Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Total X-ray dose effect on graphene field effect transistor

Li Ji-Fang Guo Hong-Xia Ma Wu-Ying Song Hong-Jia Zhong Xiang-Li Li Yang-Fan Bai Ru-Xue Lu Xiao-Jie Zhang Feng-Qi

Citation:

Total X-ray dose effect on graphene field effect transistor

Li Ji-Fang, Guo Hong-Xia, Ma Wu-Ying, Song Hong-Jia, Zhong Xiang-Li, Li Yang-Fan, Bai Ru-Xue, Lu Xiao-Jie, Zhang Feng-Qi
PDF
HTML
Get Citation
  • In this paper, the total dose effects of graphene field-effect transistors (GFETs) with different structures and sizes are studied. The irradiation experiments are carried out by using the 10-keV X-ray irradiation platform with a dose rate of 200 rad(Si)/s. Positive gate bias (VG = +1 V, VD = VS = 0 V) is used during irradiation. Using a semiconductor parameter analyzer, the transfer characteristic curves of top-gate GFET and back-gate GFET are obtained before and after irradiation. At the same time, the degradation condition of the dirac voltage VDirac and the carrier mobility μ are extracted from the transfer characteristic curve. The experimental results demonstrate that VDirac and carrier mobility μ degrade with dose increasing. The depletion of VDirac and carrier mobility μ are caused by the oxide trap charge generated in the gate oxygen layer during X-ray irradiation. Compared with the back-gate GFETs, the top-gate GFETs show more severely degrade VDirac and carrier mobility, therefore top-gate GFET is more sensitive to X-ray radiation at the same cumulative dose than back-gate GFET. The analysis shows that the degradation of top-gate GFET is mainly caused by the oxide trap charge. And in contrast to top-gate GFET, oxygen adsorption contributes to the irradiation process of back-gate GFET, which somewhat mitigates the effect of radiation damage. Furthermore, a comparison of electrical property deterioration of GFETs of varying sizes between the pre-irradiation and the post-irradiation is made. The back-gate GFET, which has a size of 50 μm×50 μm, and the top-gate GFET, which has a size of 200 μm×200 μm, are damaged most seriously. In the case of the top-gate GFET, the larger the radiation area, the more the generated oxide trap charges are and the more serious the damage. In contrast, the back-gate GFET has a larger oxygen adsorption area during irradiation and a more noticeable oxygen adsorption effect, which partially offsets the damage produced by irradiation. Finally, the oxide trap charge mechanism is simulated by using TCAD simulation tool. The TCAD simulation reveals that the trap charge at the interface between Al2O3 and graphene is mainly responsible for the degradation of top-gate GFET property, significantly affecting the investigation of the radiation effect and radiation reinforcement of GFETs.
      Corresponding author: Guo Hong-Xia, guohongxia@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275230, 12027813).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Dong H M, Duan Y F, Huang F, Liu J L 2018 Front. Phys. 13 137203Google Scholar

    [3]

    Du S C, Lu W, Ali A, Zhao P, Shehzad K, Guo H W, Ma L L, Liu X M, Pi X D, Wang P, Fang H H, Xu Z, Gao C, Dan Y P, Tan P H, Wang H T, Lin C T, Yang J Y, Dong S R, Cheng Z Y, Li E P, Yin W Y, Luo J K, Yu B, Hasan T, Xu Y, Hu W D, Duan X F 2017 Adv. Mater. 29 1700463Google Scholar

    [4]

    Bo X J, Zhou M, Guo L P 2017 Biosens. Bioelectron. 89 167Google Scholar

    [5]

    Cui M C, Zhong X L, Fang Y, Sheng H X, Guo T T, Guo Y 2021 Int. J. RF Microw. C. E. 31 e22723Google Scholar

    [6]

    马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅 2014 物理学报 63 026101Google Scholar

    Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014 Acta Phys. Sin. 63 026101Google Scholar

    [7]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [8]

    Procházka P, Mareček D, Lišková Z, Čechal J, Šikola T 2017 Sci. Rep. 7 563Google Scholar

    [9]

    Jain S, Gajarushi A S, Gupta A, Rao V R 2020 IEEE Sens. J. 20 2938Google Scholar

    [10]

