Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the effect of discharge chamber length on the performance of electron cyclotron resonance ion thruster

Fu Yu-Liang Yang Juan Xia Xu Sun An-Bang

Citation:

Study on the effect of discharge chamber length on the performance of electron cyclotron resonance ion thruster

Fu Yu-Liang, Yang Juan, Xia Xu, Sun An-Bang
PDF
HTML
Get Citation
  • Discharge chamber length is one of the factors in optimizing the electron cyclotron resonance ion thruster performance. It adjusts the distance between bulk plasma and grid system to change the plasma density upstream of the screen grid, which will affect the ion beam current and focusing state to achieve optimization purpose. However, new evidence shows the discharge chamber length plays an important role in ionization during ion beam extraction, which means that the effect of discharge chamber length on the performance of electron cyclotron resonance ion thruster should be reexamined. After applying grid voltages, another high electron temperature region located upstream of the screen grid is observed in the integrated simulation using particle-in-cell with Monte Carlo collision method, but it is not observed in the traditional discharge chamber simulation. It is believed in the paper that the high electron temperature region exists objectively, because the Child-Langmuir sheath will repel electrons moving towards screen grid back to magnetic mirrors again. Those electrons will gain energy from microwave, and finally form a high electron temperature region along the Child-Langmuir sheath. This phenomenon implies that discharge chamber length can adjust the high electron temperature distribution upstream of screen grid to affect the plasma generation. Therefore, in this work, the effect of discharge chamber length on discharge and ion beam performance is systematically studied by adopting the integrated simulation. In this paper, three ion thrusters with different discharge chamber lengths are simulated. Under the conditions of same magnetic field and operation parameters, the comparisons of electron energy gain, plasma parameter distributions and ion beam current among the three ion thrusters are conducted. The results show that shorter discharge chamber length has higher electron energy gain, plasma density and voltage, but smaller ion beam current. This abnormal phenomenon can also be seen experimentally. By analyzing the ionization rate inside the chamber, it can be seen that high-temperature electrons upstream of the screen grid have a significant contribution to ionization. And thus, a little bit longer discharge chamber length with lower plasma density inside the chamber has bigger ion beam current for having higher plasma density upstream of the screen grid. According to this phenomenon, an electron heating mode is proposed: electrons gain energy by reciprocating through the electron cyclotron resonance layer between the Child-Langmuir sheath and magnetic mirrors. This heating mode can be used as a supplement to the electronic constraints outside the magnetic mirrors to improve the energy utilization efficiency of the thruster, which can provide a new insight into the electron cyclotron resonance ion thruster design in the future.
      Corresponding author: Sun An-Bang, anbang.sun@xjtu.edu.cn
    [1]

    Levchenko I, Keidar M, Cantrell J, et al. 2018 Nature 562 7726

    [2]

    Serjeant S, Elvis M and Tinetti G 2020 Nat. Astron. 4

    [3]

    O’Reilly D, Herdrich G, and Kavanagh DF 2021 Aerospace 8 22Google Scholar

    [4]

    于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propuls. Tech. 41 1

    [5]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 78

    Yang J, Mou H, Geng H, Wu X M 2023 J. Propuls. Tech. 44 78

    [6]

    Watanabe S, Tsuda Y, Yoshikawa M, Tanaka S, Saiki T, Nakazawa S 2017 Space Sci. Rev. 208 3Google Scholar

    [7]

    韩罗峰, 朱康武, 黄文斌, 于学文, 张辰乙, 鲁超, 刘通, 李航, 黄静 2022 真空与低温 28 98Google Scholar

    Han L F, Zhu K W, Huang W B, Yu X W, Zhang C Y, Lu C, Liu T, Li H, Huang J 2022 Vacuum Cry. 28 98Google Scholar

    [8]

    Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronaut. 157

    [9]

    夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展 2021 物理学报 70 075204Google Scholar

    Xia X, Yang J, Fu Y L, Wu X M, Geng H, Hu Z 2021 Acta Phys. Sin. 70 075204Google Scholar

    [10]

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar

    [11]

    夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 物理学报 68 235202Google Scholar

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar

    [12]

    Motoki T, Takasaki D, Koizumi H, Ataka Y, Komurasaki K, Takao Y 2022 Acta Astronaut. 196

    [13]

    Fu S H, Ding Z F 2022 IEEE Tran. Pla. Sci. 50 6

    [14]

    汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰 2015 物理学报 64 215202Google Scholar

    Tang M J, Yang J, Jin Y Z, Luo L T, Feng B B 2015 Acta Phys. Sin. 64 215202Google Scholar

    [15]

    夏旭 2022 博士学位论文(西安: 西北工业大学)

    Xia X 2022 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)

    [16]

    付瑜亮 2022 博士学位论文(西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)

    [17]

    迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社 ) 第379—383页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp379–383 (in Chinese)

    [18]

    Fu Y L, Yang J, Mou H, Tan R W, Xia X, Gao Z Y 2022 Comput. Phys. Commun. 278 8395

    [19]

    付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩 2022 物理学报 71 085203Google Scholar

    Fu Y L, Yang J, Wang B, Hu Z, Xia X, Mou H 2022 Acta Phys. Sin. 71 085203Google Scholar

    [20]

    Yamashita Y, Tsukizaki R, and Nishiyama K 2022 Vacuum 200 110962Google Scholar

    [21]

    Yamashita Y, Tsukizaki R and Nishiyama K 2021 Plasma Sources Sci. Technol. 30 5023

  • 图 1  2 cm ECR离子推力器的结构示意图

    Figure 1.  Structure diagram of 2 cm ECR ion thruster.

    图 2  2 cm ECR离子推力器一体化模型

    Figure 2.  Integrated model of 2 cm ECR ion thruster.

    图 3  磁镜区电子加热机制

    Figure 3.  Electron heating mechanism in magnetic mirrors.

    图 4  不同L的电子获能对比 (a) L = 7.6 mm; (b) L = 8.6 mm; $ \left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}} $

    Figure 4.  Comparison of electronic energy gain for different L: (a) L = 7.6 mm; (b) L = 8.6 mm; $ \left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}}$

    图 5  放电阶段的离子分布 (a) L = 7.6 mm, ${\varphi }_{{\rm{s}}{\rm{c}}} = 0~{\rm{V}};$ (b) L = 8.6 mm, $ {\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};\;\left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}},\; {\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}} $

    Figure 5.  Ion distributions in discharge stage: (a) L = 7.6 mm, $ {\varphi }_{{\rm{s}}{\rm{c}}} = 0\;{\rm{V}}; $ (b) L = 8.6 mm, ${\varphi }_{{\rm{sc}}} = 0\;{\rm{V}};\;({\rm{c}})\; L = 9.6\;{\rm{mm}},\; {\varphi }_{{\rm{sc}}} = 0\;{\rm{V}}$

    图 6  放电阶段的电势分布 (a) L = 7.6 mm, ${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};$ (b) L = 8.6 mm, ${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};\;({\rm{c}})~ L = 9.6{\rm{ }}{\rm{m}}{\rm{m}}, \;{\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}}$

    Figure 6.  Potential distributions in discharge stage: (a) L = 7.6 mm, ${\varphi }_{{\rm{s}}{\rm{c}}}=0~{\rm{V}};$ (b) L = 8.6 mm, ${\varphi }_{{\rm{s}}{\rm{c}}} = 0\;{\rm{V}};\;\left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}}, \;{\varphi }_{{\rm{s}}{\rm{c}}} = 0\;{\rm{V}}$

    图 7  等离子体演化过程中天线的累积电荷量

    Figure 7.  Charges accumulating on antenna during plasma evolution.

    图 8  引出阶段的离子分布 (a) L = 7.6 mm, $ {\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}}; $ (b) L = 8.6 mm, ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};$ $\left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}}, $ ${\varphi }_{{\rm{s}}{\rm{c}}}=$ 300 V

    Figure 8.  Ion distributions in extraction stage: (a) L = 7.6 mm, $ {\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}}; $ (b) L = 8.6 mm, ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};$ $({\rm{c}})~L=9.6~{\rm{mm}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}}$.

    图 9  引出离子束电流对比

    Figure 9.  Comparison of ion beam currents.

