Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of real-time monitoring beam output stability of intense pulsed ion beam

Xu Mo-Fei Yu Xiang Zhang Shi-Jian Gennady Efimovich Remnev Le Xiao-Yun

Citation:

A method of real-time monitoring beam output stability of intense pulsed ion beam

Xu Mo-Fei, Yu Xiang, Zhang Shi-Jian, Gennady Efimovich Remnev, Le Xiao-Yun
PDF
HTML
Get Citation
  • Intense pulsed ion beam (IPIB) technology has made remarkable progress in surface modification, mixing, polishing, film deposition, and nano powder synthesis in recent years. However, the surface properties of materials under IPIB irradiation are highly sensitive to beam intensity variations. Deviations from acceptable parameter range can change the surface characteristics and increase prevalence of defects. Consequently, the real-time online monitoring of beam stability during irradiation experiments and promptly identifying of pulses exhibiting significant parameter jitter are of significance in accurately analyzing results and optimizing surface modification. This study presents a fast-response pulse X-ray diagnostic system by employing EJ-200 plastic scintillator, 9266FLB photomultiplier tube, and Tektronic TDS 2024 four-channel oscilloscope. Single particle test demonstrates that the system achieves a time resolution of 6 ns, meeting the requirements for temporal response to detecting pulse X-ray signals with a half-width of ~80 ns. By adjusting the insulation magnetic field strength of the ion diode, the IPIB output level is regulated. The diagnostic system successfully captures X-rays emitted by the external magnetic insulated ion diode operating at different output levels. Simultaneously, the ion beam energy density is measured by using an infrared camera. To mitigate diagnostic errors stemming from target ablation, the maximum energy density is controlled to be below 1.32 J/cm2. Analysis results establish a positive correlation between X-ray intensity and ion beam energy density. This relationship arises from the influence of the insulating magnetic field adjustment on the diode's operating voltage, which subsequently affects the bremsstrahlung radiant intensity and ion beam emission intensity. This correlation offers the potential for the real-time monitoring of IPIB beam output stability by utilizing X-ray signals. To further corroborate the synchronized changes in pulse X-ray intensity and ion beam intensity, Faraday cup is employed as an alternative to infrared imaging method for measuring ion current density. Results demonstrate that the amplitude of the X-ray signal changes synchronously with fluctuations of ion current density. It is worth noting that when the output intensity of ion beam deviates significantly (more than 10% of the preset value), the diagnostic system will respond quickly. These findings validate the efficacy of the proposed non-interceptive diagnostic method of real-time monitoring the intense pulsed ion beam output stability.
      Corresponding author: Le Xiao-Yun, xyle@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075024) and the National Defense Basic Scientific Research Program of China (Grant No. 12700002022119001).
    [1]

    Humphries S 1980 Nucl. Fusion 20 1549Google Scholar

    [2]

    Van Devender J P 1986 Plasma Phys. Control. Fusion 28 841Google Scholar

    [3]

    Long K A, Tahir N A 1982 Phys. Lett. A 91 451Google Scholar

    [4]

    杨海亮, 邱爱慈, 张嘉生, 何小平, 孙剑锋, 彭建昌, 汤俊萍, 任书庆, 欧阳晓平, 张国光, 黄建军, 杨莉, 王海洋, 李洪玉, 李静雅 2004 物理学报 53 406Google Scholar

    Yang H L, Qiu A C, Zhang J S, He X P, Sun J F, Peng J C, Tang J P, Ren S Q, Ouyang X P, Zhang G G, Huang J J, Yang L, Wang H Y, Li H Y, Li J Y 2004 Acta Phys. Sin. 53 406Google Scholar

    [5]

    Mach H, Rogers D W O 1983 IEEE Trans. Nucl. Sci. 30 1514Google Scholar

    [6]

    Baumung K, Bluhm H J, Goel B, Hoppé P, Karow H U, Rusch D, Fortov V E, Kanel G I, Razorenov S V, Utkin A V, Vorobjev O Y 1996 Laser Part. Beams 14 181Google Scholar