    Zhang Y F, Peng S Y, Wang Y H, Guo L X, Zhang X Y, Huang H Q, Su S H, Wang X W, Xue J M 2022 J. Phys. Chem. Lett. 13 10722Google Scholar

    [11]

    冯婷婷 2014 博士学位论文 (北京: 清华大学)

    Feng T T 2014 Ph. D. Dissertation (Beijing: Tsinghua University

    [12]

    Iqbal M W, Hussain G, Kamran M A, Aslam I, Alharbi T, Azam S, Majid A, Razzaq S 2019 Microelectron. Eng. 216 111044Google Scholar

    [13]

    LaGasse S W, Cress C D, Hughes H L, Lee J U 2017 IEEE Trans. Nucl. Sci. 64 156Google Scholar

    [14]

    Hafsi B, Boubaker A, Ismaïl N, Kalboussi A, Lmimouni K 2015 J. Korean Phys. Soc. 67 1201Google Scholar

    [15]

    Nouchi R, Saito T, Tanigaki K 2011 Appl. Phys. Express 4 035101Google Scholar

    [16]

    Kang C G, Lee Y G, Lee S K, Park E, Cho C, Lim S K, Hwang H J, Lee B H 2013 Carbon 53 182Google Scholar

    [17]

    Xiao M, Qiu C, Zhang Z, Peng L M 2017 ACS Appl. Mater. Interfaces 9 34050Google Scholar

    [18]

    Esqueda I, Cress C, Anderson T, Ahlbin J, Bajura M, Fritze M, Moon J S 2013 Electronics 2 234Google Scholar

    [19]

    Giubileo F, Di Bartolomeo A, Martucciello N, Romeo F, Iemmo L, Romano P, Passacantando M 2016 Nanomaterials 6 206Google Scholar

    [20]

    Kumar S, Kumar A, Tripathi A, Tyagi C, Avasthi D K 2018 J. Appl. Phys. 123 161533Google Scholar

    [21]

    Fan L J, Bi J S, Xi K, Yang X Q, Xu Y N, Ji L L 2021 IEEE Sens. J. 21 16100Google Scholar

    [22]

    Zhang E X, Newaz A K M, Wang B, Bhandaru S, Zhang C X, Fleetwood D M, Bolotin K I, Pantelides S T, Alles M L, Schrimpf R D, Weiss S M, Reed R A, Weller R A 2011 IEEE Trans. Nucl. Sci. 58 2961Google Scholar

    [23]

    Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar

    [24]

    Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021 ACS Nano 15 17310Google Scholar

    [25]

    舒焕 2023 硕士学位论文 (北京: 北方工业大学)

    Shu H 2023 M. S. Thesis (Beijing: North China University of Technology

    [26]

    Stará V, Procházka P, Mareček D, Šikola T, Čechal J 2018 Nanoscale 10 17520Google Scholar

    [27]

    An H, Li D, Yang S, Wen X, Zhang C, Cao Z, Wang J 2021 Sensors 21 7753Google Scholar

    [28]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [29]

    Ismail M A, Zaini K M M, Syono M I 2019 TELKOMNIKA Telecommun. Comput. Electron. Control 17 1845Google Scholar

  • 图 1  器件结构示意图 (a)顶栅型GFET; (b)背栅型GFET

    Figure 1.  Device structure diagram: (a) Top-gate GFET; (b) back-gate GFET.

    图 2  辐照前后顶栅型GFET的转移特性曲线和输出特性曲线

    Figure 2.  Transfer characteristic curve and output characteristic curve of top-gate GFET before and after irradiation.

    图 3  VDirac随辐射累积剂量的变化趋势 (a) 顶栅型GFET; (b) 背栅型GFET

    Figure 3.  The variations of VDirac with cumulative dose: (a) Top-gate GFET; (b) back-gate GFET.

    图 4  载流子迁移率随辐射累积剂量的变化趋势 (a)顶栅型GFET; (b)背栅型GFET

    Figure 4.  The variations of μ with cumulative dose: (a) Top-gate GFET; (b) back-gate GFET.

