Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation and sesign of single event effect radiation hardening for SiGe heterojunction bipolar transistor

Li Pei Guo Hong-Xia Guo Qi Wen Lin Cui Jiang-Wei Wang Xin Zhang Jin-Xin

Citation:

Simulation and sesign of single event effect radiation hardening for SiGe heterojunction bipolar transistor

Li Pei, Guo Hong-Xia, Guo Qi, Wen Lin, Cui Jiang-Wei, Wang Xin, Zhang Jin-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the rapid development of satellite, manned space flight and deep space exploration technology, semiconductor devices are used in extreme environments, especially in radiation and low temperature environment. SiGe HBT is a potential candidate for space applications because of its inherent robustness to total ionizing dose (TID) radiation. However, due primarily to charge collection through the collector-substrate (CS) junction and the relatively low substrate doping., SiGe HBTs are vulnerable to single event effects (SEEs) because of new features of process and structure. Thus, the SEE becomes a key factor in restricting space applications of SiGe HBTs. This paper presents an SEE hardening approach that uses a dummy collector to reduce charge collection in the SiGe HBT. The dummy collector is obtained by using the silicon space between adjacent HBTs. It is obtained without any process modification or area penalty. At first, we build simulation models for both normal and hardened SiGe HBTs, and then carry out SEE simulations respectively. The charge collection mechanism is obtained by analyzing the transient current and charge collection changes at different ion incident positions. Unlike the normal HBT, we can see that charge is continuously collected by the dummy CS junction. This causes more charges diffuse outward and the charges available for collector terminal to be reduced. For all ion incident positions, in the case of hardening, the drift components of charge collection are approximately the same, while the diffusion charge collection components are nearly completely compressed. During SEE, the CS junction either directly collects the deposited charges through drift within the potential funnel or indirectly collects charges after they have arrived at the junction after diffusion. The diffusion length of the carriers is on the order of tens of microns or more. Hence a dummy CS junction should be able to reduce the quantity of diffusive charges collected by the HBT collector. The actual charges collected by the collector are effectively reduced. The emitter and base charge collection also decrease by the dummy collector to different extents. Dummy-collector effectively mitigates the SEE of SiGe HBT. The SEE sensitive area of SiGe HBT is also effectively reduced by half. This work is carried out for the SiGe HBT circuit level radiation hardening design of single event effects
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61274106).
    [1]

    Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 1992

    [2]

    Cressler J D 2005 Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting Santa Barbara, October 9-11, 2005 p248

    [3]

    Cressler J D, Niu G F 2003 Silicon-germanium heterojunction bipolar transistors (Norwood:Artech House) pp95-182

    [4]

    Babcock J A, Cressler J D, Vempati L S, Clark S D, Jaeger R C, Harame D L 1995 IEEE Trans. Nucl. Sci. 42 1558

    [5]

    Lu Y, Cressler J D, Krithivasan R, Li Y, Reed R A, Marshall P W, Polar C, Freeman G, Ahlgren D 2003 IEEE Trans. Nucl. Sci. 50 1811

    [6]

    Sutton A K, Haugerud B M, Prakash A P G, Jun B, Cressler J D, Marshall C J, Marshall P W, Ladbury R, Joseph A J 2005 IEEE Trans. Nucl. Sci. 52 2358

    [7]

    Sutton A K, Prakash A P G, Jun B, Enhai Zhao, Bellini M, Pellish J, Diestelhorst R M, Carts M A, Phan A, Ladbury R, Cressler J D, Marshall P W, Marshall C J, Reed R A, Schrimpf R D, Fleetwood D M 2006 IEEE Trans. Nucl. Sci. 53 3166

    [8]

    Krithivasan R, Niu G F, Cressler J D, Currie S M, Fritz K E, Reed R A, Marshall P W, Riggs P A, Randall B A, Gilbert B 2003 IEEE Trans. Nucl. Sci. 50 2126

    [9]