    [7]

    Zhong H W, Zhang J, Shen J, Liang G Y, Zhang S J, Huang W Y, Xu M F, Yu X, Yan S, Efimovich Remnev G, Le X Y 2019 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 461 226Google Scholar

    [8]

    Yu X, Zhang S J, Stepanov A V, Shamanin V I, Zhong H W, Liang G Y, Xu M F, Zhang N, Kuang S, Ren J, Shang X, Yan S, Remnev G E, Le X Y 2020 Surf. Coatings Technol. 384 125351Google Scholar

    [9]

    张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, Gennady Efimovich Remnev, 乐小云 2020 物理学报 69 115202Google Scholar

    Zhang S J, Yu X, Zhong H W, Liang G Y, Xu M F, Zhang N, Ren J H, Kuang S C, Yan S, Gennady E R, Le X Y 2020 Acta Phys. Sin. 69 115202Google Scholar

    [10]

    Le X Y, Zhao W J, Yan S, Han B X, Xiang W 2002 Surf. Coatings Technol. 158 159 14

    [11]

    张锋刚, 朱小鹏, 王明阳, 雷明凯 2011 金属学报 47 958

    Zhang F G, Zhu X P, Wang M Y, Lei M K 2011 Acta Metall. Sin. 47 958

    [12]

    Zhang S J, Yu X, Zhang J, Shen J, Zhong H W, Liang G Y, Xu M, Zhang N, Ren J, Kuang S, Shang X, Adegboyega O, Yan S, Remnev G E, Le X Y 2021 Vacuum 187 110154Google Scholar

    [13]

    Zhao W J, Remnev G E, Yan S, Opekounov M S, Le X Y, Matvienko V M, Han B X, Xue J M, Wang Y G 2000 Rev. Sci. Instrum. 71 1045Google Scholar

    [14]

    Yan S, Le X Y, Zhao W J, Shang Y J, Wang Y, Xue J 2007 Surf. Coatings Technol. 201 4817Google Scholar

    [15]

    Xu M F, Yu X, Zhang S J, Yan S, Tarbokov V, Remnev G, Le X Y 2023 Materials (Basel) 16 3028

    [16]

    Yu X, Shen J, Zhong H W, Zhang J, Yan S, Zhang G L, Zhang X, Le X Y 2015 Vacuum 120 116Google Scholar

    [17]

    Hashimoto Y, Yatsuzuka M 2000 Vacuum 59 313Google Scholar

    [18]

    Prasad S V, Renk T J, Kotula P G, DebRoy T 2011 Mater. Lett. 65 4Google Scholar

    [19]

    Suzuki T, Saikusa T, Suematu H, Jiang W, Yatsui K 2003 Surf. Coatings Technol. 169 170 491

    [20]

    Zhu Q, Jiang W, Yatsui K 1999 J. Appl. Phys. 86 5279Google Scholar

    [21]

    Shulov V A, Novikov A S, Paikin A G, Belov A B, Lvov A F, Remnev G E 2007 Surf. Coatings Technol. 201 8654Google Scholar

    [22]

    Zhang J, Zhong H W, Shen J, Yu X, Yan S, Le X Y 2020 Surf. Coatings Technol. 388 125599Google Scholar

    [23]

    Kovivchak V S, Panova T V, Mikhailov K A, Knyazev E V 2013 J. Surf. Investig. 7 531Google Scholar

    [24]

    Zhang Q, Mei X X, Guan T, Zhang X N, Remnev G E, Pavlov S K, Wang Y N 2019 Fusion Eng. Des. 138 16Google Scholar

    [25]

    Mei X X, Zhang X N, Liu X, Wang Y N 2017 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 406 697Google Scholar

    [26]

    Gerdin G, Stygar W, Venneri F 1981 J. Appl. Phys. 52 3269Google Scholar

    [27]

    Christodoulides C E, Freeman J H 1976 Nucl. Instruments Methods 135 13Google Scholar

    [28]

