Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application and evaluation of Chinese spallation neutron source in single-event effects testing

Wang Xun Zhang Feng-Qi Chen Wei Guo Xiao-Qiang Ding Li-Li Luo Yin-Hong

Citation:

Application and evaluation of Chinese spallation neutron source in single-event effects testing

Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong
PDF
HTML
Get Citation
  • Due to the lack of available spallation neutron source, the atmospheric neutron single event effect (SEE) in China were studied mainly by means of simulation and single energy neutron test. Since the Chinese spallation neutron source (CSNS) passed the national acceptance, it has become possible to carry out the research on atmospheric neutron SEE by using the CSNS. In this paper, the neutron SEE experiments of 3 kinds of SRAMs with different feature sizes are carried out for the first time by using the CSNS back-n. The application of CSNS back-n in the study of atmospheric neutron SEE is evaluated by comparing with the results of the earlier plateau experiment. The results show that the cross section of the single event upset is smaller than that of the plateau test, and the cross sections of different devices have no obvious monotonic relationship with feature size. The reason for the former result is that the energy spectrum of CSNS back-n is slightly softer than that of the atmospheric neutron. The reason for the second result is that small feature size means small critical charge and small sensitive volume, and these two factors compete with each other when they make the contribution to the cross section. According to the difference in energy spectrum and cross section among the SRAM devices, a correction factor is proposed to correct the test results based on CSNS back-n. For the difference in energy spectrum, different energy thresholds will produce different ratios between the cross sections by using CSNS back-n and atmospheric neutron. The neutrons of CSNS back-n are mainly concentrated around 1 MeV, which is close to the energy threshold of general SRAM devices. Thus, inaccurate energy threshold estimation will introduce a large error into the cross section of SEU. Thus, the relation between the correction factor and the energy threshold is analyzed. If 12 MeV is selected as the energy threshold to calculate the cross section, more consistent results could be obtained for our DUT in CSNS back-n and atmospheric neutron environment. In a word, the results show that the CSNS back-n can be used to speed up the atmospheric neutron SEE test, but the result should be corrected to evaluate the threat from atmospheric neutron. Fortunately, with the continuous increase of CSNS operating power, the neutron flux and the accelerated factor of CSNS will increase synchronously. Besides, other 3 white light neutron beams are planned in the CSNS project, the planned energy spectra are closer to those of atmospheric neutron. It is expected that the CSNS will be better applied to the study of atmospheric neutron SEE.
      Corresponding author: Wang Xun, wangxun@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11690040, 11690043, 61634008).
    [1]

    Abe S, Watanabe Y 2014 IEEE Trans. Nucl. Sci. 61 3519Google Scholar

    [2]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 461Google Scholar

    [3]

    Hubert G, Bezerra F, Nicot J M, Artola L, Cheminet A, Valdivia J N, Mouret J M, Meyer J R, Cocquerez P 2014 IEEE Trans. Nucl. Sci. 61 1703Google Scholar

    [4]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 2742Google Scholar

    [5]

    Quinn H, Graham P, Manuzzato A, Fairbanks T, Dallmann N, DesGeorges R 2010 IEEE Trans. Nucl. Sci. 57 3547

    [6]

    Dyer C, Hands A, Ryden K, Lei F 2018 IEEE Trans. Nucl. Sci. 65 432Google Scholar

    [7]

    Taber A, Normand E 1993 IEEE Trans. Nucl. Sci. 40 120Google Scholar

    [8]

    Olsen J, Becher P E, Fynbo P B, Raaby P, Schultz J 1993 IEEE Trans. Nucl. Sci. 40 74Google Scholar

    [9]

    Normand E, Baker T J 1993 IEEE Trans. Nucl. Sci. 40 1484Google Scholar

    [10]

    Normand E 2001 IEEE Trans. Nucl. Sci. 48 1996Google Scholar

    [11]

    Flament O, Baggio J, D’hose C, Gasiot G, Leray J L 2004 IEEE Trans. Nucl. Sci. 51 2908Google Scholar

    [12]

    Lambert D, Baggio J, Hubert G 2006 IEEE Trans. Nucl. Sci. 53 1890Google Scholar

    [13]

    Hands A, Morris P, Dyer C, Ryden K, Truscott P 2011 IEEE Trans. Nucl. Sci. 58 952Google Scholar