    图 10  电子温度分布 (a) L = 7.6 mm, ${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};$ (b) L = 8.6 mm, ${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};\;\left({\rm{c}}\right)L=9.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};\;\left({\rm{d}}\right)L=7.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};\; $$ \left({\rm{e}}\right)L= 8.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};\;\left({\rm{f}}\right)L=9.6\;{\rm{m}}{\rm{m}}, {\varphi }_{{\rm{s}}{\rm{c}}}=300{\rm{V}}$

    Figure 10.  Electron temperature distributions: (a) L = 7.6 mm, ${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};$ (b) L = 8.6 mm, ${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}};\;\left({\rm{c}}\right)L=9.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=0\;{\rm{V}}; $$ \;\left({\rm{d}}\right)L=7.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};\;\left({\rm{e}}\right)L=8.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}};\;\left({\rm{f}}\right)L=9.6\;{\rm{m}}{\rm{m}},$ ${\varphi }_{{\rm{s}}{\rm{c}}}=300\;{\rm{V}}$.

    图 11  $ {\varphi }_{{\rm{s}}{\rm{c}}} $ = 300 V和$ {\varphi }_{{\rm{s}}{\rm{c}}} $ = 0 V的电离率分布对比 (a) L = 7.6 mm; (b) L = 8.6 mm; $ \left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}} $

    Figure 11.  Comparison of ionization rate distributions between ${\varphi }_{{\rm{sc}}}$ = 300 V with ${\varphi }_{{\rm{sc}}}$ = 0 V (a) L = 7.6 mm; (b) L = 8.6 mm; $ \left({\rm{c}}\right)L=9.6{\rm{ }}{\rm{m}}{\rm{m}} $

  • [1]

    Levchenko I, Keidar M, Cantrell J, et al. 2018 Nature 562 7726

    [2]

    Serjeant S, Elvis M and Tinetti G 2020 Nat. Astron. 4

    [3]

    O’Reilly D, Herdrich G, and Kavanagh DF 2021 Aerospace 8 22Google Scholar

    [4]

    于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propuls. Tech. 41 1

    [5]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 78

    Yang J, Mou H, Geng H, Wu X M 2023 J. Propuls. Tech. 44 78

    [6]

    Watanabe S, Tsuda Y, Yoshikawa M, Tanaka S, Saiki T, Nakazawa S 2017 Space Sci. Rev. 208 3Google Scholar

    [7]

    韩罗峰, 朱康武, 黄文斌, 于学文, 张辰乙, 鲁超, 刘通, 李航, 黄静 2022 真空与低温 28 98Google Scholar

    Han L F, Zhu K W, Huang W B, Yu X W, Zhang C Y, Lu C, Liu T, Li H, Huang J 2022 Vacuum Cry. 28 98Google Scholar

    [8]

    Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronaut. 157

    [9]

    夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展 2021 物理学报 70 075204Google Scholar

    Xia X, Yang J, Fu Y L, Wu X M, Geng H, Hu Z 2021 Acta Phys. Sin. 70 075204Google Scholar

    [10]

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2020 Vacuum 179 109517Google Scholar

    [11]

    夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 物理学报 68 235202Google Scholar

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar

    [12]

    Motoki T, Takasaki D, Koizumi H, Ataka Y, Komurasaki K, Takao Y 2022 Acta Astronaut. 196

    [13]

    Fu S H, Ding Z F 2022 IEEE Tran. Pla. Sci. 50 6

    [14]

    汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰 2015 物理学报 64 215202Google Scholar

    Tang M J, Yang J, Jin Y Z, Luo L T, Feng B B 2015 Acta Phys. Sin. 64 215202Google Scholar

    [15]

    夏旭 2022 博士学位论文(西安: 西北工业大学)

    Xia X 2022 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)

    [16]

    付瑜亮 2022 博士学位论文(西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)

    [17]

    迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社 ) 第379—383页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp379–383 (in Chinese)

    [18]

    Fu Y L, Yang J, Mou H, Tan R W, Xia X, Gao Z Y 2022 Comput. Phys. Commun. 278 8395

    [19]

    付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩 2022 物理学报 71 085203Google Scholar

    Fu Y L, Yang J, Wang B, Hu Z, Xia X, Mou H 2022 Acta Phys. Sin. 71 085203Google Scholar

    [20]

    Yamashita Y, Tsukizaki R, and Nishiyama K 2022 Vacuum 200 110962Google Scholar

    [21]

    Yamashita Y, Tsukizaki R and Nishiyama K 2021 Plasma Sources Sci. Technol. 30 5023

