Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on Various Operating Modes of Optically Controlled Multi-Gate Thyristors

Wang Ling-Yun Liu Hong-Wei Yuan Jian-Qiang Xie Wei-Ping Luan Chong-Biao Li Hong-Tao Zhang Jian-De Chen Yi He Yang Liu Xiao-Li Gao Bin

Citation:

Research on Various Operating Modes of Optically Controlled Multi-Gate Thyristors

Wang Ling-Yun, Liu Hong-Wei, Yuan Jian-Qiang, Xie Wei-Ping, Luan Chong-Biao, Li Hong-Tao, Zhang Jian-De, Chen Yi, He Yang, Liu Xiao-Li, Gao Bin
PDF
Get Citation
  • To meet the switching requirements of high-frequency pulse power systems and further enhance the peak power and turn-on speed of solid-state switches, comparative experimental studies were conducted on the structure of optically controlled multi-gate thyristors and the parameters of injected light. The research found that semiconductor chips based on the multi-gate thyristor structure exhibited different conduction characteristics under varying laser injection conditions, resulting in unique inflection point curves. By establishing a switching model and varying the injected light parameters and circuit parameter models, three conceptual operating modes for the optically controlled multi-gate thyristor were proposed: photonic linear mode (Mode A), field-induced nonlinear mode (Mode C), and hybrid amplification mode (Mode B).
    Based on these concepts, experimental validation tests were conducted, confirming the three distinct operating characteristics of the optically controlled multi-gate thyristor. In Mode A, the conduction process is primarily related to the injected light power parameters and is similar to the linear mode of traditional light-guided switches, making it suitable for narrow pulse width applications. Mode C mainly focuses on carrier multiplication after injection, resembling the conduction characteristics of super thyristors (SGTO), and is suitable for wide pulse widths and high current applications. Mode B's initial conduction is related to the injected light parameters, while the later carrier multiplication continues from the earlier photonic linear mode, achieving characteristics of both fast rise time and wide pulse width, effectively combining the advantages of light-guided switches and SGTOs.
    In Mode A, with an injected laser energy of 8.5 mJ, pulse width of 10 ns, and peak power of 0.85 MW, the switch operates at a voltage of 5.2 kV, an output current of 8.1 kA, a turn-on time (10%-90%) of 18.4 ns, and a di/dt value reaching 440 kA/μs. The main characteristic is that the di/dt of the switch is linearly related to the injected laser energy, allowing for fast rise time output, which reflects the photonic linear conduction mode. This mode is suitable for high-power, narrow pulse, and fast rise time applications, such as high-power microwave sources, with characteristics similar to gas switches.
    In Mode C, with a triggering laser energy set at 250 μJ, pulse width of 210 ns, and peak power of 1200 W, the switch operates at a voltage of 8.5 kV, with a short-circuit current reaching 6 kA and a current rise time of 110 ns, achieving a di/dt value exceeding 55 kA/μs. The key characteristic is that the di/dt of the switch is unrelated to the injected laser energy but is related to the electric field applied across the switch, enabling operation with large current and wide pulse width, which reflects the field-induced nonlinear conduction mode. This mode is suitable for high-power, wide pulse, and slower rise time applications, such as large current detonation and electromagnetic drives, with characteristics similar to igniter tubes and triggered light.
    In Mode B, with a triggering laser energy set at 10 mJ, pulse width of 20 ns, and peak power of 0.5 MW, the switch operates at a voltage of 4.6 kV, with a short-circuit current reaching 8.5 kA and a current rise time of 66 ns, achieving a di/dt value exceeding 129 kA/μs. The main characteristic is that the initial conduction of the switch satisfies the photonic linear conduction mode, while the later conduction exhibits the field-induced nonlinear conduction mode, thus achieving both fast rise time output and the capability for large current and wide pulse width, reflecting a hybrid conduction mode. This mode is suitable for high-power, wide pulse applications, such as accelerator power supplies, with characteristics similar to hydrogen thyratrons and pseudo-spark switches.
    The discovery and validation of multiple operating modes for the switch significantly enhance the di/dt and peak power of power semiconductor switching devices, laying a theoretical and experimental foundation for the development of semiconductor switches with ultra-high peak power. Additionally, the switching devices were packaged according to their different operating modes and applied in accelerator power supplies, solid-state detonators, and high-stability pulse drive sources, yielding positive results.
  • [1]