    Davis H A, Bartsch R R, Olson J C, Rej D J, Waganaar W J 1997 J. Appl. Phys. 82 3223Google Scholar

    [29]

    Ryzhkov V A, Stepanov A V, Pyatkov I N, Remnev G E 2021 Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 1013 165671Google Scholar

    [30]

    Ryzhkov V A, Pyatkov I N, Remnev G E 2021 Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 998 165190Google Scholar

    [31]

    Pushkarev A I, Isakova Y I, Yu X, Khailov I P 2013 Rev. Sci. Instrum. 84

    [32]

    Dong Z H, Liu C, Han X G, Lei M K 2007 Surf. Coatings Technol. 201 5054Google Scholar

    [33]

    Masugata K, Chishiro E, Yatsui K 1998 Proceedings of the 12th International Conference on High-Power Particle Beams Haifa, Israel, June 12, 1998 pp222–225

    [34]

    杨海亮, 邱爱慈, 孙剑锋, 何小平, 汤俊萍, 王海洋, 李洪玉, 李静雅, 任书庆, 黄建军, 张嘉生, 彭建昌, 欧阳晓平, 张国光 2004 原子能科学技术 38 204

    Yang H L, Qiu A C, Sun J F, He X P, Tang J P, Wang H Y, Li H Y, Li J Y, Ren S Q, Huang J J, Zhang J S, Peng J C, Ouyang X P, Zhang G G 2004 Atom. Ener. Sci. Tech. 38 204

    [35]

    Yu X, Shen J, Isakova Y I, Zhong H W, Zhang J, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Vacuum 122 12Google Scholar

    [36]

    屈苗, 喻晓, 张洁, 沈杰, 钟昊玟, 张艳燕, 颜莎, 张小富, 张高龙, 乐小云 2015 强激光与粒子束 27 216Google Scholar

    Qu M, Yu X, Zhang J, Shen J, Zhong H W, Zhang Y Y, Yan S, Zhang X F, Zhang G L, Le X Y 2015 High Power Laser and Particle Beams 27 7Google Scholar

    [37]

    刘庆兆 1994 脉冲辐射场诊断技术 (北京: 科学出版社) 第98页

    Liu Q Z 1994 Pulse Radiation Field Diagnosis Technology (Beijing: Science Press) p98

    [38]

    郑志鹏, 祝玉灿, 邵毓莺, 孙汉生 1986 核电子学与探测技术 6 112

    Zheng Z P, Zhu Y C, Shao Y Y, Sun H S 1986 Nucl. Elec. and Det. Tech. 6 112

    [39]

    Xu M F, Kuang S, Yu X, Zhang S J, Yan S, Remnev G E, Le X 2023 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 537 38Google Scholar

    [40]

    陈伯显, 张智 2011 核辐射物理及探测学 (哈尔滨: 哈尔滨工程大学出版社) 第146页

    Chen B X, Zhang Z 2011 Nuclear Radiation Physics and Detection (Harbin: Harbin Engineering University Press) p146

  • 图 1  诊断方法示意图. 1-高压端柱; 2-阳极; 3-阳极托盘; 4-阴极; 5-阴极支撑盘; 6-电子; 7-离子束; 8-绝缘磁场线圈; 9-磁场线圈固定器; 10-有机玻璃观察窗; 11-CaF2窗口; 12-EJ-200塑料闪烁体; 13-9266 FLB光电倍增管

    Figure 1.  Diagnostic method diagram. 1- High voltage input; 2-anode; 3- anode tray; 4-cathode; 5-cathode support plate; 6- electron; 7-ion beam; 8-insulated magnetic field coils; 9- magnetic field coils fixer; 10- organic glass observation window; 11-CaF2 window; 12-EJ-200 plastic scintillator; 13-9266 FLB photomultiplier tube.

    图 2  诊断系统的时间响应测试结果

    Figure 2.  Time response test of the diagnostic system.