  • [1] Luo Ling-Feng, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao. Numerical simulation of magnetic field influence on plasma and electron extraction of electron cyclotron resonance neutralizer. Acta Physica Sinica, 2024, 73(16): 165203. doi: 10.7498/aps.73.20240612
    [2] Fu Yu-Liang, Zhang Si-Yuan, Sun An-Bang, Ma Zu-Fu, Wang Ya-Nan. Electron extraction mechanism of magnet array microwave discharge neutralizer. Acta Physica Sinica, 2024, 73(11): 115203. doi: 10.7498/aps.73.20240273
    [3] Fu Yu-Liang, Zhang Si-Yuan, Yang Jin-Yuan, Sun An-Bang, Wang Ya-Nan. Electron heating mode in magnetic field diffusion region of microwave discharge ion thruster. Acta Physica Sinica, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [4] Tan Ren-Wei, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao. Experimental study on 10-cm ECRIT neutralizer with nitrogen gas. Acta Physica Sinica, 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [5] Wu Wen-Bin, Peng Shi-Xiang, Zhang Ai-Lin, Zhou Hai-Jing, Ma Teng-Hao, Jiang Yao-Xiang, Li Kai, Cui Bu-Jian, Guo Zhi-Yu, Chen Jia-Er. Global model of miniature electron cyclotron resonance ion source. Acta Physica Sinica, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [6] Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De. Influence of acceleration grid voltage and anode flow rate on performance of ion thruster. Acta Physica Sinica, 2022, 71(1): 015202. doi: 10.7498/aps.71.20211316
    [7] Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De. Design of input parameters and operating characteristics for multi-mode ion thruster. Acta Physica Sinica, 2022, 71(7): 075203. doi: 10.7498/aps.71.20212045
    [8] Li Jian-Peng, Zhao Yi-De, Jin Wu-Yin, Zhang Xing-Min, Li Juan, Wang Yan-Long. Design and performance test of discharge chamber and grid for multi-mode ion thrusters. Acta Physica Sinica, 2022, 71(19): 195203. doi: 10.7498/aps.71.20220720
    [9] Xia Xu, Yang Juan, Fu Yu-Liang, Wu Xian-Ming, Geng Hai, Hu Zhan. Numerical simulation of influence of magnetic field on plasma characteristics and surface current of ion source of 2-cm electron cyclotron resonance ion thruster. Acta Physica Sinica, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [10] Xia Xu, Yang Juan, Jin Yi-Zhou, Hang Guan-Rong, Fu Yu-Liang, Hu Zhan. Experimental study of magnetic circuit and antenna position influence on performance of 2 cm electron cyclotron resonance ion thruster. Acta Physica Sinica, 2019, 68(23): 235202. doi: 10.7498/aps.68.20191122
    [11] Long Jian-Fei, Zhang Tian-Ping, Yang Wei, Sun Ming-Ming, Jia Yan-Hui, Liu Ming-Zheng. Thrust density characteristics of ion thruster. Acta Physica Sinica, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [12] Long Jian-Fei, Zhang Tian-Ping, Li Juan, Jia Yan-Hui. Optical transparency radial distribution of ion thruster. Acta Physica Sinica, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [13] Jin Yi-Zhou, Yang Juan, Feng Bing-Bing, Luo Li-Tao, Tang Ming-Jie. Ion extraction experiment for electron cyclotron resonance ion source with different magnetic topology. Acta Physica Sinica, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [14] Chen Mao-Lin, Xia Guang-Qing, Xu Zong-Qi, Mao Gen-Wang. Analysis on the effects of optics thermal deformation on the ion thruster operation. Acta Physica Sinica, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [15] Tang Ming-Jie, Yang Juan, Jin Yi-Zhou, Luo Li-Tao, Feng Bing-Bing. Experimental optimization in ion source configuration of a miniature electron cyclotron resonance ion thruster. Acta Physica Sinica, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [16] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [17] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [18] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅱ)——Numerical simulation and discussion of results. Acta Physica Sinica, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [19] Ye Chao, Du Wei, Ning Zhao-Yuan, Cheng Shan-Hua. Effect of grid and bias on the characteristic of CHF3 electron cyclot ron resonance discharge plasma. Acta Physica Sinica, 2003, 52(7): 1802-1807. doi: 10.7498/aps.52.1802
    [20] Liu Ming-Hai, Hu Xi-Wei, Wu Qin-Chong, Yu Guo-Yang. . Acta Physica Sinica, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
Metrics
  • Abstract views:  2689
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  04 May 2023
  • Accepted Date:  06 June 2023
  • Available Online:  29 June 2023
  • Published Online:  05 September 2023

/

返回文章
返回