Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of input parameters and operating characteristics for multi-mode ion thruster

Li Jian-Peng Jin Wu-Yin Zhao Yi-De

Citation:

Design of input parameters and operating characteristics for multi-mode ion thruster

Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De
PDF
HTML
Get Citation
  • In view of the requirements for the application of electric propulsion system to China's asteroid deep space exploration mission, the relationship between input parameters and output characteristics of the thruster is established based on the basic plasma theory, and the input parameters such as screen grid voltage, beam current, anode current, acceleration voltage and propellent flow rate at each operating point are designed. The operating characteristics of the thruster are studied experimentally and theoretically. The test results show that under the design input parameter values, the maximum error of thrust is less than 3% and the maximum error of specific impulse is less than 4% at 23 operating points, the ion thruster can operate steadily in an input power range of 289–3106 W, thrust range of 9.7–117 mN, specific impulse range of 1220–3517 s, and efficiency range of 23.4%–67.8%. The electron backstreaming limited voltage decreases monotonically with thrust increasing and its minimum and maximum thrust value are 79.5 V and –137 V, respectively. The discharge loss decreases from 359.7 to 210 W/A as the power increases, and there is an adjusted turning at the input power 886 W, the efficiency increases with power increasing and after 1700 W the efficiency growth rate slows down and stabilizes. The optimum operating interval should be selected in practical on-orbit application. Controlling these parameters reasonably can improve thruster performance and lifetime. A 300-h wear test shows that the thruster works stably and the performance indicators meet the design requirements of ±3% uncertainty.
      Corresponding author: Jin Wu-Yin, 1171341698@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61601210), the Science and Technology Program of Gansu Province, China (Grant No. 21JR7RA744), and the Fund for Distinguished Young Scholars of China Academy of Space Technology
    [1]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [2]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [3]

    Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar

    [4]

    Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28–30, 1999 p99-4612-1

    [5]

    Brophy J R, MareuceiM G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1

    [6]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar

    [7]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31–August 03, 2011 p2011-5661-1

    [8]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1

    [9]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1

    [10]

    Snyder J S, Goebel D M, Hofer R R, Polk, J E 2012 J. Propul. Power. 28 371Google Scholar

    [11]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1

    [12]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [13]

    赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942

    Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942

    [14]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [15]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar

    [16]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [17]

    Piel A, Brown M 2011 Phys. Today 64 55

    [18]

    Mahalingam S, Menart J A 2010 J. Propul. Power 26 673Google Scholar

    [19]

    Mahalingam S, Menart J A 2007 J. Propul. Power 23 69Google Scholar

    [20]

    Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7–10, 2002 p2002-4261-1

    [21]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [22]

    陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar

    [23]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar

    [24]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 物理学报 69 115203Google Scholar

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar

    [25]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar

    [26]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245

    [27]

    赵以德, 吴宗海, 张天平, 耿海, 李娟, 李建鹏 2020 推进技术 01 187

    Zhao Y D, Wu Z H, Zhang T P, Geng H, Li J, Li J P 2020 J. Propul. Technol. 01 187

    [28]

    Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar

    [29]

    Boyd I D, Crofton M W 2004 J. Appl. Phys. 95 3285Google Scholar

    [30]

    Capece A M, Polk J E, Mikellides I G, Shepherd J E 2014 J. Appl. Phys. 115 153302Google Scholar

  • 图 1  离子推力器原理样机

    Figure 1.  Ion thruster prototype model.

    图 2  离子推力器点火照片

    Figure 2.  Discharge of the ion thruster.

    图 3  试验组成图

    Figure 3.  Schematic of experimental principle.

    图 4  不同工况下推力、比冲实测值与要求设计值对比曲线 (a) 推力; (b) 比冲

    Figure 4.  Comparison of measured thrust and specific impulse values with required design values at different operating modes: (a) Thrust; (b) specific impulse.

    图 5  不同工况下加速和减速电流实测值

    Figure 5.  Measured acceleration and deceleration currents at different operating modes.

    图 6  电子返流极限电压与束电流的关系

    Figure 6.  Electron backstreaming limited voltage versus beam current.

    图 7  离子推力器不同工况点下放电损耗和效率 (a) 放电损耗; (b) 效率.

    Figure 7.  Discharge losses and efficiency of ion thrusters at different operating modes: (a) Discharge loss; (b) efficiency.

    图 8  离子推力器放电损耗与工质利用率

    Figure 8.  Ion thruster discharge losses versus propellant utilization efficiency.

    图 9  离子推力器最大推力下300 h 短期磨损测试 (a) 推力和比冲; (b) 效率; (c) 加速电流和减速电流; (d) 主触电压和中触电压

    Figure 9.  300 h wear test of ion thruster at maximum power: (a) Thrust and specific impulse; (b) efficiency; (c) acceleration current and deceleration current; (d) main cathode keeper voltage and neutralizer keeper voltage.

