog. Theor. Exp. Phys. 2019 053C02Google Scholar
[11] Bennett G W, Bousquet B, Brown H N, et al. 2009 Phys. Rev. D 80 52008Google Scholar
[12] Bennett G W, Bousquet B, Brown H N, et al. 2006 Phys. Rev. D 73 72003Google Scholar
[13] Abi B, Albahri T, Al-Kilani S, et al. 2021 Phys. Rev. Lett. 126 141801Google Scholar
[14] Hillier A D, Blundell S J, McKenzie I, Umegaki I, Shu L, Wright J A, Prokscha T, Bert F, Shimomura K, Berlie A, Alberto H, Watanabe I 2022 Nat. Rev. Methods Primers 2 4Google Scholar
[15] Tan C, Ding Z F, Zhang J, Zhu Z H, Bernal O O, Ho P C, Hillier A D, Koda A, Luetkens H, Morris G D, MacLaughlin D E, Shu L 2020 Phys. Rev. B 101 195108Google Scholar
[16] Shu L, MacLaughlin D E, Varma C M, Bernal O O, Ho P C, Fukuda R H, Shen X P, Maple M B 2014 Phys. Rev. Lett. 113 166401Google Scholar
[17] Gheidi S, Akintola K, Akella K S, Côté A M, Dunsiger S R, Broholm C, Fuhrman W T, Saha S R, Paglione J, Sonier J E 2019 Phys. Rev. Lett. 123 197203Google Scholar
[18] Tan C, Ying T P, Ding Z F, Zhang J, MacLaughlin D E, Bernal O O, Ho P C, Huang K, Watanabe I, Li S Y, Shu L 2018 Phys. Rev. B 97 174524Google Scholar
[19] Heffner R H, Sonier J E, MacLaughlin D E, Nieuwenhuys G J, Ehlers G, Mezei F, Cheong S W, Gardner J S, Röder H 2000 Phys. Rev. Lett. 85 3285Google Scholar
[20] Li Y, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J, Tsirlin A A, Gegenwart P, Zhang Q 2016 Phys. Rev. Lett. 117 97201Google Scholar
[21] Khasanov R, Evtushinsky D V, Amato A, et al. 2009 Phys. Rev. Lett. 102 187005Google Scholar
[22] Hillier A D, Quintanilla J, Mazidian B, Annett J F, Cywinski R 2012 Phys Rev Lett 109 97001Google Scholar
[23] 殳蕾, 倪晓杰, 潘子文 2021 物理 50 257
Shu L, Ni X J, Pan Z W 2021 Physics 50 257
[24] Chang W Y 1949 Rev. Mod. Phys. 21 166Google Scholar
[25] Terada K, Ninomiya K, Osawa T, Tachibana S, Miyake Y, Kubo M K, Kawamura N, Higemoto W, Tsuchiyama A, Ebihara M, Uesugi M 2014 Sci. Rep. 4 5072Google Scholar
[26] Terada K, Sato A, Ninomiya K, Kawashima Y, Shimomura K, Yoshida G, Kawai Y, Osawa T, Tachibana S 2017 Sci. Rep. 7 15478Google Scholar
[27] Clemenza M, Bonesini M, Carpinelli M, et al. 2019 J. Radioanal. Nucl. Chem. 322 1357Google Scholar
[28] Hampshire B V, Butcher K, Ishida K, Green G, Paul D M, Hillier A D 2019 Heritage 2 400Google Scholar
[29] Green G A, Ishida K, Hampshire B V, Butcher K, Pollard A M, Hillier A D 2021 J. Archaeol. Sci. 134 105470Google Scholar
[30] Cataldo M, Clemenza M, Ishida K, Hillier A D 2022 Appl. Sci. 12 4237Google Scholar
[31] Umegaki I, Higuchi Y, Kondo Y, Ninomiya K, Takeshita S, Tampo M, Nakano H, Oka H, Sugiyama J, Kubo M K, Miyake Y 2020 Anal. Chem. 92 8194Google Scholar
