Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation research on single event effect of N-well resistor

Ju An-An Guo Hong-Xia Zhang Feng-Qi Liu Ye Zhong Xiang-Li Ouyang Xiao-Ping Ding Li-Li Lu Chao Zhang Hong Feng Ya-Hui

Citation:

Simulation research on single event effect of N-well resistor

Ju An-An, Guo Hong-Xia, Zhang Feng-Qi, Liu Ye, Zhong Xiang-Li, Ouyang Xiao-Ping, Ding Li-Li, Lu Chao, Zhang Hong, Feng Ya-Hui
PDF
HTML
Get Citation
  • In this paper, the single event effect of N-well resistor is simulated by using the technology computer aided design (TCAD) software. The results indicate that a single heavy ion incident into the N-well resistor will make a disturbance in the output current of the device. The working mechanism of the N-well resistor and the physical mechanism introduced by the single event effect are studied. The results show that ion-induced electron-hole pairs neutralize the depletion region in the N-well substance that provides high impedance for the device, resulting in the instantaneous increase of the output current. The larger the destroyed area of the depletion region in the N-well resistor, the higher the peak value of the transient output current is. But the ion-induced disturbance can disappear with the collection of the high concentration of excess carriers in the N-well structure. However, the unique aspect ratio design of the N-well resistor makes only the carriers close to the input drift to output under the electric field. And, the drift motion of carriers takes a lot of time because of the long transport distance, which leads to low efficiency of collecting excess carriers and a long duration of ion-induced disturbance in the N-well resistor. Besides, some other factors that can affect the single event effect in the N-well resistors are also studied in this paper. The results show that the higher the LET value of ions and the farther the incident location from the input, the more serious the single event effect of N-well resistance is. In addition, properly shortening the length of the N-well resistor and increasing the input voltage of the N-well resistor can enhance its resistance to single event effect.
      Corresponding author: Guo Hong-Xia, guohxnint@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875229, 51872251).
    [1]

    姜秀杰, 孙辉先, 王志华, 张利 2005 电子器件 28 1Google Scholar

    Jiang X J, Sun H X, Wang Z H, Zhang L 2005 Chin. J. Electron Devices 28 1Google Scholar

    [2]

    姜秀杰, 孙辉先 2004 中国空间科学学会空间探测专业委员会学术会议 (中国空间科学学会) 第402—406页

    Jiang X J, Sun X H 2004 Academic Conference of Space Exploration Committee of Chinese Society of Space Sciences (China Society of Space Science) pp402–406 (in Chinese)

    [3]

    卓青青, 刘红侠, 郝跃 2012 物理学报 61 218501Google Scholar

    Zhuo Q Q, Liu H X, Hao Y 2012 Acta Phys. Sin. 61 218501Google Scholar

    [4]

    伊腾岳 2019 博士学位论文 (西安: 西安电子科技大学)

    Yi T Y 2019 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [5]

    卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛 2020 物理学报 69 086160Google Scholar

    Lu C, Chen W, Luo Y H, Ding L L, Wang X, Zhao W, Guo X Q, Li S 2020 Acta Phys. Sin. 69 086160Google Scholar

    [6]

    毕津顺, 刘刚, 罗家俊, 韩郑生 2013 物理学报 62 208501Google Scholar

    Bi J S, Liu G, Luo J J, Han Z S 2013 Acta Phys. Sin. 62 208501Google Scholar

    [7]

    Ju A A, Guo H X, Zhang F Q, Ding L L, Du G H, Guo J L, Zhong X L, Wei J N, Pan X Y, Zhang H, 2022 IEEE T. Nucl. Sci. 69 890Google Scholar

    [8]

    Holberg A 2002 CMOS Analog Circuit Design (Vol. 2) (New York: Oxford Uiversity Press) p43

    [9]

    Guido N 1997 Electrical Overstress/Electrostatic Discharge Symposium 97 221

    [10]

    Atsumi S, Taura T 1998 US Patent 5 986 940 [1998-2-26]

    [11]

    Booth R V H, McAndrew C C 1997 IEEE T. Electron Dev. 44 809

    [12]

    Singh R K, Roy J N 2006 Solid-State Electron. 50 1696Google Scholar

    [13]

    李月影, 李冰, 何小东 2007 电子与封装 7 39Google Scholar

    Li Y Y, Li B, He X D 2007 Electron. Packag. 7 39Google Scholar

    [14]

