Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor

Peng Chao1\2 En Yun-Fei Li Bin Lei Zhi-Feng Zhang Zhan-Gang He Yu-Juan Huang Yun

Citation:

Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor

Peng Chao1\2, En Yun-Fei, Li Bin, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Huang Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we investigate the total ionizing dose (TID) effects of silicon-on-isolator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) with different sizes by using 60Co γ-ray. The SOI MOSFET contains a shallow trench isolation (STI) edge parasitic transistor and back gate parasitic transistor, in which STI oxide and buried oxide (BOX) are used as gate oxide, respectively. Although these parasitic effects are minimized by semiconductor device process, the radiation-induced trapped-charge can lead these parasitic effects to strengthen, thereby affecting the electrical characteristics of the main transistor. Since both the STI and BOX are sensitive to the TID effect, we try to distinguish their different influences on SOI devices in this work.The experimental results show that the characteristic degradation of device originates from the radiation-enhanced parasitic effect. The turning-on of the STI parasitic transistor leads the off-state leakage current to exponentially increase with total dose increasing until the off-state leakage reaches a saturation level. The threshold voltage shift observed in the narrow channel device results from the charge sharing in the STI, while the back gate coupling is a dominant contributor to the threshold voltage shift in short channel device. These results are explained by two simple models. The experimental data are consistent with the model calculation results. We can conclude that the smaller size device is more sensitive to TID effect in the same process.Furthermore, the influence of the negative bias at back gate and body on the radiation effect are also studied. The negative bias at back gate will partially neutralize the effect of positive trapped-charge in STI and that in BOX, thus suppressing the turning-on of STI parasitic transistor and the back gate coupling. The parasitic transistors share a common body region with the main transistor. So exerting body negative bias can increase the threshold voltage of the parasitic transistor, thereby restraining the TID effect. The experimental and simulation results show that the adjustment of the threshold voltage of parasitic transistor by body negative bias is limited due to the thin body region. The modulation of body negative bias in depletion region is more obvious in back gate parasitic transistor than in STI parasitic transistor. The weakening of parasitic conduction in the back channel is more noticeable than at STI sidewall under a body negative bias.
      Corresponding author: Peng Chao1\2, 576167714@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61704031) and the National Postdoctoral Program for Innovative Talents, China (Grant No. BX201600037).
    [1]

    Rezzak N, Zhang E X, Alles M L, Schrimpf R D, Hughes H 2010 Proceedings of the IEEE International SOI Conference San Diego, USA, October 11-14, 2010 p1

    [2]

    Simoen E, Gaillardin M, Paillet P, Reed R A, Schrimpf R D, Alles M L, El-Mamouni F, Fleetwood D M, Griffoni A, Claeys C 2013 IEEE Trans. Nucl. Sci. 60 1970

    [3]

    Peng C, Hu Z, Ning B, Dai L, Bi D, Zhang Z 2015 Solid-State Electron. 106 81

    [4]

    Schwank J R, Shaneyfelt M R, Dodd P E, Ferlet-Cavrois V, Loemker R A, Winokur P S, Fleetwood D M, Paillet P, Leray J L, Draper B L, Witczak S C, Riewe L C 2000 IEEE Trans. Nucl. Sci. 47 2175

    [5]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Ferlet-Cavrois V 2008 IEEE Trans. Nucl. Sci. 55 1833

    [6]

    Rudra J K, Fowler W B 1987 Phys. Rev. B 35 8223

    [7]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103

    [8]

    Gaillardin M, Paillet P, Ferlet-Cavrois V, Faynot O, Jahan C, Cristoloveanu S 2006 IEEE Trans. Nucl. Sci. 53 3158

    [9]

    He B P, Ding L L, Yao Z B, Xiao Z G, Huang S Y, Wang Z J 2011 Acta Phys. Sin. 60 056105 (in Chinese)[何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军 2011 物理学报 60 056105]

    [10]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Chin. Phys. B 20 120702

    [11]

    Barnaby H J, McLain M, Esqueda I S 2007 Nucl. Instrum. Meth. Phys. Res. B 261 1142

    [12]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 120703

    [13]

    Gaillardin M, Goiffon V, Marcandella C, Girard S, Martinez M, Paillet P, Magnan P, Estribeau M 2013 IEEE Trans. Nucl. Sci. 60 2623

    [14]

    Liu Y, Chen H B, Liu Y R, Wang X, En Y F, Li B, Lu Y D 2015 Chin. Phys. B 24 088503

    [15]

    Gaillardin M, Paillet P, Ferlet-Cavrois V, Cristoloveanu S, Faynot O, Jahan C 2006 Appl. Phys. Lett. 88 223511

    [16]

    Peng L, Zhuo Q Q, Liu H X, Cai H M 2012 Acta Phys. Sin. 61 240703 (in Chinese)[彭里, 卓青青, 刘红侠, 蔡惠民 2012 物理学报 61 240703]

    [17]

