Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Methodology of filter-type multi-dithering phase control for quasi parallel light interference

Chai Jin-Hua Chen Fei

Citation:

Methodology of filter-type multi-dithering phase control for quasi parallel light interference

Chai Jin-Hua, Chen Fei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The quasi parallel light interference is one kind of basic ways to use the energy of interference light to interact with matter. Because the phase of each parallel light beam needs to meet the coherent condition, it is required that the phase of each light beam be controlled timely. There are some kinds of phase control methods, such as the heterodyne phase-locking method, the stochastic parallel gradient descent algorithm, the self-referred and self-synchronous phase-locking method the multi-dithering phase-locking method, etc. Among them, the multi-dithering method needs not the referenc light, it is to load multi-frequency sinusoid signals to the phase modulator, and realize the recognition of phase difference and the output of feedback voltage by multiplying circuit and integrating circuit. In view of the shortcomings of the existing methods, a scheme of filter-type multi-dithering phase control for quasi parallel light interference is proposed, in which the phase differences are identified and corrected by the modulation signals and filtering signals of different frequencies. Theoretical analysis of coherent light intensity for the scheme is made. The principle of filter-type multi-dithering phase control method is put forward, and the numerical analysis and simulation experiment for filter-type multi-dithering phase control method are carried out. In the simulation experiment, the fiber interference light path is used to simulate the light intensity of quasi parallel light interference at one point in space, and the change of photoelectric signal indicates the change of interference light intensity. The phase control feedback loop is composed of photoelectric signal amplifying circuit, bandpass filtering circuit, amplitude measuring circuit, direct current amplifying circuit and adder circuit. The results have shown that the phase difference among light beams can be recognized by the method, and the direct current voltage signal that is proportional to the phase difference of signal can be fed to control the phase modulator. The phase difference can be corrected. The control bandwidth is 2.5 kHz, and the output voltage range of phase control is 0.034.45 V. Compared with the classical multi-dithering method, the method of filter-type multi-dithering phase control has some advantages. Each multiplying circuit in the classical method needs a very small amplitude reference signal, which causes the reference signal to have a very small range of values, and the relationship between integral time and modulation period needs considering. The integral time is usually ten times longer than the modulation period, which causes the control bandwidth of the system to decrease. However, the feedback loop of the filter-type multi-dithering phase control method does not require any reference signal, so each signal does not affect each other, and the increase in the number of beams does not have a significant influence on the control bandwidth either. Therefore the filter-type multi-dithering phase control method is a useful phase-control method.
      Corresponding author: Chai Jin-Hua, ch170626@sina.com
    [1]

    Liu Z J, Hou J, Xu X J, Feng Y, Zhou P, Ma Y X, Wang X L, Lei B, Cao J Q 2009 Chin. J. Lasers 36 2773(in Chinese) [刘泽金, 侯静, 许晓军, 冯莹, 周朴, 马阎星, 王小林, 雷兵, 曹涧秋 2009 中国激光 36 2773]

    [2]

    Wang X L, Zhou P, Xu X J, Liu Z J, Chen Z L, Ma Y X, Ma H T, Li X, Zhao Y J 2009 Laser Optoelectronics Progress 05 13(in Chinese) [王小林, 周朴, 许晓军, 刘泽金, 陈子伦, 马阎星, 马浩统, 李霄, 赵伊君 2009 激光与光电子学进展 05 13]

    [3]

    Goodno G D, Komine H, McNaught S J, Weiss S B, Remond S, Long W 2006 Opt. Lett. 31 1247

    [4]

    Fan T Y 2005 IEEE J. Sel. Top. Quantum. Electron. 11 567

    [5]

    Underwood K J, Jones A M, Gopinath 2015 Appl. Opt. 54 5624

    [6]

    Uberna R, Bratcher A, Tiemann B 2010 Appl. Opt. 47 6762

    [7]

    Wang D T, Zhou W J, Wen W F, Peng Q X, Li Z R, Hu W H, Li Z J 2013 High Power Laser Part. Beams 25 1125(in Chinese) [王德田, 周维军, 温伟峰, 彭其先, 李泽仁, 胡文华, 李忠建 2013 强激光与粒子束 25 1125]

    [8]

    Xiao R, Hou J, Jiang Z F 2006 Acta Phys. Sin. 55 184(in Chinese) [肖瑞, 侯静, 姜宗福 2006 物理学报 55 184]