    [14]

    Autran J L, Roche P, Borel J, Sudre C, Karine C, Munteanu D, Parrassin T, Gasiot G, Schoellkopf J P 2007 IEEE Trans. Nucl. Sci. 54 1002Google Scholar

    [15]

    中村刚史, 马场守, 伊部英治 著 (陈伟, 石绍柱, 宋朝晖, 王晨辉 译) 2015 大气中子在先进存储器件中引起的软错误 (北京: 国防工业出版社) 第94—119页

    Takashi N, Mamoru B, Eishi I (translated by Chen W, Shi S Z, Song Z H, Wang C H ) 2015 Terrestrial Neutron-Induced Soft Errors in Advanced Memory Devices (Beijing: National Defense Industry Press) pp 94−119 (in Chinese)

    [16]

    Dyer C S, Clucas S N, Sanderson C, Frydland A D, Green R T 2004 IEEE Trans. Nucl. Sci. 51 2817Google Scholar

    [17]

    Weulersse C, Guibbaud N, Beltrando A L, Galinat J, Beltrando C, Miller F, Trochet P, Alexandrescu D 2017 IEEE Trans. Nucl. Sci. 64 2268

    [18]

    张利英, 倪伟俊, 敬罕涛, 王相綦 2018 现代应用物理 9 010201

    Zhang L Y, Ni W J, Jing H T, Wang X Q 2018 Mod. Appl. Phys. 9 010201

    [19]

    綦蕾, 周燕佩 2018 航空科学技术 29 07

    Qi L, Zhou Y P 2018 Aero. Sci. Tech. 29 07

    [20]

    王群勇, 刘燕芳, 陈宇, 白桦, 阳辉 2011 航空科学技术 4 34Google Scholar

    Wang Q Y, Liu Y F, Chen Y, Bai H, Yang H 2011 Aero. Sci. Tech. 4 34Google Scholar

    [21]

    薛海红, 王群勇, 陈冬梅, 陈宇, 阳辉, 李红军 2015 北京航空航天大学学报 41 1894

    Xue H H, Wang Q Y, Chen D M, Chen Y, Yang H, Li H J 2015 J. Beijing. Univ. Aero. Astron. 41 1894

    [22]

    周啸 2018 信息通信 4 79Google Scholar

    Zhou X 2018 Infor. Comm. 4 79Google Scholar

    [23]

    张欢, 王思广, 陈伟, 杨善潮 2015 核技术 38 120501

    Zhang H, Wang S G, Chen W, Yang S C 2015 Nucl. Tech. 38 120501

    [24]

    郭晓强, 郭红霞, 王桂珍, 林东生, 陈伟, 白小燕, 杨善潮, 刘岩 2010 原子能科学技术 44 362

    Guo X Q, Guo H X, Wang G Z, Lin D S, Chen W, Bai X Y, Yang S C, Liu Y 2010 Atom. Ener. Sci. Tech. 44 362

    [25]

    于全芝, 胡志良, 殷雯, 梁天骄 2014 中国科学: 物理学 力学 天文学 44 479

    Yu Q Z, Hu Z L, Yin W, Liang T J 2014 Sci. Sin.: Phys. Mech. Astron. 44 479

    [26]

    陈冬梅, 孙旭朋, 钟征宇, 封国强, 白桦, 阳辉, 底桐 2018 航空科学技术 29 67

    Chen D M, Sun X P, Zhong Z Y, Feng G Q, Bai H, Yang H, Di T 2018 Aero. Sci. Tech. 29 67

    [27]

    范辉, 郭刚, 沈东军, 刘建成, 陈红涛, 赵芳, 陈泉, 何安林, 史淑廷, 惠宁, 蔡莉, 王贵良 2015 原子能科学技术 49 171Google Scholar

    Fan H, Guo G, Shen D J, Liu J C, Chen H T, Zhao F, Chen Q, He A L, Shi S T, Hui N, Cai L, Wang G L 2015 Atom. Ener. Sci. Tech. 49 171Google Scholar

    [28]

    Ni W, Jing H, Zhang L, Ou L 2018 Radiat. Phys. Chem. 152 43Google Scholar

    [29]