    石晓峰, 罗宏伟, 李斌 2009 电子元件与材料 28 9Google Scholar

    SHI X F, Luo H W, Li B 2009 Electron. Compon. mater. 28 9Google Scholar

    [15]

    Srinivasan P, Xiong W, Zhao S 2010 IEEE Electron Dev. Lett. 31 1476Google Scholar

    [16]

    Luo J, Wang T S, Li D Q, Liu T Q, Hou M D, Sun Y M, Duan J L, Yao H J, Xi K, Ye B, Liu J 2018 Chin. Phys. B 27 076101Google Scholar

    [17]

    韩兆芳, 虞勇坚 2014 电子与封装 16 45Google Scholar

    Han Z F, Yu Y J 2014 Electron. Packag. 16 45Google Scholar

    [18]

    王天岐, 2016 博士毕业论文 (哈尔滨: 哈尔滨工业大学)

    Wang T Q 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology University) (in Chinese)

    [19]

    张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501Google Scholar

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501Google Scholar

    [20]

    程佳 2016 硕士毕业论文 (北京: 中国科学院大学)

    Chen J 2016 M. S. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [21]

    Koike H, Otsuki T, Kimura T, Fukuma M, Hayashi Y, Maejima Y, Amanuma K, Tanabe N, Matsuki T, Saito S, Takeuchi T, Kobayashi S, Kunio T, Hase T, Miyasaka Y, Shohata N, Takada M 1996 IEEE J. Solid-St. Circ. 31 1625Google Scholar

    [22]

    刘蓉容 2016 硕士毕业论文 (长沙: 国防科学技术大学)

    Liu Y Y 2016 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [23]

    Wang Q Q, Liu H X, Wang S L, Chen S P 2018 IEEE T. Nucl. Sci. 65 2250Google Scholar

  • 图 1  N阱结构示意图 (a)位于一款存储器外围电路中的N阱电阻, 图中的rnw3表示三端N阱电阻; (b) N阱电阻的三维结构示意图

    Figure 1.  Structure diagram of the N-well resistor: (a) An N-well resistor located in a memory peripheral circuit, rnw3 in the figure represents a three terminal N-well resistor; (b) the three-dimensional structure of N well resistor.

    图 2  N阱电阻TCAD模型示意图 (a)二维模型; (b)三维模型

    Figure 2.  The diagram of N well resistor TCAD model: (a) Two-dimension model; (b) three-dimension model.

    图 3  N阱电阻输出电流随输入电压的变化情况

    Figure 3.  The output current versus the input voltage of the N-well resistor.

    图 4  在不同输出电压下, 重离子在三维N阱电阻模型中产生的瞬态电流

    Figure 4.  Ion-induced transient current in the three-dimensional model of N-well resistor under different output voltage.

    图 5  输出电压为3.3 V时, 不同时刻内N阱电阻内空间电荷区分布 (a) 0 ns; (b) 0.1 ns; (c) 0.6 ns; (d) 5 ns

    Figure 5.  When output voltage of model is 3.3 V, the space charge distribution in N well resistor at : (a) 0 ns; (b) 0.1 ns; (c) 0.6 ns; (d) 5 ns.

    图 6  两种不同电压条件下, N阱结构中深度为2 μm处的位置上横向电场强度在不同时刻的分布情况 (a) 输出端电压为3.3 V; (b) 输出端电压为0 V

    Figure 6.  The distribution of transverse electric field in N well structure at depth of 2 μm location: (a) Output voltage is 3.3 V; (b) output voltage is 0 V.

    图 7  输出电压为0 V时, 不同时刻内N阱中电子速度分布 (a) 0 ns; (b) 0.1 ns; (c) 0.6 ns; (d) 5 ns; (e) 15 ns ; (f) 30 ns

    Figure 7.  When output voltage is 0 V, the distribution of electron velocity in N well structure at: (a) 0 ns, (b) 0.1 ns, (c) 0.6 ns, (d) 5 ns, (e) 15 ns and (f) 30 ns moment.

    图 8  输出电压为0 V时, 不同时刻内N阱电阻中空间电荷区的变化 (a) 0 ns; (b) 0.1 ns; (c) 0.6 ns; (d) 5 ns; (e) 15 ns ; (f) 30 ns

    Figure 8.  When output voltage is 0 V, the change of space charge region in N well structure at (a) 0 ns, (b) 0.1 ns, (c) 0.6 ns, (d) 5 ns, (e) 15 ns, (f) 30 ns moment.