    Krithivasan R, Marshall P W, Nayeem M, Sutton A K, Wei-Min Kuo, Haugerud B M, Najafizadeh L, Cressler J D, Carts M A, Marshall C J, Hansen D L, Jobe K C M, McKay A L, Niu G F, Reed R A, Randall B A, Burfield C A, Lindberg M D, Gilbert B K, Daniel E S IEEE Trans. Nucl. Sci. 53 3400

    [10]

    Reed R A, Marshall P W, Pickel J C, Carts M A, Fodness B, Niu G F, Fritz K, Vizkelethy G, Dodd P E, Irwin T L, Cressler J D, Krithivasan R, Riggs P A, Prairie J, Randall B A, Gilbert B K, Label K A 2003 IEEE Trans. Nucl. Sci. 50 2184

    [11]

    Sutton A K, Bellini M, Cressler J D, Pellish J A, Reed R A, Marshall P W, Niu G F, Vizkelethy G, Turowski M, Raman A 2007 IEEE Trans. Nucl. Sci. 54 2044

    [12]

    Marshall P W, Carts M A, Campbell A, McMorrow D, Buchner S, Stewart Ryan, Randall B, Gilbert Barry, Reed R A IEEE Trans. Nucl. Sci. 47 2669

    [13]

    Niu G F, Yang H, Varadharajaperumal M, Shi Y, Cressler J D, Krithivasan R, Marshall P W, Reed R A 2005 IEEE Trans. Nucl. Sci. 52 2153

    [14]

    Varadharajaperumal M, Niu G F, Wei X Y, Zhang T, Cressler J D, Reed R A, Marshall P W 2007 IEEE Trans. Nucl. Sci. 54 2330

    [15]

    Varadharajaperumal M 2010 Ph.D. Dissertation (Alabama:Auburn University)

    [16]

    Sutton A K, Bellini M, Cressler J D, Pellish J A, Reed R A, Marshall P W, Niu G f, Vizkelethy G, Turowski M, Raman A 2007 IEEE Trans. Nucl. Sci. 54 2044

    [17]

    Phillips S D, Moen K A, Najafizadeh L, Diestelhorst R M, Sutton A K, Cressler J D, Vizkelethy G, Dodd P E, Marshall P W 2010 IEEE Trans. Nucl. Sci. 57 3400

    [18]

    Zhang T 2009 MS Dissertation (Alabama:Auburn University)

    [19]

    Phillips S D 2012 Ph.D. Dissertation (Georgia:Georgia Institute of Technology)

    [20]

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501]

    [21]

    Lai F, Hu G Y 2013 Microelectronics 43 0094 (in Chinese) [赖凡, 胡刚毅 2013 微电子学 43 0094]

    [22]

    Liu Z, Chen S M, Liang B, Liu B W, Zhao Z Y 2010 Acta Phys. Sin. 59 064906 (in Chinese) [刘征, 陈书明, 梁斌, 刘必慰, 赵振宇 2010 物理学报 59 064906]

    [23]

    Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013 Acta Phys. Sin. 62 196104 (in Chinese) [孙亚宾, 付军, 许军, 王玉东, 周卫, 张伟, 崔杰, 李高庆, 刘志弘 2013 物理学报 62 196104]

  • [1]

    Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 1992

    [2]

    Cressler J D 2005 Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting Santa Barbara, October 9-11, 2005 p248

    [3]

    Cressler J D, Niu G F 2003 Silicon-germanium heterojunction bipolar transistors (Norwood:Artech House) pp95-182

    [4]

    Babcock J A, Cressler J D, Vempati L S, Clark S D, Jaeger R C, Harame D L 1995 IEEE Trans. Nucl. Sci. 42 1558

    [5]

    Lu Y, Cressler J D, Krithivasan R, Li Y, Reed R A, Marshall P W, Polar C, Freeman G, Ahlgren D 2003 IEEE Trans. Nucl. Sci. 50 1811

    [6]

    Sutton A K, Haugerud B M, Prakash A P G, Jun B, Cressler J D, Marshall C J, Marshall P W, Ladbury R, Joseph A J 2005 IEEE Trans. Nucl. Sci. 52 2358

    [7]