[32] Breunlich W H, Kammel P, Cohen J S, Leon M 1989 Annu. Rev. Nucl. Part. Sci. 39 311Google Scholar
[33] Morishima K, Kuno M, Nishio A, et al. 2017 Nature 552 386Google Scholar
[34] Shimomura K, Koda A, Pant A D, et al. 2024 Interactions 245 31Google Scholar
[35] Daum M 1982 Nucl. Instrum. Methods Phys. Res. 192 137Google Scholar
[36] Thomason J W G 2019 Nucl. Instrum. Methods Phys. Res. A 917 61Google Scholar
[37] Cook S, D’Arcy R, Edmonds A, et al. 2017 Phys. Rev. Accel. Beams 20 30101Google Scholar
[38] Beveridge J L, Doornbos J, Garner D M 1986 Hyperfine Interact. 32 907Google Scholar
[39] Bao Y, Chen J, Chen C, et al. 2023 J. Phys. Conf. Ser. 2462 12034Google Scholar
[40] Kim J C, Jeong J Y, Pak K, Kim Y H, Park J, Lee J H, Kim Y K 2023 Nucl. Eng. Technol. 55 3692Google Scholar
[41] Cai H J, He Y, Liu S, Jia H, Qin Y, Wang Z, Wang F, Zhao L, Pu N, Niu J, Chen L, Sun Z, Zhao H, Zhan W 2024 Phys. Rev. Accel. Beams 27 23403Google Scholar
[42] Lü M, Wang J, Siang Khaw K 2023 arXiv: 2307.01455 [physics. acc-ph]
[43] 唐靖宇, 周路平, 洪杨 2020 物理 49 645Google Scholar
Tang J Y, Zhou L P, Hong Y 2020 Physics 49 645Google Scholar
[44] Tang J Y, Fu S N, Jing H T, Tang H Q, Wei J, Xia H H 2010 Chinese Physics C 34 121Google Scholar
[45] Chen H, Wang X L 2016 Nat. Mater. 15 689Google Scholar
[46] Fu S N, Chen H S, Chen Y B, Ma L, Wang F W 2018 J. Phys. Conf. Ser. 1021 12002Google Scholar
[47] Gao Z R, Yu H, Chen F J, et al. 2024 Nature 628 99Google Scholar
[48] Ren Q, Qi J, Yu D, Zhang Z, Song R, Song W, Yuan B, Wang T, Ren W, Zhang Z, Tong X, Li B 2022 Nat. Commun. 13 2293Google Scholar
[49] Pan F, Ni K, Xu T, Chen H, Wang Y, Gong K, Liu C, Li X, Lin M L, Li S, Wang X, Yan W, Yin W, Tan P H, Sun L, Yu D, Ruoff R S, Zhu Y 2023 Nature 614 95Google Scholar
[50] Liu L, Vassilopoulos N, Bao Y, Zhang G, Chen C, Tan Z, He N 2023 J. Phys. Conf. Ser. 2462 012020Google Scholar
[51] Liu L, Yu Q, Wang Z, Ell J, Huang M X, Ritchie R O 2020 Science 368 1347Google Scholar
[52] L Michel 1950 Proc. Phys. Soc. A 63 514Google Scholar
[53] Amato A, Morenzoni E 2024 Introduction to Muon Spin Spectroscopy (Vol. 1) (Cham: Springer Cham) pp66–131
Amato A, Morenzoni E 2024 Introduction to Muon Spin Spectroscopy (Vol. 1) (Cham: Springer Cham) pp66–131
[54] Staub U, Roessli B, Amato A 2000 Physica B Condens. Matter 289–290 299
[55] Luetkens H, Klauss H H, Kraken M, et al. 2009 Nat. Mater. 8 305Google Scholar
[56] de Visser A, Huy N T, Gasparini A, de Nijs D E, Andreica D, Baines C, Amato A 2009 Phys. Rev. Lett. 102 167003Google Scholar