    图 3  红外相机在(a) IPIB辐照前、(b) IPIB辐照后从热沉靶背面捕获的红外图像, 以及(c)诊断系统捕获的脉冲X射线信号波形

    Figure 3.  The infrared image captured by the infrared camera from the backside of the heat sink target before (a) IPIB irradiation, (b) after IPIB irradiation, and (c) the pulse X-ray signal waveform captured by the diagnostic system.

    图 4  脉冲X射线信号幅值与IPIB束流能量密度之间的关系

    Figure 4.  Relationship between the amplitude of pulse X-ray signal and the energy density of IPIB.

    图 5  (a)轫致辐射产生示意图; (b)阳极结构实物图

    Figure 5.  (a) Schematic diagram of bremsstrahlung generation; (b) picture of anode structure.

    图 6  实验装置示意图. 1-高压端柱; 2-阳极; 3-阳极托盘; 4-阴极; 5-阴极支撑盘; 6-电子; 7-离子束; 8-绝缘磁场线圈; 9-磁场线圈固定器; 10-有机玻璃观察窗; 11-石墨收集体; 12-EJ-200塑料闪烁体; 13-9266 FLB光电倍增管

    Figure 6.  Schematic diagram of experimental equipment. 1- High voltage input; 2-anode; 3- anode tray; 4-cathode; 5-cathode support plate; 6- electron; 7-ion beam; 8- insulated magnetic field coils; 9- magnetic field coils fixer; 10-organic glass observation window; 11-graphite collector; 12-EJ-200 plastic scintillator; 13-9266 FLB photomultiplier tube.

    图 7  二极管电压、离子电流密度和X射线信号波形图

    Figure 7.  Diode voltage, ion current density, and X-ray signal waveform.

    图 8  X射线信号幅值与离子电流密度的对应关系

    Figure 8.  Correspondence between X-ray signal amplitude and ion current density.

  • [1]

    Humphries S 1980 Nucl. Fusion 20 1549Google Scholar

    [2]

    Van Devender J P 1986 Plasma Phys. Control. Fusion 28 841Google Scholar

    [3]

    Long K A, Tahir N A 1982 Phys. Lett. A 91 451Google Scholar

    [4]

    杨海亮, 邱爱慈, 张嘉生, 何小平, 孙剑锋, 彭建昌, 汤俊萍, 任书庆, 欧阳晓平, 张国光, 黄建军, 杨莉, 王海洋, 李洪玉, 李静雅 2004 物理学报 53 406Google Scholar

    Yang H L, Qiu A C, Zhang J S, He X P, Sun J F, Peng J C, Tang J P, Ren S Q, Ouyang X P, Zhang G G, Huang J J, Yang L, Wang H Y, Li H Y, Li J Y 2004 Acta Phys. Sin. 53 406Google Scholar

    [5]

    Mach H, Rogers D W O 1983 IEEE Trans. Nucl. Sci. 30 1514Google Scholar

    [6]

    Baumung K, Bluhm H J, Goel B, Hoppé P, Karow H U, Rusch D, Fortov V E, Kanel G I, Razorenov S V, Utkin A V, Vorobjev O Y 1996 Laser Part. Beams 14 181Google Scholar

    [7]

    Zhong H W, Zhang J, Shen J, Liang G Y, Zhang S J, Huang W Y, Xu M F, Yu X, Yan S, Efimovich Remnev G, Le X Y 2019 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 461 226Google Scholar

    [8]

    Yu X, Zhang S J, Stepanov A V, Shamanin V I, Zhong H W, Liang G Y, Xu M F, Zhang N, Kuang S, Ren J, Shang X, Yan S, Remnev G E, Le X Y 2020 Surf. Coatings Technol. 384 125351Google Scholar

    [9]

    张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, Gennady Efimovich Remnev, 乐小云 2020 物理学报 69 115202Google Scholar

    Zhang S J, Yu X, Zhong H W, Liang G Y, Xu M F, Zhang N, Ren J H, Kuang S C, Yan S, Gennady E R, Le X Y 2020 Acta Phys. Sin. 69 115202Google Scholar

    [10]