    图 5  辐照前后转移特性曲线的变化趋势 (a)顶栅型GFET; (b)背栅型GFET

    Figure 5.  Transfer characteristic curve of GFET before and after irradiation: (a) Top-gate GFET; (b) back-gate GFET.

    图 6  固定不同数目的陷阱缺陷的转移特性曲线

    Figure 6.  Transfer characteristic curve after fixing different number of trap defects.

    表 1  样品信息及偏置条件

    Table 1.  Sample information and bias conditions.

    器件结构 器件尺寸 偏置条件
    顶栅型GFET 50 μm×50 μm 正栅极偏置
    (VG = +1 V,
    VD = VS = 0 V)
    100 μm×100 μm
    200 μm×200 μm
    背栅型GFET 50 μm×50 μm 正栅极偏置
    (VG = +1 V,
    VD = VS = 0 V)
    100 μm×100 μm
    200 μm×200 μm
    DownLoad: CSV

    表 2  辐照前后不同尺寸GFET的VDirac偏移量ΔVDirac和载流子迁移率偏移量Δμ

    Table 2.  VDirac offsets ΔVDirac and carrier mobility offsets Δμ of GFETs of different sizes before and after irradiation.

    尺寸 顶栅型GFET 背栅型GFET
    ΔVDirac/V Δμh/(cm–2·V–1·s–1) Δμe/(cm–2·V–1·s–1) ΔVDirac/V Δμh/(cm–2·V–1·s–1) Δμe/(cm–2·V–1·s–1)
    50 μm×50 μm 2.05 194.2 168.1 0.46 133.3 324.0
    100 μm×100 μm 2.18 78.3 98.5 0.07 26.1 252.1
    200 μm×200 μm 2.68 243.5 40.6 0.24 69.6 92.8
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Dong H M, Duan Y F, Huang F, Liu J L 2018 Front. Phys. 13 137203Google Scholar

    [3]

    Du S C, Lu W, Ali A, Zhao P, Shehzad K, Guo H W, Ma L L, Liu X M, Pi X D, Wang P, Fang H H, Xu Z, Gao C, Dan Y P, Tan P H, Wang H T, Lin C T, Yang J Y, Dong S R, Cheng Z Y, Li E P, Yin W Y, Luo J K, Yu B, Hasan T, Xu Y, Hu W D, Duan X F 2017 Adv. Mater. 29 1700463Google Scholar

    [4]

    Bo X J, Zhou M, Guo L P 2017 Biosens. Bioelectron. 89 167Google Scholar

    [5]

    Cui M C, Zhong X L, Fang Y, Sheng H X, Guo T T, Guo Y 2021 Int. J. RF Microw. C. E. 31 e22723Google Scholar

    [6]

    马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅 2014 物理学报 63 026101Google Scholar

    Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014 Acta Phys. Sin. 63 026101Google Scholar

    [7]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [8]

    Procházka P, Mareček D, Lišková Z, Čechal J, Šikola T 2017 Sci. Rep. 7 563Google Scholar

    [9]

    Jain S, Gajarushi A S, Gupta A, Rao V R 2020 IEEE Sens. J. 20 2938Google Scholar

    [10]

    Zhang Y F, Peng S Y, Wang Y H, Guo L X, Zhang X Y, Huang H Q, Su S H, Wang X W, Xue J M 2022 J. Phys. Chem. Lett. 13 10722Google Scholar

    [11]

    冯婷婷 2014 博士学位论文 (北京: 清华大学)

    Feng T T 2014 Ph. D. Dissertation (Beijing: Tsinghua University

    [12]

    Iqbal M W, Hussain G, Kamran M A, Aslam I, Alharbi T, Azam S, Majid A, Razzaq S 2019 Microelectron. Eng. 216 111044Google Scholar

    [13]

    LaGasse S W, Cress C D, Hughes H L, Lee J U 2017 IEEE Trans. Nucl. Sci. 64 156Google Scholar

    [14]

    Hafsi B, Boubaker A, Ismaïl N, Kalboussi A, Lmimouni K 2015 J. Korean Phys. Soc. 67 1201Google Scholar

    [15]