    Liu X S 2005 High pulsed power technology (Beijing: National Defense Industry Press) p367 (in Chinese) [刘锡三 2005 高功率脉冲技术(北京: 国防工业出版社) 第367页]

    [2]

    Zhou Q H, Dong Z W, Jian G Z, Zhou H J 2015 Acta Phys. Sin. 64 205206 (in Chinese) [周前红, 董志伟, 简贵胄, 周海京 2015 物理学报 64 205206]

    [3]

    Shi W, Tian L Q, Wang X M, Xu M, Ma D M, Zhou L J, Liu H W, Xie W P 2009 Acta Phys. Sin. 58(02) 1219 (in Chinese) [施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平 2009 物理学报 58(02) 1219]

    [4]

    Wang G T, Liu X X 2010 Acta Phys. Sin. 59(03) 1964 (in Chinese) [王公堂, 刘秀喜 2010 物理学报 59(03) 1964]

    [5]

    Loquai, S;Bölting, M;Kellner, U;Fischer, J;Poisel, H 2015 The 24th International Conference on Plastic Optical Fibers Nuremberg, Germany, September 22-24, 2015 p193

    [6]

    Wang L Y 2018M.E. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [王凌云 2018 硕士学位论文(成都:电子科技大学)]

    [7]

    Wang C L, Gao Y, Ma L, Zhang C L, Kim Eundong, Kim Sangcheol 2005 Acta Phys. Sin. 54(5) 2296 (in Chinese) [王彩琳, 高 勇, 马 丽, 张昌利, 金垠东, 金相喆 2005 物理学报 54(5) 2296]

    [8]

    Yanan Wang, Linyuan Ren, Zihao Yang, Saikang Shen, Zichen Deng, Qi Yuan, Weidong Ding, Zhenjie Ding 2024 High Voltage. 9(1) 02

    [9]

    Liu B L,Liu D Z,Luo Y F,Tang Y,Wang B 2013 Acta Phys. Sin. 62(5) 057202 (in Chinese) [刘宾礼, 刘德志, 罗毅飞, 唐勇, 汪波 2013 物理学报 62(5) 057202]

    [10]

    H. Sanders, S. Glidden and C. Dunham 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC) San Diego, CA, USA, June 3-7,2012 p335

    [11]

    J. Waldron and K. Brandmier 2017IEEE International Conference on Plasma Science (ICOPS) Atlantic City, NJ, USA, May 21-25,2017 p1

    [12]

    Waldron J, Brandmier K, Temple V 2015 Pulsed Power Conference.IEEE Austin, Texas, USA, May 31 – June 4,2015 7296986

    [13]

    W Chen, L Chao, Y Shi, Y Liu, T Hong, C Liu, Z Qi, Z Li, Z Bo 2017 IEEE Transactions on Electron Devices 64(10) 4206

    [14]

    D He, W Sun, Y Liao, P Zhang, L Yu, S Dong, C Yao, X Liu 2023 High Voltage 8(4) 698

    [15]

    M Junaid, W Yu, S Cao, X Yu, D Yu, W Zong, J Wang 2023 High Voltage 8(6) 1275

    [16]

    Yuan X L,Zhang H D,Xu Z F,Ding Z J,Yu J G,Hao Q S,Zeng B,Hu L 2010 Research & Progress of SSE. 30(01) 64 (in Chinese) [袁雪林,张洪德,徐哲峰,丁臻捷,俞建国,浩庆松,曾搏,胡龙 2010 固体电子学研究与进展 30(01) 64]