[57] Hillier A D, Quintanilla J, Cywinski R 2009 Phys. Rev. Lett. 102 117007Google Scholar
[58] Sonier J E, Brewer J H, Kiefl R F 2000 Rev. Mod. Phys. 72 769Google Scholar
[59] Yokoyama K, Lord J S, Mengyan P W, Goeks M R, Lichti R L 2019 Appl. Phys. Lett. 115 112101Google Scholar
[60] Li Q, Pan Z, Bao Y, Yang T, Cheng H, Li Y, Hu H, Liang H, Ye B 2023 J. Phys. Conf. Ser. 2462 012022Google Scholar
[61] Fermi E, Teller E 1947 Phys. Rev. 72 399Google Scholar
[62] Mukhopadhyay N C 1977 Phys. Rep. 30 1Google Scholar
[63] Borie E, Rinker G A 1982 Rev. Mod. Phys. 54 67Google Scholar
[64] Nakamura T, Matsumoto M, Amano K, et al. 2023 Science 379 eabn8671Google Scholar
[65] Shimada-Takaura K, Ninomiya K, Sato A, Ueda N, Tampo M, Takeshita S, Umegaki I, Miyake Y, Takahashi K 2021 J. Nat. Med. 75 532Google Scholar
[66] Brown K L, Stockdale C P J, Luo H, Zhao X, Li J F, Viehland D, Xu G, Gehring P M, Ishida K, Hillier A D, Stock C 2018 J. Phys. : Condens. Matter 30 125703Google Scholar
[67] Ninomiya K, Kajino M, Nambu A, Inagaki M, Kudo T, Sato A, Terada K, Shinohara A, Tomono D, Kawashima Y, Sakai Y, Takayama T 2022 Bull. Chem. Soc. Jpn. 95 1769Google Scholar
[68] Aramini M, Milanese C, Hillier A D, Girella A, Horstmann C, Klassen T, Ishida K, Dornheim M, Pistidda C 2020 Nanomaterials 10 1260Google Scholar
[69] Rossini R, Di Martino D, Agoro T, et al. 2023 J. Anal. At. Spectrom. 38 293Google Scholar
[70] Ninomiya K, Nagatomo T, Kubo K M, Strasser P, Kawamura N, Shimomura K, Miyake Y, Saito T, Higemoto W 2010 J. Phys. Conf. Ser. 225 12040Google Scholar
[71] Hillier A D, Paul D McK, Ishida K 2016 Microchem. J. 125 203Google Scholar
[72] Mizuno R, Niikura M, Saito T Y, et al. 2024 Nucl. Instrum. Methods Phys. Res. A 1060 169029Google Scholar
[73] Terada K, Ninomiya K, Sato A, Tomono D, Kawashima Y, Inagaki M, Nambu A, Kudo T, Osawa T, Kubo M K 2024 J. Anal. Sci. Technol. 15 28Google Scholar
[74] Osawa T, Nagasawa S, Ninomiya K, et al. 2023 ACS Earth Space Chem. 7 699Google Scholar
[75] Gerchow L, Biswas S, Janka G, Vigo C, Knecht A, Vogiatzi S M, Ritjoho N, Prokscha T, Luetkens H, Amato A 2023 Rev. Sci. Instrum. 94 045106Google Scholar
[76] Sugiyama J, Umegaki I, Nozaki H, Higemoto W, Hamada K, Takeshita S, Koda A, Shimomura K, Ninomiya K, Kubo M K 2018 Phys. Rev. Lett. 121 87202Google Scholar
[77] Kato T, Tampo M, Takeshita S, Tanaka H, Matsuyama H, Hashimoto M, Miyake Y 2021 IEEE Trans. Nucl. Sci. 68 1436Google Scholar
[78] Ninomiya K, Kubo M K, Inagaki M, et al. 2024 J. Radioanal. Nucl. Chem. 333 3445Google Scholar
Catalog
Metrics
- Abstract views: 977
- PDF Downloads: 38
- Cited By: 0