    Jedec 2001 JESD89-measurement and Reporting of alpha particles and terrestrial cosmic ray-induced soft errors in semiconductor devices

    [30]

    IEC 2006 Process management for avionics-atmospheric radiation effects, part 1: Accommodation of atmospheric radiation effects via single event effects within avionic electronic equip-ment: IEC 62396-1

    [31]

    郭晓强 2009 硕士学位论文(西安: 西北核技术研究所)

    Guo X Q 2009 M.S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese)

    [32]

    杨善超, 齐超, 白晓燕, 李瑞斌, 王晨辉, 李俊霖, 金晓明, 刘岩 2018 第三届全国辐射物理学术交流会 第77页

    Yang S C, Qi C, Bai X Y, Li R B, Wang C H, Li J L, Jin X M, Liu Y 2018 The 3th Chinese Conferance on Radiation Physics p77 (in Chinese)

  • 图 1  CSNS反角白光中子源实验终端布局[28]

    Figure 1.  Layout of back-n at CSNS[28].

    图 2  CSNS反角白光中子源终端2与羊八井大气中子微分能谱对比

    Figure 2.  Comparison between the differential neutron energy spectra of CSNS back-n and Yangbajing.

    图 3  CSNS反角白光中子源辐照试验布局示意图

    Figure 3.  Layout of the irradiation experiment at CSNS back-n.

    图 4  辐照过程中的器件布局

    Figure 4.  Layout of the devices under test.

    图 5  羊八井大气中子单粒子效应试验 (a)测试场景; (b)测试系统

    Figure 5.  SEE test in Yangbajing: (a) Test environment; (b) test system.

    图 6  CSNS反角白光中子源与羊八井大气中子SEU截面对比

    Figure 6.  Comparison of the SEU cross section between the tests in CSNS back-n and Yangbajing.

    图 7  CSNS反角白光中子源与羊八井大气中子微分能谱对比(大于1 MeV部分)

    Figure 7.  Comparison between the differential neutron energy spectra of CSNS back-n and Yangbajing (above 1 MeV).

    图 8  不同能量阈值相对1 MeV时修正因子的变化关系

    Figure 8.  Correction factor with different energy threshold compare to 1 MeV.

    表 1  大气中子单粒子效应试验中子源

    Table 1.  Neutron sources for atmospheric neutron SEE experiment.

    中子源中子谱优点缺点相关文献报道
    国外国内
    航空高度环境完全相同无误差环境成本高×
    地面大气环境谱形状相同无误差环境注量率低耗时长×
    散裂中子源谱形状相似能量范围不同能谱范围大注量率高模拟源少×
    单能中子源单能模拟源多成本低需要多个能量点
    DownLoad: CSV

    表 2  待测SRAM器件参数

    Table 2.  Parameters of the SRAM devices for test.

    型号制造商容量/bits特征尺寸/${\text{μ}}{\rm m}$工作电压/V
    HM62V8100RENESAS8 M (1 M × 8 bit)0.183
    HM628512BHITACHI4 M (512 K × 8 bit)0.355
    HM628512AHITACHI4 M (512 K × 8 bit)0.505
    DownLoad: CSV

    表 3  在CSNS反角白光中子源的SEU测试结果

    Table 3.  Test result of the SEUs in CSNS back-n.

    型号测试图形总容量/bit总注量/n·cm–2有效注量占比/%翻转数(#)翻转截面/cm2·bit–1置信水平/%
    HM62V81000x00H24M2.90 × 10945.733431.02 × 10–1494.6
    0x55H24M2.89 × 10945.733671.10 × 10–1494.8
    0xAAH24M2.89 × 10945.733871.16 × 10–1494.9
    0xFFH24M2.93 × 10945.733421.01 × 10–1494.6
    HM628512B0x00H12M3.12 × 10945.732071.15 × 10–1493.0
    0x55H8M3.84 × 10945.731971.34 × 10–1492.9
    0xAAH12M4.90 × 10945.733031.07 × 10–1494.3
    0xFFH12M1.78 × 10945.731141.11 × 10–1490.6
    HM628512A0x00H12M3.03 × 10945.731761.01 × 10–1492.5
    0x55H12M3.94 × 10945.732621.16 × 10–1493.8
    0xAAH12M2.94 × 10945.732151.27 × 10–1493.2
    0xFFH12M2.93 × 10945.732051.22 × 10–1493.0
    DownLoad: CSV

    表 4  在羊八井测得的SEU翻转结果

    Table 4.  Test result of the SEU in Yangbajing.