    Le X Y, Zhao W J, Yan S, Han B X, Xiang W 2002 Surf. Coatings Technol. 158 159 14

    [11]

    张锋刚, 朱小鹏, 王明阳, 雷明凯 2011 金属学报 47 958

    Zhang F G, Zhu X P, Wang M Y, Lei M K 2011 Acta Metall. Sin. 47 958

    [12]

    Zhang S J, Yu X, Zhang J, Shen J, Zhong H W, Liang G Y, Xu M, Zhang N, Ren J, Kuang S, Shang X, Adegboyega O, Yan S, Remnev G E, Le X Y 2021 Vacuum 187 110154Google Scholar

    [13]

    Zhao W J, Remnev G E, Yan S, Opekounov M S, Le X Y, Matvienko V M, Han B X, Xue J M, Wang Y G 2000 Rev. Sci. Instrum. 71 1045Google Scholar

    [14]

    Yan S, Le X Y, Zhao W J, Shang Y J, Wang Y, Xue J 2007 Surf. Coatings Technol. 201 4817Google Scholar

    [15]

    Xu M F, Yu X, Zhang S J, Yan S, Tarbokov V, Remnev G, Le X Y 2023 Materials (Basel) 16 3028

    [16]

    Yu X, Shen J, Zhong H W, Zhang J, Yan S, Zhang G L, Zhang X, Le X Y 2015 Vacuum 120 116Google Scholar

    [17]

    Hashimoto Y, Yatsuzuka M 2000 Vacuum 59 313Google Scholar

    [18]

    Prasad S V, Renk T J, Kotula P G, DebRoy T 2011 Mater. Lett. 65 4Google Scholar

    [19]

    Suzuki T, Saikusa T, Suematu H, Jiang W, Yatsui K 2003 Surf. Coatings Technol. 169 170 491

    [20]

    Zhu Q, Jiang W, Yatsui K 1999 J. Appl. Phys. 86 5279Google Scholar

    [21]

    Shulov V A, Novikov A S, Paikin A G, Belov A B, Lvov A F, Remnev G E 2007 Surf. Coatings Technol. 201 8654Google Scholar

    [22]

    Zhang J, Zhong H W, Shen J, Yu X, Yan S, Le X Y 2020 Surf. Coatings Technol. 388 125599Google Scholar

    [23]

    Kovivchak V S, Panova T V, Mikhailov K A, Knyazev E V 2013 J. Surf. Investig. 7 531Google Scholar

    [24]

    Zhang Q, Mei X X, Guan T, Zhang X N, Remnev G E, Pavlov S K, Wang Y N 2019 Fusion Eng. Des. 138 16Google Scholar

    [25]

    Mei X X, Zhang X N, Liu X, Wang Y N 2017 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 406 697Google Scholar

    [26]

    Gerdin G, Stygar W, Venneri F 1981 J. Appl. Phys. 52 3269Google Scholar

    [27]

    Christodoulides C E, Freeman J H 1976 Nucl. Instruments Methods 135 13Google Scholar

    [28]

    Davis H A, Bartsch R R, Olson J C, Rej D J, Waganaar W J 1997 J. Appl. Phys. 82 3223Google Scholar

    [29]

    Ryzhkov V A, Stepanov A V, Pyatkov I N, Remnev G E 2021 Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 1013 165671Google Scholar

    [30]

    Ryzhkov V A, Pyatkov I N, Remnev G E 2021 Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 998 165190Google Scholar

    [31]

    Pushkarev A I, Isakova Y I, Yu X, Khailov I P 2013 Rev. Sci. Instrum. 84

    [32]

    Dong Z H, Liu C, Han X G, Lei M K 2007 Surf. Coatings Technol. 201 5054Google Scholar

    [33]

    Masugata K, Chishiro E, Yatsui K 1998 Proceedings of the 12th International Conference on High-Power Particle Beams Haifa, Israel, June 12, 1998 pp222–225

    [34]