    Sutton A K, Prakash A P G, Jun B, Enhai Zhao, Bellini M, Pellish J, Diestelhorst R M, Carts M A, Phan A, Ladbury R, Cressler J D, Marshall P W, Marshall C J, Reed R A, Schrimpf R D, Fleetwood D M 2006 IEEE Trans. Nucl. Sci. 53 3166

    [8]

    Krithivasan R, Niu G F, Cressler J D, Currie S M, Fritz K E, Reed R A, Marshall P W, Riggs P A, Randall B A, Gilbert B 2003 IEEE Trans. Nucl. Sci. 50 2126

    [9]

    Krithivasan R, Marshall P W, Nayeem M, Sutton A K, Wei-Min Kuo, Haugerud B M, Najafizadeh L, Cressler J D, Carts M A, Marshall C J, Hansen D L, Jobe K C M, McKay A L, Niu G F, Reed R A, Randall B A, Burfield C A, Lindberg M D, Gilbert B K, Daniel E S IEEE Trans. Nucl. Sci. 53 3400

    [10]

    Reed R A, Marshall P W, Pickel J C, Carts M A, Fodness B, Niu G F, Fritz K, Vizkelethy G, Dodd P E, Irwin T L, Cressler J D, Krithivasan R, Riggs P A, Prairie J, Randall B A, Gilbert B K, Label K A 2003 IEEE Trans. Nucl. Sci. 50 2184

    [11]

    Sutton A K, Bellini M, Cressler J D, Pellish J A, Reed R A, Marshall P W, Niu G F, Vizkelethy G, Turowski M, Raman A 2007 IEEE Trans. Nucl. Sci. 54 2044

    [12]

    Marshall P W, Carts M A, Campbell A, McMorrow D, Buchner S, Stewart Ryan, Randall B, Gilbert Barry, Reed R A IEEE Trans. Nucl. Sci. 47 2669

    [13]

    Niu G F, Yang H, Varadharajaperumal M, Shi Y, Cressler J D, Krithivasan R, Marshall P W, Reed R A 2005 IEEE Trans. Nucl. Sci. 52 2153

    [14]

    Varadharajaperumal M, Niu G F, Wei X Y, Zhang T, Cressler J D, Reed R A, Marshall P W 2007 IEEE Trans. Nucl. Sci. 54 2330

    [15]

    Varadharajaperumal M 2010 Ph.D. Dissertation (Alabama:Auburn University)

    [16]

    Sutton A K, Bellini M, Cressler J D, Pellish J A, Reed R A, Marshall P W, Niu G f, Vizkelethy G, Turowski M, Raman A 2007 IEEE Trans. Nucl. Sci. 54 2044

    [17]

    Phillips S D, Moen K A, Najafizadeh L, Diestelhorst R M, Sutton A K, Cressler J D, Vizkelethy G, Dodd P E, Marshall P W 2010 IEEE Trans. Nucl. Sci. 57 3400

    [18]

    Zhang T 2009 MS Dissertation (Alabama:Auburn University)

    [19]

    Phillips S D 2012 Ph.D. Dissertation (Georgia:Georgia Institute of Technology)

    [20]

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501]

    [21]

    Lai F, Hu G Y 2013 Microelectronics 43 0094 (in Chinese) [赖凡, 胡刚毅 2013 微电子学 43 0094]

    [22]

    Liu Z, Chen S M, Liang B, Liu B W, Zhao Z Y 2010 Acta Phys. Sin. 59 064906 (in Chinese) [刘征, 陈书明, 梁斌, 刘必慰, 赵振宇 2010 物理学报 59 064906]

    [23]

    Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013 Acta Phys. Sin. 62 196104 (in Chinese) [孙亚宾, 付军, 许军, 王玉东, 周卫, 张伟, 崔杰, 李高庆, 刘志弘 2013 物理学报 62 196104]

  • [1] Deng Shan-shan, Song Ping, Liu Xiao-he, Yao Sen, Zhao Qian-yi. The magnetic susceptibility of Mn3Sn single crystal is enhanced under GPa-level uniaxial stress. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240287
Metrics
  • Abstract views:  5118
  • PDF Downloads:  202
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2014
  • Accepted Date:  16 January 2015
  • Published Online:  05 June 2015

/

返回文章
返回