-
The damage mechanism of the total ionizing dose (TID) effect of SiGe heterojunction bipolor transistar (SiGe HBT) is explored by using three-dimensional simulation of semiconductor device (TCAD).In the simulation, the trapped charge defects are introduced into different locations of oxidationin SiGe HBT to simulate the TID effect. Then the degradation characteristics of the forward Gummel characteristic and the reverse Gummel characteristic of the device are analyzed, and the TID damage law of SiGe HBT is obtained. Finally, the simulation results are compared with the 60Co γ irradiation test results, showing that the trapped charges introduced by TID irradiation in SiGe HBT device mainly affect the Si/SiO2 interface near the p-n junction, resulting in the change in the depletion region of the p-n junction and the increase of carrier recombination. Eventually, the base current increases and the gain decreases. The trapped charges generated in the EB spacer oxide layer mainly affect the forward Gummel characteristics, and the trapped charges in the LOCOS isolation oxide layer are the main factor causing the reverse Gummel characteristics to degrade. The experimental results on 60Co γ irradiation under different biases are consistent with those from the total dose effect damage law of SiGe HBT obtained by numerical simulation analysis.
-
Keywords:
- SiGe heterojunction bipolor transistar /
- total ionizing dose effect /
- 3-dimensional simulation
[1] Datta K, Hashemi H, Performance L 2014 IEEE J. Solid-State Circuits 49 2150Google Scholar
[2] 张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501Google Scholar
Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501Google Scholar
[3] Cressler J D 2004 Silicon-Germanium Heterojunction Bipolar Transistor (Boston: John Wiley & Sons, Ltd) p23
[4] Garcia E R, ZerounianN, CrozatP, Aguilar M E, Chevalier P, ChantreA, Aniel F 2009 Cryogenics 49 620Google Scholar
[5] 张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信 2014 物理学报 63 248503Google Scholar
Zhang J X, He C H, Guo H X, Tang D, Xiong C, Li P, Wang X 2014 Acta Phys. Sin. 63 248503Google Scholar
[6] Pratapgarhwala M 2005 Ph. D. Dissertation (Atlanta: Georgia Institute of Technology)
[7] Bellini M 2009 Ph. D. Dissertation (Atlanta: Georgia Institute of Technology)
[8] Ullan M, Wilder M, Spieler H, Spencer E, Rescia S, Newcomer F M, Martinez-McKinney F, Kononenko W, Grillo A A, Diez S 2012 Nucl. Instrum. Method Phys. Res. B 724 41
[9] Praveen K C, Pushpa N, Naik P S, Cressler J D, Tripathi A, Gnana A P 2012 Nucl. Instrum. Method Phys. Res. B 273 43Google Scholar
[10] Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013 Nucl. Instrum. Method Phys. Res. B 312 77Google Scholar
[11] Díez S, Lozano M, Pellegrini G, Campabadal F, Mandic I, Knoll D, Heinemann B, Ullánet M 2009 IEEE Trans. Nucl. Sci. 56 1931Google Scholar
[12] Fleetwood Z E, Cardoso A S, Song I, Wilcox E, Lourenco N E, Philips S D, Arora R, Amouzou P P, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 2915Google Scholar
[13] Yan G, Bi J, Xu G, Xi K, Li B, Fan L, Yin H 2020 IEEE Access 8 154898Google Scholar
[14] 曹杨, 习凯, 徐彦楠, 李梅, 李博, 毕津顺, 刘明 2019 物理学报 68 038501Google Scholar
Cao Y, Xi K, Xu Y, Li M, Li B, Bi J, Liu M 2019 Acta Phys. Sin. 68 038501Google Scholar
[15] Banerje G, Niu G, Cressler J D, Clark S D, Palmer M J, Ahlgren D C 1999 IEEE Trans. Nucl. Sci. 46 1620Google Scholar
[16] Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706Google Scholar
[17] Sutton A K, Prakash A P G, Jun B, Zhao E, Bellini M, Pellish J, Diestelhorst R M, Carts M A, Phan A, Ladbury R, Cressler J D, Fleetwood D M 2006 IEEE Trans. Nucl. Sci. 53 3166Google Scholar
[18] Xu Y, Bi J, Xu G, Xi K, Li B, Wang H, Liu M 2018 Chin. Phys. Lett. 35 118501Google Scholar
[19] Boch J, Saigne F, Touboul A D, Ducret S, Carlotti J F, Bernard M, Schrimpf R D, Wrobel F, Sarrabayrouse G 2006 Appl. Phys. Lett. 88 232113Google Scholar
[20] Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Li P, Liu M H 2016 IEEE Trans. Nucl. Sci. 63 1251Google Scholar
[21] Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Li P, Wen L 2018 Microelectron. Reliab. 84 105Google Scholar
[22] Zhang S, Cressler J D, Niu G F, Marshall C J, Marshall P W, Kim H S, Reed R A, Palmer M J, Joseph A J, Harame D L 2003 Solid-State Electron. 47 1729Google Scholar
-
图 3 不同Si/SiO2界面位置处添加traps模型的示意图 (a)本征基区In-base与EB spacer界面添加traps; (b)本征基区In-base与LOCOS上界面添加trap; (c)发射区和EB spacer界面添加traps; (d)本征基区In-base与LOCOS下界面、集电区与LOCOS下界面添加traps
Figure 3. Traps on different location of Si/SiO2 interface: (a) Traps on interface between In-base and EB spacer; (b) traps on interface between In-base and upside LOCOS; (c) traps on interface between emitter and EB spacer; (d) traps on interface between below side LOCOS and In-base, up side and collector .