    型号总容量/bit测试时长/h翻转数(#)翻转率/#·bit–1·h–1翻转截面/cm2·bit–1置信水平/%
    HM62V81008M × 57360851956.67 × 10–125.21 × 10–1498.6
    HM628512B4M × 122151981816.80 × 10–125.31 × 10–1498.3
    HM628512A4M × 6355198765.49 × 10–124.29 × 10–1497.4
    DownLoad: CSV

    表 5  不同中子环境中中不同能区的中子占比

    Table 5.  Proportion of different energy bands in different neutron environments.

    中子源中子数占比/%通量/cm2·s–1 (> 1 MeV)
    1—10 MeV10—100 MeV> 100 MeV
    JEDEC(地面)3535305.56 × 10–3
    IEC(12 km)36.537.226.32.43 × 100
    羊八井35.632.132.33.56 × 10–2
    CSNS-back-n @7681.716.81.57.32 × 105 (20 kW)
    CSNS-TS1-41° @20 m502822
    CSNS-TS2-30°4428.527.5
    CSNS-TS2-15°22.62552.4
    DownLoad: CSV

    表 6  考虑不同能量阈值时有效注量占比及SRAM器件的翻转截面

    Table 6.  SEU cross section of SRAMs and percentage of effective neutrons considering different energy threshold.

    型号能量阈值/MeV有效注量占比/%翻转截面/cm2·bit–1
    CSNS back-n羊八井CSNS back-n羊八井
    HM62V81000.659.2351.138.50 × 10–154.70 × 10–14
    HM628512B2.526.6138.022.30 × 10–146.43 × 10–14
    HM628512A6.013.4832.163.94 × 10–146.15 × 10–14
    DownLoad: CSV

    表 7  能量阈值取10, 12和14 MeV时器件对应的修正因子

    Table 7.  Correction factor for the DUTs with different energy threshold.

    型号不同能量阈值取值时的修正因子
    10 MeV12 MeV14 MeV
    HM62V81001.331.191.05
    HM628512B1.121.000.88
    HM628512A1.040.930.81
    DownLoad: CSV
  • [1]

    Abe S, Watanabe Y 2014 IEEE Trans. Nucl. Sci. 61 3519Google Scholar

    [2]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 461Google Scholar

    [3]

    Hubert G, Bezerra F, Nicot J M, Artola L, Cheminet A, Valdivia J N, Mouret J M, Meyer J R, Cocquerez P 2014 IEEE Trans. Nucl. Sci. 61 1703Google Scholar

    [4]

    Normand E 1996 IEEE Trans. Nucl. Sci. 43 2742Google Scholar

    [5]

    Quinn H, Graham P, Manuzzato A, Fairbanks T, Dallmann N, DesGeorges R 2010 IEEE Trans. Nucl. Sci. 57 3547

    [6]

    Dyer C, Hands A, Ryden K, Lei F 2018 IEEE Trans. Nucl. Sci. 65 432Google Scholar

    [7]

    Taber A, Normand E 1993 IEEE Trans. Nucl. Sci. 40 120Google Scholar

    [8]

    Olsen J, Becher P E, Fynbo P B, Raaby P, Schultz J 1993 IEEE Trans. Nucl. Sci. 40 74Google Scholar

    [9]

    Normand E, Baker T J 1993 IEEE Trans. Nucl. Sci. 40 1484Google Scholar

    [10]

    Normand E 2001 IEEE Trans. Nucl. Sci. 48 1996Google Scholar

    [11]

    Flament O, Baggio J, D’hose C, Gasiot G, Leray J L 2004 IEEE Trans. Nucl. Sci. 51 2908Google Scholar

    [12]

    Lambert D, Baggio J, Hubert G 2006 IEEE Trans. Nucl. Sci. 53 1890Google Scholar

    [13]

    Hands A, Morris P, Dyer C, Ryden K, Truscott P 2011 IEEE Trans. Nucl. Sci. 58 952Google Scholar

    [14]