    [9]

    Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J, Liu Z J 2009 Chin. J. Lasers 36 2972(in Chinese) [周朴, 马阎星, 王小林, 马浩统, 许晓军, 刘泽金 2009 中国激光 36 2972]

    [10]

    Huang Z M, Tang X, Liu C L, Li J F, Zhang D Y, Wang X J, Han M 2015 Chin. J. Lasers 42 41(in Chinese) [黄智蒙, 唐选, 刘仓理, 李剑锋, 张大勇, 王小军, 韩梅 2015 中国激光 42 41]

    [11]

    Zheng Y, Shen F 2010 Chin. J. Lasers 37 631(in Chinese) [郑轶, 沈锋 2010 中国激光 37 631]

    [12]

    Mourou G, Brocklesby B, Tajima T, Limpert J 2013 Nature Photon. 07 258

    [13]

    Shay T M, Benham V, Baker J T 2006 Opt. Express 25 12022

    [14]

    Shay T M, Benham V, Baker J T 2007 IEEE J. Sel. Top. Quantum. Electron. 13 480

    [15]

    Vorontsov M A, Weyrauch T, Beresnev L A, Liu L 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 269

    [16]

    Ma Y X, Wang X L, Zhou P, Ma H T, Zhao H C, Xu X J, Si L, Liu Z J, Zhao Y J 2010 High Power Laser Part. Beams 22 2803(in Chinese) [马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君 2010 强激光与粒子束 22 2803]

    [17]

    Ma Y X, Si L, Dong X L, Zhou P, Xu X J 2012 Chin. J. Lasers 39 0031(in Chinese) [马阎星, 司磊, 董小林, 周朴, 许晓军 2012 中国激光 39 0031]

    [18]

    Shay T M, Benham V 2004 Proc. SPIE 5550 313

    [19]

    Ma Y X 2012 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [马阎星 2012 博士学位论文 (长沙: 国防科技大学)]

    [20]

    Lin L, Loizos D N, Vorontsov M A, Cauwenberghs G 2007 SPIE 6708

    [21]

    Jolivet V, Bourdon P, Bennal B, Lombard L, Goular D 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 257

    [22]

    Liang K M 2006 Methods of Mathematical Physics (Beijing: Higher Education Press) p247 (in Chinese) [梁昆淼 2006 数学物理方法(北京: 高等教育出版社) 第247页]

    [23]

    Wen W F, Wang D T, Zhou W J, Peng Q X 2014 J. Detect. Control 36 11(in Chinese) [温伟峰, 王德田, 周维军, 彭其先 2014 探测与控制学报 36 11]

  • [1]

    Liu Z J, Hou J, Xu X J, Feng Y, Zhou P, Ma Y X, Wang X L, Lei B, Cao J Q 2009 Chin. J. Lasers 36 2773(in Chinese) [刘泽金, 侯静, 许晓军, 冯莹, 周朴, 马阎星, 王小林, 雷兵, 曹涧秋 2009 中国激光 36 2773]

    [2]

    Wang X L, Zhou P, Xu X J, Liu Z J, Chen Z L, Ma Y X, Ma H T, Li X, Zhao Y J 2009 Laser Optoelectronics Progress 05 13(in Chinese) [王小林, 周朴, 许晓军, 刘泽金, 陈子伦, 马阎星, 马浩统, 李霄, 赵伊君 2009 激光与光电子学进展 05 13]

    [3]

    Goodno G D, Komine H, McNaught S J, Weiss S B, Remond S, Long W 2006 Opt. Lett. 31 1247

    [4]

    Fan T Y 2005 IEEE J. Sel. Top. Quantum. Electron. 11 567

    [5]

    Underwood K J, Jones A M, Gopinath 2015 Appl. Opt. 54 5624

    [6]

    Uberna R, Bratcher A, Tiemann B 2010 Appl. Opt. 47 6762

    [7]

    Wang D T, Zhou W J, Wen W F, Peng Q X, Li Z R, Hu W H, Li Z J 2013 High Power Laser Part. Beams 25 1125(in Chinese) [王德田, 周维军, 温伟峰, 彭其先, 李泽仁, 胡文华, 李忠建 2013 强激光与粒子束 25 1125]

    [8]