    图 9  重离子从不同位置入射N阱电阻产生的单粒子瞬态电流

    Figure 9.  Single event transient current in N-well resistor generated by ion from different incident locations.

    图 10  不同LET值的重离子在N阱电阻中产生的瞬态电流

    Figure 10.  Single event transient current in N-well resistor generated by ions with different LET values.

    图 11  不同长度的N电阻中产生的归一化单粒子瞬态电流

    Figure 11.  Normalization single event transient current generated in N-well resistors with different lengths.

    图 12  不同输入电压下的N阱电阻产生的单粒子瞬态电流

    Figure 12.  Single event transient current generated in N-well resistors under different input voltage.

    表 1  本文模型电阻值与文献[11]中模型电阻值的比较

    Table 1.  The comparison of calculated resistance values in this paper and results in Ref. [11].

    W/μm本文模型/
    文献中的简单
    模型/kΩ
    文献中的高级
    模型/kΩ
    2.517.1418.2117.06
    5.08.108.217.91
    7.05.705.705.53
    10.04.293.913.81
    注: 输入电压为3 V, N阱和P衬底的掺杂浓度为5×1016 cm3, 长度为100 μm.
    DownLoad: CSV

    表 2  TCAD模型中所使用的具体参数

    Table 2.  Detailed parameters used in TCAD models

    参数数值
    电阻的长度L/μm24
    电阻的宽度W/μm2
    N阱的深度d/μm4
    N阱的掺杂浓度/(1015 cm–3)3
    P衬底的掺杂浓度/(1015 cm–3)5
    P衬底的深度H/μm100
    DownLoad: CSV

    表 3  不同输出端电压下, 重离子在N阱电阻三维模型中产生的瞬态电流参数

    Table 3.  Detailed parameters of ion-induced transient current in three-dimension model under different output voltage.

    输出端
    电压/V
    电流峰
    值/mA
    到达电流峰
    值时间/ns
    瞬态电流
    持续时间/ns
    积分电
    荷/pC
    00.814.4463.2051.56
    1.30.605.4437.8033.70
    2.30.435.4429.4019.28
    3.30.254.4517.903.03
    DownLoad: CSV
  • [1]

    姜秀杰, 孙辉先, 王志华, 张利 2005 电子器件 28 1Google Scholar

    Jiang X J, Sun H X, Wang Z H, Zhang L 2005 Chin. J. Electron Devices 28 1Google Scholar

    [2]

    姜秀杰, 孙辉先 2004 中国空间科学学会空间探测专业委员会学术会议 (中国空间科学学会) 第402—406页

    Jiang X J, Sun X H 2004 Academic Conference of Space Exploration Committee of Chinese Society of Space Sciences (China Society of Space Science) pp402–406 (in Chinese)

    [3]

    卓青青, 刘红侠, 郝跃 2012 物理学报 61 218501Google Scholar

    Zhuo Q Q, Liu H X, Hao Y 2012 Acta Phys. Sin. 61 218501Google Scholar

    [4]

    伊腾岳 2019 博士学位论文 (西安: 西安电子科技大学)

    Yi T Y 2019 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [5]

    卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛 2020 物理学报 69 086160Google Scholar

    Lu C, Chen W, Luo Y H, Ding L L, Wang X, Zhao W, Guo X Q, Li S 2020 Acta Phys. Sin. 69 086160Google Scholar

    [6]

    毕津顺, 刘刚, 罗家俊, 韩郑生 2013 物理学报 62 208501Google Scholar

    Bi J S, Liu G, Luo J J, Han Z S 2013 Acta Phys. Sin. 62 208501Google Scholar

    [7]

    Ju A A, Guo H X, Zhang F Q, Ding L L, Du G H, Guo J L, Zhong X L, Wei J N, Pan X Y, Zhang H, 2022 IEEE T. Nucl. Sci. 69 890Google Scholar

    [8]

    Holberg A 2002 CMOS Analog Circuit Design (Vol. 2) (New York: Oxford Uiversity Press) p43

    [9]

    Guido N 1997 Electrical Overstress/Electrostatic Discharge Symposium 97 221

    [10]

    Atsumi S, Taura T 1998 US Patent 5 986 940 [1998-2-26]