    Autran J L, Roche P, Borel J, Sudre C, Karine C, Munteanu D, Parrassin T, Gasiot G, Schoellkopf J P 2007 IEEE Trans. Nucl. Sci. 54 1002Google Scholar

    [15]

    中村刚史, 马场守, 伊部英治 著 (陈伟, 石绍柱, 宋朝晖, 王晨辉 译) 2015 大气中子在先进存储器件中引起的软错误 (北京: 国防工业出版社) 第94—119页

    Takashi N, Mamoru B, Eishi I (translated by Chen W, Shi S Z, Song Z H, Wang C H ) 2015 Terrestrial Neutron-Induced Soft Errors in Advanced Memory Devices (Beijing: National Defense Industry Press) pp 94−119 (in Chinese)

    [16]

    Dyer C S, Clucas S N, Sanderson C, Frydland A D, Green R T 2004 IEEE Trans. Nucl. Sci. 51 2817Google Scholar

    [17]

    Weulersse C, Guibbaud N, Beltrando A L, Galinat J, Beltrando C, Miller F, Trochet P, Alexandrescu D 2017 IEEE Trans. Nucl. Sci. 64 2268

    [18]

    张利英, 倪伟俊, 敬罕涛, 王相綦 2018 现代应用物理 9 010201

    Zhang L Y, Ni W J, Jing H T, Wang X Q 2018 Mod. Appl. Phys. 9 010201

    [19]

    綦蕾, 周燕佩 2018 航空科学技术 29 07

    Qi L, Zhou Y P 2018 Aero. Sci. Tech. 29 07

    [20]

    王群勇, 刘燕芳, 陈宇, 白桦, 阳辉 2011 航空科学技术 4 34Google Scholar

    Wang Q Y, Liu Y F, Chen Y, Bai H, Yang H 2011 Aero. Sci. Tech. 4 34Google Scholar

    [21]

    薛海红, 王群勇, 陈冬梅, 陈宇, 阳辉, 李红军 2015 北京航空航天大学学报 41 1894

    Xue H H, Wang Q Y, Chen D M, Chen Y, Yang H, Li H J 2015 J. Beijing. Univ. Aero. Astron. 41 1894

    [22]

    周啸 2018 信息通信 4 79Google Scholar

    Zhou X 2018 Infor. Comm. 4 79Google Scholar

    [23]

    张欢, 王思广, 陈伟, 杨善潮 2015 核技术 38 120501

    Zhang H, Wang S G, Chen W, Yang S C 2015 Nucl. Tech. 38 120501

    [24]

    郭晓强, 郭红霞, 王桂珍, 林东生, 陈伟, 白小燕, 杨善潮, 刘岩 2010 原子能科学技术 44 362

    Guo X Q, Guo H X, Wang G Z, Lin D S, Chen W, Bai X Y, Yang S C, Liu Y 2010 Atom. Ener. Sci. Tech. 44 362

    [25]

    于全芝, 胡志良, 殷雯, 梁天骄 2014 中国科学: 物理学 力学 天文学 44 479

    Yu Q Z, Hu Z L, Yin W, Liang T J 2014 Sci. Sin.: Phys. Mech. Astron. 44 479

    [26]

    陈冬梅, 孙旭朋, 钟征宇, 封国强, 白桦, 阳辉, 底桐 2018 航空科学技术 29 67

    Chen D M, Sun X P, Zhong Z Y, Feng G Q, Bai H, Yang H, Di T 2018 Aero. Sci. Tech. 29 67

    [27]

    范辉, 郭刚, 沈东军, 刘建成, 陈红涛, 赵芳, 陈泉, 何安林, 史淑廷, 惠宁, 蔡莉, 王贵良 2015 原子能科学技术 49 171Google Scholar

    Fan H, Guo G, Shen D J, Liu J C, Chen H T, Zhao F, Chen Q, He A L, Shi S T, Hui N, Cai L, Wang G L 2015 Atom. Ener. Sci. Tech. 49 171Google Scholar

    [28]

    Ni W, Jing H, Zhang L, Ou L 2018 Radiat. Phys. Chem. 152 43Google Scholar

    [29]

    Jedec 2001 JESD89-measurement and Reporting of alpha particles and terrestrial cosmic ray-induced soft errors in semiconductor devices

    [30]