    Nouchi R, Saito T, Tanigaki K 2011 Appl. Phys. Express 4 035101Google Scholar

    [16]

    Kang C G, Lee Y G, Lee S K, Park E, Cho C, Lim S K, Hwang H J, Lee B H 2013 Carbon 53 182Google Scholar

    [17]

    Xiao M, Qiu C, Zhang Z, Peng L M 2017 ACS Appl. Mater. Interfaces 9 34050Google Scholar

    [18]

    Esqueda I, Cress C, Anderson T, Ahlbin J, Bajura M, Fritze M, Moon J S 2013 Electronics 2 234Google Scholar

    [19]

    Giubileo F, Di Bartolomeo A, Martucciello N, Romeo F, Iemmo L, Romano P, Passacantando M 2016 Nanomaterials 6 206Google Scholar

    [20]

    Kumar S, Kumar A, Tripathi A, Tyagi C, Avasthi D K 2018 J. Appl. Phys. 123 161533Google Scholar

    [21]

    Fan L J, Bi J S, Xi K, Yang X Q, Xu Y N, Ji L L 2021 IEEE Sens. J. 21 16100Google Scholar

    [22]

    Zhang E X, Newaz A K M, Wang B, Bhandaru S, Zhang C X, Fleetwood D M, Bolotin K I, Pantelides S T, Alles M L, Schrimpf R D, Weiss S M, Reed R A, Weller R A 2011 IEEE Trans. Nucl. Sci. 58 2961Google Scholar

    [23]

    Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar

    [24]

    Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021 ACS Nano 15 17310Google Scholar

    [25]

    舒焕 2023 硕士学位论文 (北京: 北方工业大学)

    Shu H 2023 M. S. Thesis (Beijing: North China University of Technology

    [26]

    Stará V, Procházka P, Mareček D, Šikola T, Čechal J 2018 Nanoscale 10 17520Google Scholar

    [27]

    An H, Li D, Yang S, Wen X, Zhang C, Cao Z, Wang J 2021 Sensors 21 7753Google Scholar

    [28]

    Oldham T R, McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [29]

    Ismail M A, Zaini K M M, Syono M I 2019 TELKOMNIKA Telecommun. Comput. Electron. Control 17 1845Google Scholar