    [17]

    Rukin S N 2020 Review of Scientific Instruments 91(1) 011501

    [18]

    Tian L Q,Pan C,Shi W,Pan Y K,Ran E Z,Li C X 2023 Acta Phys. Sin. 72(17) 178101 (in Chinese) [田立强,潘璁,施卫,潘艺柯,冉恩泽,李存霞 2023 物理学报 72(17) 178101]

    [19]

    Gui H M,Shi W 2018 Acta Phys. Sin. 67(18) 184207 (in Chinese) [桂淮濛,施卫 2018 物理学报 67(18) 184207]

    [20]

    Hong W,Liang L,Yu Y H 2012 Acta Phys. Sin. 61(5) 058501 (in Chinese) [洪武,梁琳,余岳辉 2012 物理学报 61(5) 058501]

    [21]

    Mi Y,Wan J L,Bian C H,Yao C G,Li C X 2017 Transactions of China Electrotechnical Society. 32(24) 244 (in Chinese) [米彦,万佳仑,卞昌浩,姚陈果,李成祥 2017 电工技术学报 32(24) 244]

    [22]

    P Rodin, M Ivanov 2020 Journal of Applied Physics 127(4) 044504

    [23]

    Liang L,Yan X X,Huang X Y,Qing Z H,Yang Ze-Wei,Shang Hai 2022 Proceedings of the CSEE.42(23) 8631 (in Chinese) [梁琳,颜小雪,黄鑫远,卿正恒,杨泽伟,尚海 2022 中国电机工程学报 42(23) 8631]

    [24]

    Lyublinsky, A.G.,Korotkov, S.V.,Aristov, Y.V.,Korotkov, D.A. 2013 IEEE Transactions on Plasma Science 41(10 Part1) 2625

    [25]

    Wang L Y,Liu H W,Yuan J Q,Xie W P,Yan J S 2024 Transactions of China Electrotechnical Society 39(23) 7566 (in Chinese) [王凌云,刘宏伟,袁建强,谢卫平,颜家圣 2024 电工技术学报 39(23) 7566]