    IEC 2006 Process management for avionics-atmospheric radiation effects, part 1: Accommodation of atmospheric radiation effects via single event effects within avionic electronic equip-ment: IEC 62396-1

    [31]

    郭晓强 2009 硕士学位论文(西安: 西北核技术研究所)

    Guo X Q 2009 M.S. Thesis (Xi’an: Northwest Institute of Nuclear Technology) (in Chinese)

    [32]

    杨善超, 齐超, 白晓燕, 李瑞斌, 王晨辉, 李俊霖, 金晓明, 刘岩 2018 第三届全国辐射物理学术交流会 第77页

    Yang S C, Qi C, Bai X Y, Li R B, Wang C H, Li J L, Jin X M, Liu Y 2018 The 3th Chinese Conferance on Radiation Physics p77 (in Chinese)

  • [1] Cao Song, Yin Wen, Zhou Bin, Hu Zhi-Liang, Shen Fei, Yi Tian-Cheng, Wang Song-Lin, Liang Tian-Jiao. Calculation of radiation damage of key components of China Spallation Neutron Source II target station. Acta Physica Sinica, 2024, 73(9): 092501. doi: 10.7498/aps.73.20240088
    [2] Li Pei, Dong Zhi-Yong, Guo Hong-Xia, Zhang Feng-Qi, Guo Ya-Xin, Peng Zhi-Gang, He Chao-Hui. Investigation of laser-induced single event effect on SiGe BiCMOS low noise amplifiers. Acta Physica Sinica, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [3] Li Qiang, Li Yang, Lü You, Pan Zi-Wen, Bao Yu. Muon spectrometers on China Spallation Neutron Source and its application prospects. Acta Physica Sinica, 2024, 73(19): 197602. doi: 10.7498/aps.73.20240926
    [4] Yang Wei-Tao, Hu Zhi-Liang, He Huan, Mo Li-Hua, Zhao Xiao-Hong, Song Wu-Qing, Yi Tian-Cheng, Liang Tian-Jiao, He Chao-Hui, Li Yong-Hong, Wang Bin, Wu Long-Sheng, Liu Huan, Shi Guang. Neutron induced single event effects on near-memory computing architecture AI chips. Acta Physica Sinica, 2024, 73(13): 138502. doi: 10.7498/aps.73.20240430
    [5] Ju An-An, Guo Hong-Xia, Zhang Feng-Qi, Liu Ye, Zhong Xiang-Li, Ouyang Xiao-Ping, Ding Li-Li, Lu Chao, Zhang Hong, Feng Ya-Hui. Simulation research on single event effect of N-well resistor. Acta Physica Sinica, 2023, 72(2): 026102. doi: 10.7498/aps.72.20220125
    [6] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [7] Wang De-Xin, Zhang Su-Ya-La-Tu, Jiang Wei, Ren Jie, Wang Jin-Cheng, Tang Jing-Yu, Ruan Xi-Chao, Wang Hong-Wei, Chen Zhi-Qiang, Huang Mei-Rong, Tang Xin, Hu Xin-Rong, Li Xin-Xiang, Liu Long-Xiang, Liu Bing-Yan, Sun Hui, Zhang Yue, Hao Zi-Rui, Song Na, Li Xue, Niu Dan-Dan, Li Guo, Meng Gu-Fu. Neutron capture cross section measurements for natLu with different thickness. Acta Physica Sinica, 2022, 71(7): 072901. doi: 10.7498/aps.71.20212051
    [8] Zhang Jiang-Lin, Jiang Bing, Chen Yong-Hao, Guo Zi-An, Wang Xiao-He, Jiang Wei, Yi Han, Han Jian-Long, Hu Ji-Feng, Tang Jing-Yu, Chen Jin-Gen, Cai Xiang-Zhou. Measurement of total neutron cross section of natural lithium at China Spallation Neutron Source Back-n facility. Acta Physica Sinica, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [9] Zhang Qi-Wei, Luan Guang-Yuan, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Cross section measurement of neutron capture reaction based on back-streaming white neutron source at China spallation neutron source. Acta Physica Sinica, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [10] Jiang Wei, Jiang Hao-Yu, Yi Han, Fan Rui-Rui, Cui Zeng-Qi, Sun Kang, Zhang Guo-Hui, Tang Jing-Yu, Sun Zhi-Jia, Ning Chang-Jun, Gao Ke-Qing, An Qi, Bai Huai-Yong, Bao Jie, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yong-Hao, Chen Yu-Kai, Chen Zhen, Feng Chang-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Luan Guang-Yuan, Mu Qi-Li, Qi Bin-Bin, Ren Jie, Ren Zhi-Zhou, Ruan Xi-Chao, Song Zhao-Hui, Song Ying-Peng, Sun Hong, Sun Xiao-Yang, Tan Zhi-Xin, Tang Hong-Qing, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wang Zhao-Hui, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Lin-Hao, Zhang Qi-Wei, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, The CSNS Back-n Collaboration  . Detector calibration based on secondary protons of Back-n white neutron source. Acta Physica Sinica, 2021, 70(8): 082901. doi: 10.7498/aps.70.20201823