    Xiao R, Hou J, Jiang Z F 2006 Acta Phys. Sin. 55 184(in Chinese) [肖瑞, 侯静, 姜宗福 2006 物理学报 55 184]

    [9]

    Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J, Liu Z J 2009 Chin. J. Lasers 36 2972(in Chinese) [周朴, 马阎星, 王小林, 马浩统, 许晓军, 刘泽金 2009 中国激光 36 2972]

    [10]

    Huang Z M, Tang X, Liu C L, Li J F, Zhang D Y, Wang X J, Han M 2015 Chin. J. Lasers 42 41(in Chinese) [黄智蒙, 唐选, 刘仓理, 李剑锋, 张大勇, 王小军, 韩梅 2015 中国激光 42 41]

    [11]

    Zheng Y, Shen F 2010 Chin. J. Lasers 37 631(in Chinese) [郑轶, 沈锋 2010 中国激光 37 631]

    [12]

    Mourou G, Brocklesby B, Tajima T, Limpert J 2013 Nature Photon. 07 258

    [13]

    Shay T M, Benham V, Baker J T 2006 Opt. Express 25 12022

    [14]

    Shay T M, Benham V, Baker J T 2007 IEEE J. Sel. Top. Quantum. Electron. 13 480

    [15]

    Vorontsov M A, Weyrauch T, Beresnev L A, Liu L 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 269

    [16]

    Ma Y X, Wang X L, Zhou P, Ma H T, Zhao H C, Xu X J, Si L, Liu Z J, Zhao Y J 2010 High Power Laser Part. Beams 22 2803(in Chinese) [马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君 2010 强激光与粒子束 22 2803]

    [17]

    Ma Y X, Si L, Dong X L, Zhou P, Xu X J 2012 Chin. J. Lasers 39 0031(in Chinese) [马阎星, 司磊, 董小林, 周朴, 许晓军 2012 中国激光 39 0031]

    [18]

    Shay T M, Benham V 2004 Proc. SPIE 5550 313

    [19]

    Ma Y X 2012 Ph. D. Dissertation (Changsha: National University of Defence Technology) (in Chinese) [马阎星 2012 博士学位论文 (长沙: 国防科技大学)]

    [20]

    Lin L, Loizos D N, Vorontsov M A, Cauwenberghs G 2007 SPIE 6708

    [21]

    Jolivet V, Bourdon P, Bennal B, Lombard L, Goular D 2009 IEEE. J. Sel. Top. Quantum. Electron. 15 257

    [22]

    Liang K M 2006 Methods of Mathematical Physics (Beijing: Higher Education Press) p247 (in Chinese) [梁昆淼 2006 数学物理方法(北京: 高等教育出版社) 第247页]

    [23]

    Wen W F, Wang D T, Zhou W J, Peng Q X 2014 J. Detect. Control 36 11(in Chinese) [温伟峰, 王德田, 周维军, 彭其先 2014 探测与控制学报 36 11]