    杨海亮, 邱爱慈, 孙剑锋, 何小平, 汤俊萍, 王海洋, 李洪玉, 李静雅, 任书庆, 黄建军, 张嘉生, 彭建昌, 欧阳晓平, 张国光 2004 原子能科学技术 38 204

    Yang H L, Qiu A C, Sun J F, He X P, Tang J P, Wang H Y, Li H Y, Li J Y, Ren S Q, Huang J J, Zhang J S, Peng J C, Ouyang X P, Zhang G G 2004 Atom. Ener. Sci. Tech. 38 204

    [35]

    Yu X, Shen J, Isakova Y I, Zhong H W, Zhang J, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Vacuum 122 12Google Scholar

    [36]

    屈苗, 喻晓, 张洁, 沈杰, 钟昊玟, 张艳燕, 颜莎, 张小富, 张高龙, 乐小云 2015 强激光与粒子束 27 216Google Scholar

    Qu M, Yu X, Zhang J, Shen J, Zhong H W, Zhang Y Y, Yan S, Zhang X F, Zhang G L, Le X Y 2015 High Power Laser and Particle Beams 27 7Google Scholar

    [37]

    刘庆兆 1994 脉冲辐射场诊断技术 (北京: 科学出版社) 第98页

    Liu Q Z 1994 Pulse Radiation Field Diagnosis Technology (Beijing: Science Press) p98

    [38]

    郑志鹏, 祝玉灿, 邵毓莺, 孙汉生 1986 核电子学与探测技术 6 112

    Zheng Z P, Zhu Y C, Shao Y Y, Sun H S 1986 Nucl. Elec. and Det. Tech. 6 112

    [39]

    Xu M F, Kuang S, Yu X, Zhang S J, Yan S, Remnev G E, Le X 2023 Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 537 38Google Scholar

    [40]

    陈伯显, 张智 2011 核辐射物理及探测学 (哈尔滨: 哈尔滨工程大学出版社) 第146页

    Chen B X, Zhang Z 2011 Nuclear Radiation Physics and Detection (Harbin: Harbin Engineering University Press) p146

