-
In view of the requirements for the application of electric propulsion system to China's asteroid deep space exploration mission, the relationship between input parameters and output characteristics of the thruster is established based on the basic plasma theory, and the input parameters such as screen grid voltage, beam current, anode current, acceleration voltage and propellent flow rate at each operating point are designed. The operating characteristics of the thruster are studied experimentally and theoretically. The test results show that under the design input parameter values, the maximum error of thrust is less than 3% and the maximum error of specific impulse is less than 4% at 23 operating points, the ion thruster can operate steadily in an input power range of 289–3106 W, thrust range of 9.7–117 mN, specific impulse range of 1220–3517 s, and efficiency range of 23.4%–67.8%. The electron backstreaming limited voltage decreases monotonically with thrust increasing and its minimum and maximum thrust value are 79.5 V and –137 V, respectively. The discharge loss decreases from 359.7 to 210 W/A as the power increases, and there is an adjusted turning at the input power 886 W, the efficiency increases with power increasing and after 1700 W the efficiency growth rate slows down and stabilizes. The optimum operating interval should be selected in practical on-orbit application. Controlling these parameters reasonably can improve thruster performance and lifetime. A 300-h wear test shows that the thruster works stably and the performance indicators meet the design requirements of ±3% uncertainty.
-
Keywords:
- ion thruster /
- multi-mode /
- input parameter design /
- discharge loss
[1] Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar
[2] Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar
[3] Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar
[4] Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28–30, 1999 p99-4612-1
[5] Brophy J R, MareuceiM G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1
[6] Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar
[7] Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31–August 03, 2011 p2011-5661-1
[8] Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1
[9] Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1
[10] Snyder J S, Goebel D M, Hofer R R, Polk, J E 2012 J. Propul. Power. 28 371Google Scholar
[11] Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1
[12] 李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435
Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435
[13] 赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942
Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942
[14] Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68
[15] Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar
[16] Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95
[17] Piel A, Brown M 2011 Phys. Today 64 55
[18] Mahalingam S, Menart J A 2010 J. Propul. Power 26 673Google Scholar
[19] Mahalingam S, Menart J A 2007 J. Propul. Power 23 69Google Scholar
[20] Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7–10, 2002 p2002-4261-1
[21] Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar
[22] 陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar
Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar
[23] 龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar
Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar
[24] 赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 物理学报 69 115203Google Scholar
Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar
[25] Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar
[26] Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245
[27] 赵以德, 吴宗海, 张天平, 耿海, 李娟, 李建鹏 2020 推进技术 01 187
Zhao Y D, Wu Z H, Zhang T P, Geng H, Li J, Li J P 2020 J. Propul. Technol. 01 187
[28] Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar
[29] Boyd I D, Crofton M W 2004 J. Appl. Phys. 95 3285Google Scholar
[30] Capece A M, Polk J E, Mikellides I G, Shepherd J E 2014 J. Appl. Phys. 115 153302Google Scholar
-
表 1 离子推力器23个工作点下的工作参数
Table 1. Operating parameters at 23 modes.
工作点 比冲要
求值/s推力要求
值/mN屏栅电压
计算值/V屏栅电压
设计值/V束流计算
值/A束流设
计值/A流率计算
值/(mg·s–1)流率设计
值/(mg·s–1)TL01 1518 10 394 420 0.309 0.3 0.672 0.804 TL02 1675 16 414 420 0.495 0.5 0.975 1.05 TL03 2064 20 628 630 0.505 0.5 0.989 1.05 TL04 2108 24 602 630 0.606 0.6 1.162 1.22 TL05 2141 28 621 630 0.707 0.7 1.334 1.39 TL06 2467 32 825 840 0.700 0.7 1.324 1.39 TL07 2194 36 652 840 0.787 0.8 1.674 1.73 TL08 2467 41 825 840 0.897 0.9 1.696 1.73 TL09 2491 45 841 840 0.984 1 1.843 1.913 TL10 2508 50 852 840 1.094 1.1 2.034 2.083 TL11 2523 54 863 840 1.181 1.2 2.184 2.253 TL12 2470 59 827 840 1.291 1.3 2.437 2.467 TL13 2660 64 840 840 1.400 1.4 2.455 2.467 TL14 2833 68 953 840 1.488 1.5 2.449 2.493 TL15 2972 71 1050 1050 1.390 1.4 2.438 2.493 TL16 3187 77 1065 1050 1.507 1.5 2.465 2.493 TL17 3128 81 1026 1050 1.585 1.6 2.642 2.644 TL18 3161 87 1048 1050 1.703 1.7 2.808 2.795 TL19 3000 91 944 1050 1.781 1.8 3.095 3.097 TL20 3180 97 1060 1050 1.898 1.9 3.113 3.097 TL21 3497 106 1223 1260 1.894 1.9 3.093 3.097 TL22 3508 112 1231 1260 2.001 2 3.258 3.262 TL23 3485 116 1214 1260 2.072 2.1 3.396 3.413 -
[1] Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar
[2] Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar
[3] Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar
[4] Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28–30, 1999 p99-4612-1
[5] Brophy J R, MareuceiM G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1
[6] Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar
[7] Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31–August 03, 2011 p2011-5661-1
[8] Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1
[9] Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1
[10] Snyder J S, Goebel D M, Hofer R R, Polk, J E 2012 J. Propul. Power. 28 371Google Scholar
[11] Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1
[12] 李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435
Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435
[13] 赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942
Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942
[14] Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68
[15] Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar
[16] Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95
[17] Piel A, Brown M 2011 Phys. Today 64 55
[18] Mahalingam S, Menart J A 2010 J. Propul. Power 26 673Google Scholar
[19] Mahalingam S, Menart J A 2007 J. Propul. Power 23 69Google Scholar
[20] Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7–10, 2002 p2002-4261-1
[21] Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar
[22] 陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar
Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar
[23] 龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar
Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar
[24] 赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 物理学报 69 115203Google Scholar
Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar
[25] Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar
[26] Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245
[27] 赵以德, 吴宗海, 张天平, 耿海, 李娟, 李建鹏 2020 推进技术 01 187
Zhao Y D, Wu Z H, Zhang T P, Geng H, Li J, Li J P 2020 J. Propul. Technol. 01 187
[28] Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar
[29] Boyd I D, Crofton M W 2004 J. Appl. Phys. 95 3285Google Scholar
[30] Capece A M, Polk J E, Mikellides I G, Shepherd J E 2014 J. Appl. Phys. 115 153302Google Scholar
Catalog
Metrics
- Abstract views: 4253
- PDF Downloads: 57
- Cited By: 0