    [11]

    Booth R V H, McAndrew C C 1997 IEEE T. Electron Dev. 44 809

    [12]

    Singh R K, Roy J N 2006 Solid-State Electron. 50 1696Google Scholar

    [13]

    李月影, 李冰, 何小东 2007 电子与封装 7 39Google Scholar

    Li Y Y, Li B, He X D 2007 Electron. Packag. 7 39Google Scholar

    [14]

    石晓峰, 罗宏伟, 李斌 2009 电子元件与材料 28 9Google Scholar

    SHI X F, Luo H W, Li B 2009 Electron. Compon. mater. 28 9Google Scholar

    [15]

    Srinivasan P, Xiong W, Zhao S 2010 IEEE Electron Dev. Lett. 31 1476Google Scholar

    [16]

    Luo J, Wang T S, Li D Q, Liu T Q, Hou M D, Sun Y M, Duan J L, Yao H J, Xi K, Ye B, Liu J 2018 Chin. Phys. B 27 076101Google Scholar

    [17]

    韩兆芳, 虞勇坚 2014 电子与封装 16 45Google Scholar

    Han Z F, Yu Y J 2014 Electron. Packag. 16 45Google Scholar

    [18]

    王天岐, 2016 博士毕业论文 (哈尔滨: 哈尔滨工业大学)

    Wang T Q 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology University) (in Chinese)

    [19]

    张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501Google Scholar

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501Google Scholar

    [20]

    程佳 2016 硕士毕业论文 (北京: 中国科学院大学)

    Chen J 2016 M. S. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [21]

    Koike H, Otsuki T, Kimura T, Fukuma M, Hayashi Y, Maejima Y, Amanuma K, Tanabe N, Matsuki T, Saito S, Takeuchi T, Kobayashi S, Kunio T, Hase T, Miyasaka Y, Shohata N, Takada M 1996 IEEE J. Solid-St. Circ. 31 1625Google Scholar

    [22]

    刘蓉容 2016 硕士毕业论文 (长沙: 国防科学技术大学)

    Liu Y Y 2016 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [23]

    Wang Q Q, Liu H X, Wang S L, Chen S P 2018 IEEE T. Nucl. Sci. 65 2250Google Scholar