    Gaillardin M, Martinez M, Paillet P, Andrieu F, Girard S, Raine M, Marcandella C, Duhamel O, Richard N, Faynot O 2013 IEEE Trans. Nucl. Sci. 60 2583

    [18]

    Wolf S, Tauber R N 2002 Silicon Processing for the VLSI Era (Vol. 4) (California: Lattice Press) p674

    [19]

    Niu G, Mathew S J, Banerjee G, Cressler J D, Clark S D, Palmer M J, Subbanna S 1999 IEEE Trans. Nucl. Sci. 46 1841

    [20]

    Muller R S, Kamins T I, Chan M, Ko P K 1986 Device Electronics for Integrated Circuits (New York: John Wiley & Sons) p54

    [21]

    Synopsys 2013 Sentaurus Device User Guide (Version H-201303) (Mountain View: Synopsys)

    [22]

    Barnaby H J, McLain M L, Esqueda I S, Chen X J 2009 IEEE Tran. Circuits Syst. I 56 1870

  • [1]

    Rezzak N, Zhang E X, Alles M L, Schrimpf R D, Hughes H 2010 Proceedings of the IEEE International SOI Conference San Diego, USA, October 11-14, 2010 p1

    [2]

    Simoen E, Gaillardin M, Paillet P, Reed R A, Schrimpf R D, Alles M L, El-Mamouni F, Fleetwood D M, Griffoni A, Claeys C 2013 IEEE Trans. Nucl. Sci. 60 1970

    [3]

    Peng C, Hu Z, Ning B, Dai L, Bi D, Zhang Z 2015 Solid-State Electron. 106 81

    [4]

    Schwank J R, Shaneyfelt M R, Dodd P E, Ferlet-Cavrois V, Loemker R A, Winokur P S, Fleetwood D M, Paillet P, Leray J L, Draper B L, Witczak S C, Riewe L C 2000 IEEE Trans. Nucl. Sci. 47 2175

    [5]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Ferlet-Cavrois V 2008 IEEE Trans. Nucl. Sci. 55 1833

    [6]

    Rudra J K, Fowler W B 1987 Phys. Rev. B 35 8223

    [7]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103

    [8]

    Gaillardin M, Paillet P, Ferlet-Cavrois V, Faynot O, Jahan C, Cristoloveanu S 2006 IEEE Trans. Nucl. Sci. 53 3158

    [9]

    He B P, Ding L L, Yao Z B, Xiao Z G, Huang S Y, Wang Z J 2011 Acta Phys. Sin. 60 056105 (in Chinese)[何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军 2011 物理学报 60 056105]

    [10]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Chin. Phys. B 20 120702

    [11]

    Barnaby H J, McLain M, Esqueda I S 2007 Nucl. Instrum. Meth. Phys. Res. B 261 1142

    [12]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 120703

    [13]

    Gaillardin M, Goiffon V, Marcandella C, Girard S, Martinez M, Paillet P, Magnan P, Estribeau M 2013 IEEE Trans. Nucl. Sci. 60 2623

    [14]

    Liu Y, Chen H B, Liu Y R, Wang X, En Y F, Li B, Lu Y D 2015 Chin. Phys. B 24 088503

    [15]

    Gaillardin M, Paillet P, Ferlet-Cavrois V, Cristoloveanu S, Faynot O, Jahan C 2006 Appl. Phys. Lett. 88 223511

    [16]

    Peng L, Zhuo Q Q, Liu H X, Cai H M 2012 Acta Phys. Sin. 61 240703 (in Chinese)[彭里, 卓青青, 刘红侠, 蔡惠民 2012 物理学报 61 240703]

    [17]

    Gaillardin M, Martinez M, Paillet P, Andrieu F, Girard S, Raine M, Marcandella C, Duhamel O, Richard N, Faynot O 2013 IEEE Trans. Nucl. Sci. 60 2583

    [18]

    Wolf S, Tauber R N 2002 Silicon Processing for the VLSI Era (Vol. 4) (California: Lattice Press) p674

    [19]

    Niu G, Mathew S J, Banerjee G, Cressler J D, Clark S D, Palmer M J, Subbanna S 1999 IEEE Trans. Nucl. Sci. 46 1841

    [20]

    Muller R S, Kamins T I, Chan M, Ko P K 1986 Device Electronics for Integrated Circuits (New York: John Wiley & Sons) p54

    [21]

    Synopsys 2013 Sentaurus Device User Guide (Version H-201303) (Mountain View: Synopsys)

    [22]

    Barnaby H J, McLain M L, Esqueda I S, Chen X J 2009 IEEE Tran. Circuits Syst. I 56 1870