    [11] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Experimental study on neutron single event effects of commercial SRAMs based on CSNS. Acta Physica Sinica, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [12] Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source. Acta Physica Sinica, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [13] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Erratum: Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(10): 109901. doi: 10.7498/aps.68.109901
    [14] Bao Jie, Chen Yong-Hao, Zhang Xian-Peng, Luan Guang-Yuan, Ren Jie, Wang Qi, Ruan Xi-Chao, Zhang Kai, An Qi, Bai Huai-Yong, Cao Ping, Chen Qi-Ping, Cheng Pin-Jing, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gu Min-Hao, Guo Feng-Qin, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, He Yue-Feng, Huang Han-Xiong, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Wei, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Lan Chang-Lin, Li Bo, Li Lun, Li Qiang, Li Xiao, Li Yang, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Ma Ying-Lin, Ning Chang-Jun, Nie Yang-Bo, Qi Bin-Bin, Song Zhao-Hui, Sun Hong, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Wang Peng-Cheng, Wang Tao-Feng, Wang Yan-Feng, Wang Zhao-Hui, Wang Zheng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yang Yi, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Jing, Zhang Lin-Hao, Zhang Li-Ying, Zhang Qing-Min, Zhang Qi-Wei, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Ying-Tan, Zhou Liang, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng. Experimental result of back-streaming white neutron beam characterization at Chinese spallation neutron source. Acta Physica Sinica, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [15] Hu Zhi-Liang, Yang Wei-Tao, Li Yong-Hong, Li Yang, He Chao-Hui, Wang Song-Lin, Zhou Bin, Yu Quan-Zhi, He Huan, Xie Fei, Bai Yu-Rong, Liang Tian-Jiao. Atmospheric neutron single event effect in 65 nm microcontroller units by using CSNS-BL09. Acta Physica Sinica, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [16] Li Pei, Guo Hong-Xia, Guo Qi, Wen Lin, Cui Jiang-Wei, Wang Xin, Zhang Jin-Xin. Simulation and sesign of single event effect radiation hardening for SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2015, 64(11): 118502. doi: 10.7498/aps.64.118502
    [17] Xiao Yao, Guo Hong-Xia, Zhang Feng-Qi, Zhao Wen, Wang Yan-Ping, Ding Li-Li, Fan Xue, Luo Yin-Hong, Zhang Ke-Ying. Synergistic effects of total ionizing dose on the single event effect sensitivity of static random access memory. Acta Physica Sinica, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [18] Shen Fei, Liang Tai-Ran, Yin Wen, Yu Quan-Zhi, Zuo Tai-Sen, Yao Ze-En, Zhu Tao, Liang Tian-Jiao. Shielding design of the multi-purpose reflectometer of China spallation neutron source. Acta Physica Sinica, 2014, 63(15): 152801. doi: 10.7498/aps.63.152801
    [19] Yu Quan-Zhi, Yin Wen, Liang Tian-Jiao. Calculation and analysis of DPA in the main components of CSNS target station. Acta Physica Sinica, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
    [20] Cai Ming-Hui, Han Jian-Wei, Li Xiao-Yin, Li Hong-Wei, Zhang Zhen-Li. A simulation study of the atmospheric neutron environment in near space. Acta Physica Sinica, 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
Metrics
  • Abstract views:  10721
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2018
  • Accepted Date:  21 November 2018
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回