-
To further improve the understanding of the patterns and mechanisms of total ionizing dose (TID) radiation damage in carbon nanotube field-effect transistor (CNTFET), this study investigates the total dose effects of 10 keV X-ray irradiation on N-type and P-type CNTFETs. The irradiation dose rate was 200 rad(Si)/s, with cumulative doses of 100 krad(Si) for N-type devices and 90 krad(Si) for P-type devices. This paper explores the differences in TID effects between N-type and P-type CNTFETs under floating gate bias and on-state bias conditions, as well as the impact of irradiation on the hysteresis characteristics of N-type CNTFETs and the influence of channel sizes on the TID effects of N-type CNTFETs.The results indicate that both types of transistors exhibit threshold voltage shift, transconductance degradation, an increase in subthreshold swing, and a decrease in saturation current after irradiation. During the irradiation process, N-type devices under floating gate bias suffered more severe damage than those under on-state bias, while P-type devices under on-state bias experienced more significant damage than those under floating gate bias. The hysteresis width of N-type devices decreased after irradiation, and the TID damage became more severe with increasing channel dimensions.The primary cause of device parameter degradation is the trap charges generated during irradiation. The gate bias applied during irradiation affects the capture of electrons or holes by traps in the gate dielectric, resulting in different radiation damage characteristics for different types of devices. The reduction in the hysteresis width of N-type devices after irradiation may be attributed to the negatively charged trap charges generated during irradiation, which hinder the capture of electrons by water molecules, OH groups, and traps in the gate dielectric. Moreover, the channel dimensions of the transistors also influence their radiation response: larger channel dimensions result in more trap charges being generated in the gate dielectric and at the interface during irradiation, leading to more severe transistor damage.
-
[1] Qiu C G, Zhang Z Y, Xiao M M, Yang Y J, Zhong D L, Peng L M 2017Science 355 271
[2] Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W 2012Nano Lett. 12 758
[3] Chen B Y, Zhang P P, Ding L, Han J, Qiu S, Li Q W, Zhang Z Y,Peng L M 2016Nano Lett. 16 5120
[4] Zhu M G, Si J, Zhang Z Y, Peng L M 2018Adv. Mater. 30 1707068
[5] Yang Y Y, Ding L, Chen H J, Han J, Zhang Z Y, Peng L M 2018Nano Res. 11 300
[6] Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S, Mitra S 2013Nature 501 526
[7] De Volder M F, Tawfick S H, Baughman R H, Hart A J 2013Science 339 535
[8] Liu Y F, Zhang Z Y 2022Acta Phys. Sin. 71 068503(in Chinese) [刘一凡, 张志勇2022物理学报71 068503]
[9] Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014Acta Phys. Sin. 63 026101(in Chinese) [马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅2014物理学报63 026101]
[10] Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020Acta Phys. Sin. 69 078501(in Chinese) [董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平2020物理学报69 078501]
[11] Krasheninnikov A, Nordlund K, Sirviö M, Salonen, E, Keinonen J 2001Physical Review B 63 245405
[12] Tolvanen A, Kotakoski J, Krasheninnikov A, Nordlund K 2007Appl. Phys. Lett. 91 173109
[13] Krasheninnikov A V, Nordlund K 2010J. Appl. Phys. 107 071301
[14] Zhao Y D, Li D Q, Xiao L, Liu J K, Xiao X Y, L G H, Jin Y H, Jiang K L, Wang J P, Fan S S, Li Q Q 2016Carbon 108 363
[15] Zhang X R, Zhu H P, Peng S A, Xiong G D, Zhu C Y, Huang X N, Cao S R, Zhang J J, Yan Y P, Yao Y, Zhang D Y, Shi J Y, Wang L, Li B, Jin Z 2021Journal of Semiconductors 42 112002
[16] Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Applied Materials & Interfaces 13 47756
[17] Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021ACS Nano 1517310
[18] Petrosjanc K O, Adonin A S, Kharitonov I A, Sicheva M V 1994Proceedings of 1994 IEEE International Conference on Microelectronic Test Structures Moscow, Russia, March 22-25, 1994 p126
[19] Oldham T R, Mclean F B 2002IEEE Transactions on Nuclear Science 50 483
[20] Galloway K F, Gaitan M, Russell T J 1984IEEE Transactions on Nuclear Science 31 1497
[21] Lu P, Zhu M G, Zhao P X, Fan C W, Zhu H P, Gao J T, Y C, Han Z S, Li B, Liu J, Zhang Z Y 2023ACS Applied Materials & Interfaces 15 10936
[22] McMorrow J J, Cress C D, Affouda C 2012ACS Nano 6 5040
[23] Belyakov V V, Pershenkov V S, Zebrev G I, Sogoyan A V, Chumakov A I, Nikiforov A Y, Skorobogatov P K 2003Russian Microelectronics 32 25
[24] Ni H Z, Li M, Li X H, Zhu X W, Liu H H, Xu M 2022IEEE Transactions on Electron Devices 691069
[25] Kim W, Javey A, Vermesh O, Wang Q, Li Y M, Dai H J, 2003Nano Letters 3 193
[26] Chua L L, Zaumseil J, Chang J F,Ou E C,Ho P K,Sirringhaus H,Friend R H 2005Nature 434 194
[27] Lee S, Koo B, Shin J, Lee E, Park H, Kim H 2006Applied Physics Letters 88 99
[28] Cai X, Gerlach C P, Frisbie C D 2007The Journal of Physical Chemistry C 111452
[29] Ha T J, Kiriya D, Chen K, Javey A 2014 ACS Appl. Mater. Interfaces 6 8441
[30] Wang Y W, Wang S, Ye H D, Zhang W H, Xiang L 2023 IEEE Transactions on Device and Materials Reliability 23 571
Metrics
- Abstract views: 113
- PDF Downloads: 0
- Cited By: 0