-
[1] Datta K, Hashemi H, Performance L 2014 IEEE J. Solid-State Circuits 49 2150Google Scholar
[2] 张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501Google Scholar
Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501Google Scholar
[3] Cressler J D 2004 Silicon-Germanium Heterojunction Bipolar Transistor (Boston: John Wiley & Sons, Ltd) p23
[4] Garcia E R, ZerounianN, CrozatP, Aguilar M E, Chevalier P, ChantreA, Aniel F 2009 Cryogenics 49 620Google Scholar
[5] 张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信 2014 物理学报 63 248503Google Scholar
Zhang J X, He C H, Guo H X, Tang D, Xiong C, Li P, Wang X 2014 Acta Phys. Sin. 63 248503Google Scholar
[6] Pratapgarhwala M 2005 Ph. D. Dissertation (Atlanta: Georgia Institute of Technology)
[7] Bellini M 2009 Ph. D. Dissertation (Atlanta: Georgia Institute of Technology)
[8] Ullan M, Wilder M, Spieler H, Spencer E, Rescia S, Newcomer F M, Martinez-McKinney F, Kononenko W, Grillo A A, Diez S 2012 Nucl. Instrum. Method Phys. Res. B 724 41
[9] Praveen K C, Pushpa N, Naik P S, Cressler J D, Tripathi A, Gnana A P 2012 Nucl. Instrum. Method Phys. Res. B 273 43Google Scholar
[10] Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013 Nucl. Instrum. Method Phys. Res. B 312 77Google Scholar
[11] Díez S, Lozano M, Pellegrini G, Campabadal F, Mandic I, Knoll D, Heinemann B, Ullánet M 2009 IEEE Trans. Nucl. Sci. 56 1931Google Scholar
[12] Fleetwood Z E, Cardoso A S, Song I, Wilcox E, Lourenco N E, Philips S D, Arora R, Amouzou P P, Cressler J D 2014 IEEE Trans. Nucl. Sci. 61 2915Google Scholar
[13] Yan G, Bi J, Xu G, Xi K, Li B, Fan L, Yin H 2020 IEEE Access 8 154898Google Scholar
[14] 曹杨, 习凯, 徐彦楠, 李梅, 李博, 毕津顺, 刘明 2019 物理学报 68 038501Google Scholar
Cao Y, Xi K, Xu Y, Li M, Li B, Bi J, Liu M 2019 Acta Phys. Sin. 68 038501Google Scholar
[15] Banerje G, Niu G, Cressler J D, Clark S D, Palmer M J, Ahlgren D C 1999 IEEE Trans. Nucl. Sci. 46 1620Google Scholar
[16] Fleetwood D M 2013 IEEE Trans. Nucl. Sci. 60 1706Google Scholar
[17] Sutton A K, Prakash A P G, Jun B, Zhao E, Bellini M, Pellish J, Diestelhorst R M, Carts M A, Phan A, Ladbury R, Cressler J D, Fleetwood D M 2006 IEEE Trans. Nucl. Sci. 53 3166Google Scholar
[18] Xu Y, Bi J, Xu G, Xi K, Li B, Wang H, Liu M 2018 Chin. Phys. Lett. 35 118501Google Scholar
[19] Boch J, Saigne F, Touboul A D, Ducret S, Carlotti J F, Bernard M, Schrimpf R D, Wrobel F, Sarrabayrouse G 2006 Appl. Phys. Lett. 88 232113Google Scholar
[20] Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Li P, Liu M H 2016 IEEE Trans. Nucl. Sci. 63 1251Google Scholar
[21] Zhang J X, Guo Q, Guo H X, Lu W, He C H, Wang X, Li P, Wen L 2018 Microelectron. Reliab. 84 105Google Scholar
[22] Zhang S, Cressler J D, Niu G F, Marshall C J, Marshall P W, Kim H S, Reed R A, Palmer M J, Joseph A J, Harame D L 2003 Solid-State Electron. 47 1729Google Scholar
Catalog
Metrics
- Abstract views: 4702
- PDF Downloads: 70
- Cited By: 0