  • [1] Li Pei, Dong Zhi-Yong, Guo Hong-Xia, Zhang Feng-Qi, Guo Ya-Xin, Peng Zhi-Gang, He Chao-Hui. Investigation of laser-induced single event effect on SiGe BiCMOS low noise amplifiers. Acta Physica Sinica, 2024, 73(4): 044301. doi: 10.7498/aps.73.20231451
    [2] Yang Wei-Tao, Hu Zhi-Liang, He Huan, Mo Li-Hua, Zhao Xiao-Hong, Song Wu-Qing, Yi Tian-Cheng, Liang Tian-Jiao, He Chao-Hui, Li Yong-Hong, Wang Bin, Wu Long-Sheng, Liu Huan, Shi Guang. Neutron induced single event effects on near-memory computing architecture AI chips. Acta Physica Sinica, 2024, 73(13): 138502. doi: 10.7498/aps.73.20240430
    [3] Huang Xin-Yu, Zhang Jin-Xin, Wang Xin, Lü Ling, Guo Hong-Xia, Feng Juan, Yan Yun-Yi, Wang Hui, Qi Jun-Xiang. Numerical simulation of single-particle transients in low-noise amplifiers based on silicon-germanium heterojunction bipolar transistors and inverse-mode structures. Acta Physica Sinica, 2024, 73(12): 126103. doi: 10.7498/aps.73.20240307
    [4] Shen Rui-Xiang, Zhang Hong, Song Hong-Jia, Hou Peng-Fei, Li Bo, Liao Min, Guo Hong-Xia, Wang Jin-Bin, Zhong Xiang-Li. Numerical simulation of single-event effects in fully-depleted silicon-on-insulator HfO2-based ferroelectric field-effect transistor memory cell. Acta Physica Sinica, 2022, 71(6): 068501. doi: 10.7498/aps.71.20211655
    [5] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [6] Han Jin-Hua, Qin Ying-Can, Guo Gang, Zhang Yan-Wen. A method of designing binary energy degrader. Acta Physica Sinica, 2020, 69(3): 033401. doi: 10.7498/aps.69.20191514
    [7] Han Jin-Hua, Guo Gang, Liu Jian-Cheng, Sui Li, Kong Fu-Quan, Xiao Shu-Yan, Qin Ying-Can, Zhang Yan-Wen. Design of 100-MeV proton beam spreading scheme with double-ring double scattering method. Acta Physica Sinica, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [8] Wang Xun, Zhang Feng-Qi, Chen Wei, Guo Xiao-Qiang, Ding Li-Li, Luo Yin-Hong. Application and evaluation of Chinese spallation neutron source in single-event effects testing. Acta Physica Sinica, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [9] Zhao Wen, Guo Xiao-Qiang, Chen Wei, Qiu Meng-Tong, Luo Yin-Hong, Wang Zhong-Ming, Guo Hong-Xia. Effects of nuclear reactions between protons and metal interconnect overlayers on single event effects of micro/nano scaled static random access memory. Acta Physica Sinica, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [10] Li Pei, Guo Hong-Xia, Guo Qi, Wen Lin, Cui Jiang-Wei, Wang Xin, Zhang Jin-Xin. Simulation and sesign of single event effect radiation hardening for SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2015, 64(11): 118502. doi: 10.7498/aps.64.118502
    [11] Zhang Jin-Xin, He Chao-Hui, Guo Hong-Xia, Tang Du, Xiong Cen, Li Pei, Wang Xin. Three-dimensional simulation study of bias effect on single event effects of SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2014, 63(24): 248503. doi: 10.7498/aps.63.248503
    [12] Xiao Yao, Guo Hong-Xia, Zhang Feng-Qi, Zhao Wen, Wang Yan-Ping, Ding Li-Li, Fan Xue, Luo Yin-Hong, Zhang Ke-Ying. Synergistic effects of total ionizing dose on the single event effect sensitivity of static random access memory. Acta Physica Sinica, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [13] Zhang Jin-Xin, Guo Hong-Xia, Guo Qi, Wen Lin, Cui Jiang-Wei, Xi Shan-Bin, Wang Xin, Deng Wei. 3D simulation of heavy ion induced charge collection of single event effects in SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
    [14] Zhuo Qing-Qing, Liu Hong-Xia, Hao Yue. Two-dimensional numerical analysis of the collection mechanism of single event transient current in NMOSFET. Acta Physica Sinica, 2012, 61(21): 218501. doi: 10.7498/aps.61.218501
    [15] Liu Bi-Wei, Chen Jian-Jun, Chen Shu-Ming, Chi Ya-Qin. NPN bipolar effect and its influence on charge sharing in a tripe well CMOS technology with n+ deep well. Acta Physica Sinica, 2012, 61(9): 096102. doi: 10.7498/aps.61.096102
    [16] Li Fei, Xiao Liu, Liu Pu-Kun, Yi Hong-Xia, Wan Xiao-Sheng. Simple theory of space-charge-limited current between concentric sphere. Acta Physica Sinica, 2011, 60(9): 097901. doi: 10.7498/aps.60.097901
    [17] Gao Shao-Hua, Wang Yu-Xia, Wang Hong-Wei, Yuan Shuai. Research on the conductivity of KAg4 I5-AgI composite. Acta Physica Sinica, 2011, 60(8): 086601. doi: 10.7498/aps.60.086601
    [18] Liu Fan-Yu, Liu Heng-Zhu, Liu Bi-Wei, Liang Bin, Chen Jian-Jun. Effect of doping concentration in p+ deep well on charge sharing in 90nm CMOS technology. Acta Physica Sinica, 2011, 60(4): 046106. doi: 10.7498/aps.60.046106
    [19] Cai Ming-Hui, Han Jian-Wei, Li Xiao-Yin, Li Hong-Wei, Zhang Zhen-Li. A simulation study of the atmospheric neutron environment in near space. Acta Physica Sinica, 2009, 58(9): 6659-6664. doi: 10.7498/aps.58.6659
    [20] He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Wang Yan-Ping, Li Guo-Zheng. Experimental study on irradiation effects in floating gate ROMs. Acta Physica Sinica, 2003, 52(1): 180-187. doi: 10.7498/aps.52.180
Metrics
  • Abstract views:  4048
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  18 January 2022
  • Accepted Date:  07 November 2022
  • Available Online:  18 November 2022
  • Published Online:  20 January 2023

/

返回文章
返回