    表 1  离子推力器23个工作点下的工作参数

    Table 1.  Operating parameters at 23 modes.

    工作点比冲要
    求值/s
    推力要求
    值/mN
    屏栅电压
    计算值/V
    屏栅电压
    设计值/V
    束流计算
    值/A
    束流设
    计值/A
    流率计算
    值/(mg·s–1)
    流率设计
    值/(mg·s–1)
    TL011518103944200.3090.30.6720.804
    TL021675164144200.4950.50.9751.05
    TL032064206286300.5050.50.9891.05
    TL042108246026300.6060.61.1621.22
    TL052141286216300.7070.71.3341.39
    TL062467328258400.7000.71.3241.39
    TL072194366528400.7870.81.6741.73
    TL082467418258400.8970.91.6961.73
    TL092491458418400.98411.8431.913
    TL102508508528401.0941.12.0342.083
    TL112523548638401.1811.22.1842.253
    TL122470598278401.2911.32.4372.467
    TL132660648408401.4001.42.4552.467
    TL142833689538401.4881.52.4492.493
    TL15297271105010501.3901.42.4382.493
    TL16318777106510501.5071.52.4652.493
    TL17312881102610501.5851.62.6422.644
    TL18316187104810501.7031.72.8082.795
    TL1930009194410501.7811.83.0953.097
    TL20318097106010501.8981.93.1133.097
    TL213497106122312601.8941.93.0933.097
    TL223508112123112602.00123.2583.262
    TL233485116121412602.0722.13.3963.413
    DownLoad: CSV
  • [1]

    Burak K K, Deborah A L 2017 J. Propul. Power 33 264Google Scholar

    [2]

    Li J X, Wang Z H, Zhang Y B, Fu H M, Liu C R, Krishnaswamy S 2016 J. Propul. Power 32 948Google Scholar

    [3]

    Williams L T, Walker M L R 2014 J. Propul. Power 30 645Google Scholar

    [4]

    Rawlin V K, Sovey J S, Hamley J A 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28–30, 1999 p99-4612-1

    [5]

    Brophy J R, MareuceiM G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Huntsville, USA, July 20–23, 2003 p2003-4542-1

    [6]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar

    [7]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31–August 03, 2011 p2011-5661-1

    [8]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11–14, 2004 p2004-3784-1

    [9]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7–10, 2002 p2002-4348-1

    [10]

    Snyder J S, Goebel D M, Hofer R R, Polk, J E 2012 J. Propul. Power. 28 371Google Scholar

    [11]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, October 6–10, 2013 p2013-48-1

    [12]

    李建鹏, 张天平, 赵以德, 李娟, 郭德洲, 胡竟 2021 推进技术 42 1435

    Li J P, Zhang T P, ZhaoY D, Li J, Guo D Z, Hu J 2021 J. Propul. Technol. 42 1435

    [13]

    赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942

    Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942

    [14]

    Jahn R G, Von J W 2006 Physics of Electric Propulsion (New York: Dover Pubns) p68

    [15]

    Farnell C C, Williams J D 2011 Plasma Sources Sci. Technol. 20 025006Google Scholar

    [16]

    Bittencourt J A 1980 Fundamentals of Plasma Physics (New York: Springer) p95

    [17]

    Piel A, Brown M 2011 Phys. Today 64 55

    [18]

    Mahalingam S, Menart J A 2010 J. Propul. Power 26 673Google Scholar

    [19]

    Mahalingam S, Menart J A 2007 J. Propul. Power 23 69Google Scholar

    [20]

    Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presentedat the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7–10, 2002 p2002-4261-1

    [21]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [22]

    陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar

    [23]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar

    [24]

    赵以德, 李娟, 吴宗海, 黄永杰, 李建鹏, 张天平 2020 物理学报 69 115203Google Scholar

    Zhao Y D, Li J, Wu Z H, Huang Y J, Li J P, Zhang T P 2020 Acta Phys. Sin. 69 115203Google Scholar

    [25]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010Google Scholar

    [26]

    Goebel D M, Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thruster (Hoboken: John Wiley and Sons) p245

    [27]

    赵以德, 吴宗海, 张天平, 耿海, 李娟, 李建鹏 2020 推进技术 01 187

    Zhao Y D, Wu Z H, Zhang T P, Geng H, Li J, Li J P 2020 J. Propul. Technol. 01 187

    [28]

    Green T S 1976 J. Phy. D:Appl. Phys. 9 1165Google Scholar

    [29]

    Boyd I D, Crofton M W 2004 J. Appl. Phys. 95 3285Google Scholar

    [30]

    Capece A M, Polk J E, Mikellides I G, Shepherd J E 2014 J. Appl. Phys. 115 153302Google Scholar