  • [1] Li Ji-Fang, Guo Hong-Xia, Ma Wu-Ying, Song Hong-Jia, Zhong Xiang-Li, Li Yang-Fan, Bai Ru-Xue, Lu Xiao-Jie, Zhang Feng-Qi. Total X-ray dose effect on graphene field effect transistor. Acta Physica Sinica, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [2] Li Jun-Lin, Li Rui-Bin, Ding Li-Li, Chen Wei, Liu Yan. TCAD simulation analysis of vertical parasitic effect induced by pulsed γ- ray in NMOS from 180 nm to 40 nm technology nodes. Acta Physica Sinica, 2022, 71(4): 046104. doi: 10.7498/aps.71.20211691
    [3] Zhang Shu-Hao, Yuan Zhang-Yi-An, Qiao Ming, Zhang Bo. Simulation study on radiation hardness for total ionizing dose effect of ultra-thin shielding layer 300 V SOI LDMOS. Acta Physica Sinica, 2022, 71(10): 107301. doi: 10.7498/aps.71.20220041
    [4] Zhang Jin-Xin, Wang Xin, Guo Hong-Xia, Feng Juan, Lü Ling, Li Pei, Yan Yun-Yi, Wu Xian-Xiang, Wang Hui. Three-dimensional simulation of total ionizing dose effect on SiGe heterojunction bipolor transistor. Acta Physica Sinica, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [5] Li Shun, Song Yu, Zhou Hang, Dai Gang, Zhang Jian. Statistical characteristics of total ionizing dose effects of bipolar transistors. Acta Physica Sinica, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [6] Analysis of vertical parasitic effect induced by pulsed γ- ray through TCAD Simulation in NMOS from 180nm to 40nm technology node. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211691
    [7] 3D Simulation Study on the Mechanism of Influence Factor of Total Dose Ionizing Effect on SiGe HBT. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211795
    [8] Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng. Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays. Acta Physica Sinica, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [9] Wang Shuo, Chang Yong-Wei, Chen Jing, Wang Ben-Yan, He Wei-Wei, Ge Hao. Total ionizing dose effects on innovative silicon-on-insulator static random access memory cell. Acta Physica Sinica, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [10] Qin Li, Guo Hong-Xia, Zhang Feng-Qi, Sheng Jiang-Kun, Ouyang Xiao-Ping, Zhong Xiang-Li, Ding Li-Li, Luo Yin-Hong, Zhang Yang, Ju An-An. Total ionizing dose effect of ferroelectric random access memory under Co-60 gamma rays and electrons. Acta Physica Sinica, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [11] Zhou Hang, Zheng Qi-Wen, Cui Jiang-Wei, Yu Xue-Feng, Guo Qi, Ren Di-Yuan, Yu De-Zhao, Su Dan-Dan. Enhanced channel hot carrier effect of 0.13 m silicon-on-insulator N metal-oxide-semiconductor field-effect transistor induced by total ionizing dose effect. Acta Physica Sinica, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [12] Zhou Hang, Cui Jiang-Wei, Zheng Qi-Wen, Guo Qi, Ren Di-Yuan, Yu Xue-Feng. Reliability of partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor field-effect transistor under the ionizing radiation environment. Acta Physica Sinica, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [13] Wang Xin, Lu Wu, Wu Xue, Ma Wu-Ying, Cui Jiang-Wei, Liu Mo-Han, Jiang Ke. Radiation effect of deep-submicron metal-oxide-semiconductor field-effect transistor and parasitic transistor. Acta Physica Sinica, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [14] Zhuo Qing-Qing, Liu Hong-Xia, Peng Li, Yang Zhao-Nian, Cai Hui-Min. Mechanism of three kink effects in irradiated partially-depleted SOINMOSFET's. Acta Physica Sinica, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [15] Hu Zhi-Yuan, Liu Zhang-Li, Shao Hua, Zhang Zheng-Xuan, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. The influence of channel length on total ionizing dose effect in deep submicron technologies. Acta Physica Sinica, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [16] Zhou Xin-Jie, Li Lei-Lei, Zhou Yi, Luo Jing, Yu Zong-Guang. Back-gate bias effect on partially depleted SOI/MOS back-gate performances under radiation condition. Acta Physica Sinica, 2012, 61(20): 206102. doi: 10.7498/aps.61.206102
    [17] Li Ming, Yu Xue-Feng, Xue Yao-Guo, Lu Jian, Cui Jiang-Wei, Gao Bo. Research on the total dose irradiation effect of partial-depletion-silicon-on insulator static random access memory. Acta Physica Sinica, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [18] Liu Zhang-Li, Hu Zhi-Yuan, Zhang Zheng-Xuan, Shao Hua, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. Total ionizing dose effect of 0.18 m nMOSFETs. Acta Physica Sinica, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [19] He Chao-Hui, Geng Bin, He Bao-Ping, Yao Yu-Juan, Li Yong-Hong, Peng Hong-Lun, Lin Dong-Sheng, Zhou Hui, Chen Yu-Sheng. Test methods of total dose effects in verylarge scale integrated circuits. Acta Physica Sinica, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [20] He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Wang Yan-Ping, Li Guo-Zheng. Experimental study on irradiation effects in floating gate ROMs. Acta Physica Sinica, 2003, 52(1): 180-187. doi: 10.7498/aps.52.180
Metrics
  • Abstract views:  6273
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2018
  • Accepted Date:  20 August 2018
  • Published Online:  05 November 2018

/

返回文章
返回