  • [1] Li Pin-Bin, Teng Hao, Tian Wen-Long, Huang Zhen-Wen, Zhu Jiang-Feng, Zhong Shi-Yang, Yun Chen-Xia, Liu Wen-Jun, Wei Zhi-Yi. Nonlinear pulse compression technique based on in multi-pass plano-cancave cavity. Acta Physica Sinica, doi: 10.7498/aps.73.20240110
    [2] Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De. Design of input parameters and operating characteristics for multi-mode ion thruster. Acta Physica Sinica, doi: 10.7498/aps.71.20212045
    [3] Li Jian-Peng, Zhao Yi-De, Jin Wu-Yin, Zhang Xing-Min, Li Juan, Wang Yan-Long. Design and performance test of discharge chamber and grid for multi-mode ion thrusters. Acta Physica Sinica, doi: 10.7498/aps.71.20220720
    [4] Chai Jin-Hua, Chen Fei. Methodology of filter-type multi-dithering phase control for quasi parallel light interference. Acta Physica Sinica, doi: 10.7498/aps.67.20171562
    [5] Qi Yun-Ping, Nan Xiang-Hong, Bai Yu-Long, Wang Xiang-Xian. All-optical diode of subwavelength single slit with multi-pair groove structure based on SPPs-CDEW hybrid model. Acta Physica Sinica, doi: 10.7498/aps.66.117102
    [6] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Paul K, Tan Wen-Chang, Pan Feng. Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source. Acta Physica Sinica, doi: 10.7498/aps.66.095203
    [7] Shi Guo-Dong, Zhang Hai-Ming, Bao Bo-Cheng, Feng Fei, Dong Wei. Dynamical modeling and multi-periodic behavior analysis on pulse train controlled DCM-DCM BIFRED converter. Acta Physica Sinica, doi: 10.7498/aps.64.010501
    [8] Xue Chuang, Ding Ning, Sun Shun-Kai, Xiao De-Long, Zhang Yang, Huang Jun, Ning Cheng, Shu Xiao-Jian. Full circuit model for coupling pulsed power driver with Z-pinch load. Acta Physica Sinica, doi: 10.7498/aps.63.125207
    [9] Zhou Jian-Wei, Liang Jing-Qiu, Liang Zhong-Zhu, Tian Chao, Qin Yu-Xin, Wang Wei-Biao. Tunable two-dimensional photonic crystal cavity all-optical switching infiltrated with liquid-crystal. Acta Physica Sinica, doi: 10.7498/aps.62.134208
    [10] Huang Pei-Pei, Liu Da-Gang, Liu La-Qun, Wang Hui-Hui, Xia Meng-Ju, Chen Ying. Three-dimensional numerical simulation of the single-channel pulsed-power vacuum device. Acta Physica Sinica, doi: 10.7498/aps.62.192901
    [11] Xiang Fei, Tan Jie, Luo Min, Wang Gan-Ping, Kang Qiang. Fast linear transformer high power pulse generator. Acta Physica Sinica, doi: 10.7498/aps.60.064102
    [12] Li Wei-Chang, Wang Zhao-Hua, Liu Cheng, Teng Hao, Wei Zhi-Yi. Contrast ratio of femtosecond ultraintense Ti:sapphire laser with multi-pass amplifier. Acta Physica Sinica, doi: 10.7498/aps.60.124210
    [13] Wang Jin-Ping, Xu Jian-Ping, Xu Yang-Jun. Analysis of multi-switching period oscillation phenomenon in constant on-time controlled buck converter. Acta Physica Sinica, doi: 10.7498/aps.60.058401
    [14] Hao Yan-Peng, Yang Lin, Tu En-Lai, Chen Jian-Yang, Zhu Zhan-Wen, Wang Xiao-Lei. Experimental study on mode and mechanism of multi-pulse atmospheric-pressure glow discharges. Acta Physica Sinica, doi: 10.7498/aps.59.2610
    [15] Yang Bing-Xing, Xia Guang-Qiong, Lin Xiao-Dong, Wu Zheng-Mao. Polarization switching performance of VCSEL subjected to optical pulse injection. Acta Physica Sinica, doi: 10.7498/aps.58.1480
    [16] Qu Guang-Hui, Shi Wei. Inductive current and conductive current in photoconductor switches. Acta Physica Sinica, doi: 10.7498/aps.55.6068
    [17] Ling Wei-Jun, Wang Zhao-Hua, Wang Peng, Jia Yu-Lei, Tian Jin-Rong, Wei Zhi-Yi. The main multi-pass amplifier with double-side pumped Ti:sapphire. Acta Physica Sinica, doi: 10.7498/aps.54.1208
    [18] Cheng Zhao-Gu, Li Xian-Qin, Chai Xiong-Liang, Gao Hai-Jun, Liu Cui-Qing. High power pulse CO2 laser with preionization burst-mode switch technology. Acta Physica Sinica, doi: 10.7498/aps.53.1362
    [19] SHAO HAO, LIU GUO-ZHI. STUDIES OF OUTWARD-EMITTING COAXIAL VIRCATOR. Acta Physica Sinica, doi: 10.7498/aps.50.2387
    [20] ZHANG SHU-KUI, WEN GUO-QING, ZHOU PI-ZHANG, WANG XIAO-DONG, MAN YONG-ZAI, PENG HAN-SHENG, WANG QING-YUE. THEORETICAL AND EXPERIMENTAL STUDIES ON THE CHIRPED PULSE MULTIPASS AMPLIFICATION IN DOUBLE SIDE PUMPED Ti:SAPPHIRE. Acta Physica Sinica, doi: 10.7498/aps.46.908
Metrics
  • Abstract views:  58
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  14 January 2025

/

返回文章
返回