  • [1] Zhang Shi-Jian, Yu Xiao, Zhong Hao-Wen, Liang Guo-Ying, Xu Mo-Fei, Zhang Nan, Ren Jian-Hui, Kuang Shi-Cheng, Yan Sha, Gennady Efimovich Remnev, Le Xiao-Yun. Influence of ablation on energy deposition in polymer material under irradiation of intense pulsed ion beam. Acta Physica Sinica, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [2] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Zhao Yong-Tao, Ren Jie-Ru, Wang Xing, Lei Yu, Sun Yuan-Bo, Cheng Rei, Xu Ge, Zeng Li-Xia. K-shell X-ray emission from high energy pulsed C6+ ion beam impacting on Ni target. Acta Physica Sinica, 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [3] Zhang Jie, Zhong Hao-Wen, Shen Jie, Liang Guo-Ying, Cui Xiao-Jun, Zhang Xiao-Fu, Zhang Gao-Long, Yan Sha, Yu Xiao, Le Xiao-Yun. Characteristics of metal ablation product by intense pulsed ion beam irradiation. Acta Physica Sinica, 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [4] Yu Xiao, Shen Jie, Zhong Hao-Wen, Qu Miao, Zhang Jie, Zhang Gao-Long, Zhang Xiao-Fu, Yan Sha, Le Xiao-Yun. Distribution and evolution of thermal field induced by intense pulsed ion beam on thin metal target. Acta Physica Sinica, 2015, 64(17): 175204. doi: 10.7498/aps.64.175204
    [5] Zhao Hong-Fei, Du Lei, He Liang, Bao Jun-Lin. Base resistance in Si unijunction transistor irradiated by 60Co γ-radiation. Acta Physica Sinica, 2011, 60(2): 028501. doi: 10.7498/aps.60.028501
    [6] Zou Hui, Jing Hong-Yang, Wamg Zhi-Ping, Guan Qing-Feng. The vacancy defect clusters in polycrystalline pure nickle induced by high-current pulsed electron beam. Acta Physica Sinica, 2010, 59(9): 6384-6389. doi: 10.7498/aps.59.6384
    [7] Guan Qing-Feng, Cheng Du-Qing, Qiu Dong-Hua, Zhu Jian, Wang Xue-Tao, Cheng Xiu-Wei. The vacancy defect clusters in polycrystalline pure aluminum induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(7): 4846-4852. doi: 10.7498/aps.58.4846
    [8] Cheng Du-Qing, Guan Qing-Feng, Zhu Jian, Qiu Dong-Hua, Cheng Xiu-Wei, Wang Xue-Tao. Mechanism of surface nanocrystallization in pure nickel induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [9] Gong Ye, Zhang Jian-Hong, Wang Xiao-Dong, Wu Di, Liu Jin-Yuan, Liu Yue, Wang Xiao-Gang, Ma Teng-Cai. Numerical simulation on the energy deposition of double-layer target irradiated by intense pulsed ion beam. Acta Physica Sinica, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [10] Liu Lin, Ye Yu-Tang, Wu Yun-Feng, Fang Liang, Lu Jia-Jia. Infrared characteristics of acidic droplet in different movement states on the surface of GaAs. Acta Physica Sinica, 2007, 56(6): 3172-3177. doi: 10.7498/aps.56.3172
    [11] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Numerical research on intense pulsed ion beam ablation plasma expansion into ambient gases. Acta Physica Sinica, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [12] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Two-dimension numerical research on the ablation of target irradiated by intense pulsed ion beam. Acta Physica Sinica, 2006, 55(1): 398-402. doi: 10.7498/aps.55.398
    [13] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Numerical study of dynamic effects and evaporation of target material under irradiation of intense pulsed ion beam. Acta Physica Sinica, 2006, 55(7): 3501-3505. doi: 10.7498/aps.55.3501
    [14] Mu Zong-Xin, Li Guo-Qing, Qin Fu-Wen, Huang Kai-Yu, Che De-Liang. The model of the magnetic mirror effect in the unbalanced magnetron sputtering ion beams. Acta Physica Sinica, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [15] Xie Xu-Dong, Wang Qing-Yue, Chai Lu. Calibration of interferometric autocorrelation trace for femtosecond pulse in frequency domain and the real-time chirp diagnostic for Ti:sapphire oscillator. Acta Physica Sinica, 2005, 54(8): 3657-3660. doi: 10.7498/aps.54.3657
    [16] Guan Qing-Feng, An Chun-Xiang, Qin Ying, Zou Jian-Xin, Hao Sheng-Zhi, Zhang Qing-Yu, Dong Chuang, Zou Guang-Tian. Microstructure induced by stress generated by high-current pulsed electron beam. Acta Physica Sinica, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [17] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang. Study on irradiation threshold of a target irradiated by an intense pulsed ion b eam. Acta Physica Sinica, 2005, 54(4): 1636-1640. doi: 10.7498/aps.54.1636
    [18] Mei Xian-Xiu, Xu Jun, Ma Teng-Cai. . Acta Physica Sinica, 2002, 51(8): 1875-1880. doi: 10.7498/aps.51.1875
    [19] TIAN REN-HE, ZHANG HUI-XING. BEAM TEMPERATURE AND ENERGY BROADENING OF A HIGH-CURRENT HEAVY-ION BEAM IN AN AXIALLY SYMMETRIC ELECTRIC-FIELD. Acta Physica Sinica, 1992, 41(3): 408-412. doi: 10.7498/aps.41.408
    [20] JIANG XING-LIU, CHEN KE-FAN, PIAO YU-BO. A NEW TYPE OF PULSED ELECTRON AND ION SOURCE WITH A DURATION OF NANOSECONDS. Acta Physica Sinica, 1983, 32(10): 1344-1348. doi: 10.7498/aps.32.1344
Metrics
  • Abstract views:  3212
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  25 May 2023
  • Accepted Date:  04 June 2023
  • Available Online:  26 June 2023
  • Published Online:  05 September 2023

/

返回文章
返回