  • [1] Wang Jing-Shang, Wang Dong-Liang, Chang Guo-Qing. Dispersion management dual-pass self-phase modulation-enabled spectral selection. Acta Physica Sinica, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [2] Liu Jie,  Zhang Jian-Xun,  Dai Yu. Image enhancement based on multi-guided filtering. Acta Physica Sinica, 2018, 67(23): 238701. doi: 10.7498/aps.67.20181425
    [3] Liu Chen, Sun Hong-Xiang, Yuan Shou-Qi, Xia Jian-Ping, Qian Jiao. Acoustic focusing by thermoacoustic phased array. Acta Physica Sinica, 2017, 66(15): 154302. doi: 10.7498/aps.66.154302
    [4] Fan Mu-Wen, Huang Lin-Hai, Li Mei, Rao Chang-Hui. High-bandwidth control of piezoelectric steering mirror for suppression of laser beam jitter. Acta Physica Sinica, 2016, 65(2): 024209. doi: 10.7498/aps.65.024209
    [5] Sang Tian, Cai Tuo, Liu Fang, Cai Shao-Hong, Zhang Da-Wei. Design and analysis of guided-mode resonance filter containing an absentee layer with an antireflective surface. Acta Physica Sinica, 2013, 62(2): 024215. doi: 10.7498/aps.62.024215
    [6] Yu Yun, Hui Jun-Ying, Chen Yang, Hui Juan, Yin Jing-Wei. Researches on the interference structure in low-frequency acoustic field based on space-time filter theory. Acta Physica Sinica, 2012, 61(5): 054303. doi: 10.7498/aps.61.054303
    [7] Luo Bo-Wen, Dong Jian-Ji, Wang Xiao, Huang De-Xiu, Zhang Xin-Liang. Multi-channel multifunctional optical differentiator based on phase modulation and linear filtering. Acta Physica Sinica, 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [8] MaYan-Xing, Wang Xiao-Lin, Zhou Pu, Ma Hao-Tong, Zhao Hai-Chuan, Xu Xiao-Jun, Si Lei, Liu Ze-Jin, Zhao Yi-Jun. Effect of atmosphere turbulence on phase modulation signals in coherent beam combination with multi-dithering technique. Acta Physica Sinica, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [9] Sun Shu-Peng, Feng Ai-Xia, Gong Zhi-Qiang, Feng Guo-Lin, Wang Qi-Guang. Information communication of the northern hemisphere on intra-seasonal and over inter-annual oscillation signals. Acta Physica Sinica, 2011, 60(5): 059205. doi: 10.7498/aps.60.059205
    [10] Yang Li-Jun, Ma Li-Jin, Lü Dong-Qi, Zhang Lian-Shui. Phase-dependent electromagnetically induced transparency in a four-level atom system. Acta Physica Sinica, 2011, 60(10): 104205. doi: 10.7498/aps.60.104205
    [11] Li Yong-Fang, Ren Li-Qing, Ma Rui-Qiong, Fan Rong, Liu Juan. Implementing quantum control for the temporal evolution of the wave function of the quantum state by using a phase-controlled light field. Acta Physica Sinica, 2010, 59(3): 1671-1676. doi: 10.7498/aps.59.1671
    [12] Wang Li, Li Gen-Quan, Xiao Shao-Wu, Zheng Chang-Bo. Phase control of electromagnetically induced absorption in four-level atomic system. Acta Physica Sinica, 2010, 59(12): 8512-8517. doi: 10.7498/aps.59.8512
    [13] Wang Ming-Jun, Wang Xing-Yuan. A secure communication scheme based on parameter identification of first order time-delay chaotic system. Acta Physica Sinica, 2009, 58(3): 1467-1472. doi: 10.7498/aps.58.1467
    [14] Zhu Yan-Wu, Shi Shun-Xiang, Liu Ji-Fang, Sun Yan-Ling. A full electromagnetic analysis of a filter substrate lens for spatiotemporal terahertz pulse shaping. Acta Physica Sinica, 2009, 58(2): 1042-1045. doi: 10.7498/aps.58.1042
    [15] Lei You-Ming, Xu Wei. Chaos control in the Josephson junction with a resonant harmonic excitation. Acta Physica Sinica, 2008, 57(6): 3342-3352. doi: 10.7498/aps.57.3342
    [16] Ma Hui, Bu Fan-Ge, Qiao Hong-Xia, Tong Dian-Min, Fan Xi-Jun. Phase control of inversionless gain in a closed atomic system with Doppler broadening. Acta Physica Sinica, 2008, 57(1): 206-211. doi: 10.7498/aps.57.206
    [17] Li Xiao-Qi, Wang Jian, Wang Fei, Hu Xiang-Ming. Microwave control of optical bistability and multistability in the presence of antirotating wave coupling. Acta Physica Sinica, 2008, 57(4): 2236-2241. doi: 10.7498/aps.57.2236
    [18] Wang Yun-Cai, Li Yan-Li, Wang An-Bang, Wang Bing-Jie, Zhang Geng-Wei, Guo Ping. High frequency message filtering characteristics of semiconductor laser as receiver in optical chaos communications. Acta Physica Sinica, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [19] Dong Hai-Xia, Jiang Hai-Tao, Yang Cheng-Quan, Shi Yun-Long. Properties of impurity band in one-dimensional photonic crystal coupled-resonator containing defect layers with negative refractive index. Acta Physica Sinica, 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [20] Min Fu-Hong, Xu Wen-Bo, Xu Zhen-Yuan. . Acta Physica Sinica, 2002, 51(8): 1690-1695. doi: 10.7498/aps.51.1690
Metrics
  • Abstract views:  6089
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  06 July 2017
  • Accepted Date:  10 October 2017
  • Published Online:  05 January 2018

/

返回文章
返回