  • [1] Wang Ling-Yun, Liu Hong-Wei, Yuan Jian-Qiang, Xie Wei-Ping, Luan Chong-Biao, Li Hong-Tao, Zhang Jian-De, Chen Yi, He Yang, Liu Xiao-Li, Gao Bin. Research on Various Operating Modes of Optically Controlled Multi-Gate Thyristors. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241608
    [2] Fu Yu-Liang, Zhang Si-Yuan, Yang Jin-Yuan, Sun An-Bang, Wang Ya-Nan. Electron heating mode in magnetic field diffusion region of microwave discharge ion thruster. Acta Physica Sinica, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [3] Tan Ren-Wei, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao. Experimental study on 10-cm ECRIT neutralizer with nitrogen gas. Acta Physica Sinica, 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [4] Fu Yu-Liang, Yang Juan, Xia Xu, Sun An-Bang. Study on the effect of discharge chamber length on the performance of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [5] Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De. Influence of acceleration grid voltage and anode flow rate on performance of ion thruster. Acta Physica Sinica, 2022, 71(1): 015202. doi: 10.7498/aps.71.20211316
    [6] Li Jian-Peng, Zhao Yi-De, Jin Wu-Yin, Zhang Xing-Min, Li Juan, Wang Yan-Long. Design and performance test of discharge chamber and grid for multi-mode ion thrusters. Acta Physica Sinica, 2022, 71(19): 195203. doi: 10.7498/aps.71.20220720
    [7] Liu Shuai, Shi Yu-Hao, Lin Tian-Yu, Zhang Yong-Peng, Lu Zhi-Jian, Yang Lan-Jun. Influence of operating parameters on discharge mode of parallel-rail accelerator. Acta Physica Sinica, 2021, 70(20): 205205. doi: 10.7498/aps.70.20210484
    [8] Wang Ya-Nan, Ren Lin-Yuan, Ding Wei-Dong, Sun An-Bang, Geng Jin-Yue. Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster. Acta Physica Sinica, 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [9] Zhao Yi-De, Li Juan, Wu Zong-Hai, Huang Yong-Jie, Li Jian-Peng, Zhang Tian-Ping. Influence of screen gird aperture diameter in outer region on performance of dual-mode ion thruster. Acta Physica Sinica, 2020, 69(11): 115203. doi: 10.7498/aps.69.20200358
    [10] Zhao Chong-Xiao, Qi Liang-Wen, Yan Hui-Jie, Wang Ting-Ting, Ren Chun-Sheng. Influence of discharge parameters on pulsed discharge of coaxial gun in deflagration mode. Acta Physica Sinica, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [11] Long Jian-Fei, Zhang Tian-Ping, Yang Wei, Sun Ming-Ming, Jia Yan-Hui, Liu Ming-Zheng. Thrust density characteristics of ion thruster. Acta Physica Sinica, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [12] Long Jian-Fei, Zhang Tian-Ping, Li Juan, Jia Yan-Hui. Optical transparency radial distribution of ion thruster. Acta Physica Sinica, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [13] Chen Mao-Lin, Xia Guang-Qing, Xu Zong-Qi, Mao Gen-Wang. Analysis on the effects of optics thermal deformation on the ion thruster operation. Acta Physica Sinica, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [14] Zhao Gao, Xiong Yu-Qing, Ma Chao, Liu Zhong-Wei, Chen Qiang. Characterization of plasma in a short-tube helicon source. Acta Physica Sinica, 2014, 63(23): 235202. doi: 10.7498/aps.63.235202
    [15] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [16] Wang Wei, Yang Lan-Jun, Gao Jie, Liu Shuai. Experimental study on the thrust and the ratio of thrust to power of multi-points/grid ionic wind exciter. Acta Physica Sinica, 2013, 62(7): 075205. doi: 10.7498/aps.62.075205
    [17] Du Chao-Hai, Li Zheng-Di, Xue Zhi-Hao, Liu Pu-Kun, Xue Qian-Zhong, Zhang Shi-Chang, Xu Shou-Xi, Geng Zhi-Hui, Gu Wei, Su Yi-Nong, Liu Gao-Feng. Research on the mode competition in a w-band lossy ceramic-loaded gyrotron backward-wave oscillator. Acta Physica Sinica, 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [18] Han Ke, Jiang Bin-Hao, Ji Yan-Chao. Study on the mechanism of Hall effect thruster discharge with bistable state. Acta Physica Sinica, 2012, 61(7): 075209. doi: 10.7498/aps.61.075209
    [19] Hao Yan-Peng, Yang Lin, Tu En-Lai, Chen Jian-Yang, Zhu Zhan-Wen, Wang Xiao-Lei. Experimental study on mode and mechanism of multi-pulse atmospheric-pressure glow discharges. Acta Physica Sinica, 2010, 59(4): 2610-2616. doi: 10.7498/aps.59.2610
    [20] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
Metrics
  • Abstract views:  4470
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2021
  • Accepted Date:  21 November 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022

/

返回文章
返回