  • [1] Peng Zhi-Gang, Bai Hao-Jie, Liu Fang, Li Yang, He Huan, Li Pei, He Chao-Hui, Li Yong-Hong. Effect of proton cumulative radiation on saturation output in CMOS image sensors. Acta Physica Sinica, 2025, 74(2): 024203. doi: 10.7498/aps.74.20241352
    [2] Zhu Wen-Lu, Guo Hong-Xia, Li Yang-Fan, Ma Wu-Ying, Zhang Feng-Qi, Bai Ru-Xue, Zhong Xiang Li, Li Ji-Fang, Cao Yan-Hui, Ju An-An. Research on Total Ionizing Dose Effect of double-trench SiC MOSFET. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241641
    [3] Zeng Tian-Xiang, Li Ji-Fang, Guo Hong-Xia, Ma Wu-Ying, Lei Zhi-Feng, Zhong Xiang-Li, Zhang Hong, Wang Song-Wen. Study on X-ray irradiation effects of carbon nanotube field-effect transistors. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241670
    [4] Wang SongWen, Guo HongXia, Ma Teng, Lei ZhiFeng, Ma WuYing, Zhong XiangLi, Zhang Hong, Lu XiaoJie, Li JiFang, Fang JunLin, Zeng TianXiang. Electrical stress of graphene field effect transistor under different bias voltages Reliability studies. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.20241365
    [5] Wang Song-Wen, Guo Hong-Xia, Ma Teng, Lei Zhi-Feng, Ma Wu-Ying, Zhong Xiang-Li, Zhang Hong, Lu Xiao-Jie, Li Ji-Fang, Fang Jun-Lin, Zeng Tian-Xiang. Electrical stress reliability of graphene field effect transistor under different bias voltages. Acta Physica Sinica, 2024, 73(23): 238501. doi: 10.7498/aps.73.20241365
    [6] Zhang Jin-Xin, Wang Xin, Guo Hong-Xia, Feng Juan, Lü Ling, Li Pei, Yan Yun-Yi, Wu Xian-Xiang, Wang Hui. Three-dimensional simulation of total ionizing dose effect on SiGe heterojunction bipolor transistor. Acta Physica Sinica, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [7] 3D Simulation Study on the Mechanism of Influence Factor of Total Dose Ionizing Effect on SiGe HBT. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211795
    [8] Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng. Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays. Acta Physica Sinica, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [9] Li Shun, Song Yu, Zhou Hang, Dai Gang, Zhang Jian. Statistical characteristics of total ionizing dose effects of bipolar transistors. Acta Physica Sinica, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [10] Peng Chao1\2, En Yun-Fei, Li Bin, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Huang Yun. Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [11] Qin Li, Guo Hong-Xia, Zhang Feng-Qi, Sheng Jiang-Kun, Ouyang Xiao-Ping, Zhong Xiang-Li, Ding Li-Li, Luo Yin-Hong, Zhang Yang, Ju An-An. Total ionizing dose effect of ferroelectric random access memory under Co-60 gamma rays and electrons. Acta Physica Sinica, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [12] Wang Xin, Lu Wu, Wu Xue, Ma Wu-Ying, Cui Jiang-Wei, Liu Mo-Han, Jiang Ke. Radiation effect of deep-submicron metal-oxide-semiconductor field-effect transistor and parasitic transistor. Acta Physica Sinica, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [13] Zhuo Qing-Qing, Liu Hong-Xia, Wang Zhi. Single event effect of 3D H-gate SOI NMOS devices in total dose ionizing. Acta Physica Sinica, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [14] Zhuo Qing-Qing, Liu Hong-Xia, Peng Li, Yang Zhao-Nian, Cai Hui-Min. Mechanism of three kink effects in irradiated partially-depleted SOINMOSFET's. Acta Physica Sinica, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [15] Li Ming, Yu Xue-Feng, Xue Yao-Guo, Lu Jian, Cui Jiang-Wei, Gao Bo. Research on the total dose irradiation effect of partial-depletion-silicon-on insulator static random access memory. Acta Physica Sinica, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [16] Zhou Xin-Jie, Li Lei-Lei, Zhou Yi, Luo Jing, Yu Zong-Guang. Back-gate bias effect on partially depleted SOI/MOS back-gate performances under radiation condition. Acta Physica Sinica, 2012, 61(20): 206102. doi: 10.7498/aps.61.206102
    [17] Hu Zhi-Yuan, Liu Zhang-Li, Shao Hua, Zhang Zheng-Xuan, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. The influence of channel length on total ionizing dose effect in deep submicron technologies. Acta Physica Sinica, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [18] Liu Zhang-Li, Hu Zhi-Yuan, Zhang Zheng-Xuan, Shao Hua, Ning Bing-Xu, Bi Da-Wei, Chen Ming, Zou Shi-Chang. Total ionizing dose effect of 0.18 m nMOSFETs. Acta Physica Sinica, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [19] He Chao-Hui, Geng Bin, He Bao-Ping, Yao Yu-Juan, Li Yong-Hong, Peng Hong-Lun, Lin Dong-Sheng, Zhou Hui, Chen Yu-Sheng. Test methods of total dose effects in verylarge scale integrated circuits. Acta Physica Sinica, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [20] GUO HONG-XIA, CHEN YU-SHENG, ZHANG YI-MEN, ZHOU HUI, GONG JIAN-CHENG, HAN FU-BIN, GUAN YING, WU GUO-RONG. STUDY OF RELATIVE DOSE-ENHANCEMENT EFFECTS ON CMOS DEVICE IRRADIATED BY STEADY-STATE AND TRANSIENT PULSED X-RAYS. Acta Physica Sinica, 2001, 50(12): 2279-2283. doi: 10.7498/aps.50.2279
Metrics
  • Abstract views:  2705
  • PDF Downloads:  108
  • Cited By: 0
Publishing process
  • Received Date:  21 November 2023
  • Accepted Date:  05 December 2023
  • Available Online:  09 December 2023
  • Published Online:  05 March 2024

/

返回文章
返回