Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electron extraction mechanism of magnet array microwave discharge neutralizer

Fu Yu-Liang Zhang Si-Yuan Sun An-Bang Ma Zu-Fu Wang Ya-Nan

Citation:

Electron extraction mechanism of magnet array microwave discharge neutralizer

Fu Yu-Liang, Zhang Si-Yuan, Sun An-Bang, Ma Zu-Fu, Wang Ya-Nan
cstr: 32037.14.aps.73.20240273
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Microwave discharge neutralizer is an important part of microwave discharge ion thruster system, which plays a vital role in maintaining potential balance between spacecraft and neutralizing ion beam. Its electron extraction property directly affects the operation condition of ion thruster system. In order to break through the power limit of miniature microwave discharge ion thruster, a magnet array microwave discharge ion thruster system is designed and tested. In the experiment on finalizing magnetic field structure of magnet array microwave discharge neutralizer, an interesting phenomenon is found that the I-V curves of electron current, after rotating the magnetic array orientation, are very different. Defining forward direction of magnet array can normally extract electrons, then backward direction of magnet array can hardly extract electrons. Because the diameter of discharge chamber is only 10 mm, it is too small to perform Langmuir probe diagnosis. And thus, an integrative particle-in-cell method is used to simulate the neutralizer operation processes of two different magnetic field structures, and for the sake of accuracy, real vacuum permittivity is used. The simulation results show good consistence with experimental phenomenon. In the initial discharge process, it is found that the magnetic field gradient leads to different plasma distributions; in electron extraction process, it is found that the potential distribution near the orifice determines the electron extraction property of the neutralizer. Through comparing the plasma parameter distributions under different magnetic field structures and operating voltages, an assumption that the ion is an important factor in electron extraction process is proposed. Then, a simulation that ions disappear artificially outside the orifice is conducted, and the simulation results show that electrons cannot be effectively extracted without ions near the orifice. According to the simulation and experiment results, two necessary conditions are summarized for electron extraction of the neutralizer. The first condition is magnetic field structure: the magnetic field gradient should point towards the orifice to guide plasma migration towards the orifice, the second one is potential distribution: there should be enough ions to lift the potential near the orifice for reducing or breaking the potential well. These two conditions can help understand the electron extraction mechanism of microwave discharge neutralizer and provide theoretical reference for optimizing the performance of neutralizer in future.
      Corresponding author: Sun An-Bang, anbang.sun@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52307183).
    [1]

    Nono A, Morishita T, Hosoda S, Tsukizaki R, Nishiyama K 2023 Acta Astronaut. 212 130Google Scholar

    [2]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 2208095

    Yang J, Mou H, Geng H, Wu X M 2023 J. Propuls. Tech. 44 2208095

    [3]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propuls. Power. 34 960Google Scholar

    [4]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Tech. 12 1884

    [5]

    Tsukizaki R, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 J. Propuls. Power. 30 91

    [6]

    Barquero S, Tabata K, Tsukizaki R, Merino M, Navarro-Cavallé J, Nishiyama K 2023 Acta Astronaut. 211 750Google Scholar

    [7]

    Sekine H, Minematsu R, Ataka Y, Ominetti P, Koizumi H, Komurasaki K 2022 J. Appl. Phys. 131 093302Google Scholar

    [8]

    Motoki T, Takasaki D, Koizumi H, Ataka Y, Komurasaki K, Takao Y 2022 Acta Astronaut. 196 231Google Scholar

    [9]

    Sato Y, Koizumi H, Nakano M, Takao Y 2020 Phys. Plasmas. 27 063505Google Scholar

    [10]

    Tsuru T, Kondo S, Yamamoto N, Nakashima H 2009 Trans. JSASS Aerospace Tech. 7 163

    [11]

    Yamamoto N, Maeda Y, Nakashima H, Watanabe H, Funaki I 2016 Trans. JSASS Aerospace Tech. 59 100

    [12]

    Foster J E, Patterson M J 2005 J. Propuls. Power. 21 862Google Scholar

    [13]

    夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮 2022 物理学报 71 045201Google Scholar

    Xia X, Yang J, Geng H, Wu X M, Fu Y L, Mou H, Tan R W 2022 Acta Phys. Sin. 71 045201Google Scholar

    [14]

    Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 Trans. JSASS Aerospace Tech. 49 87

    [15]

    Kubota K, Watanabe H, Yamamoto N, Nakashima H, Miyasaka T, Funaki I 2014 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, OH, July 28–30, 2014 pp1–12

    [16]

    孟海波, 杨涓, 黄文斌, 夏旭, 付瑜亮, 胡展 2019 宇航学报 40 1478Google Scholar

    Meng H B, Yang J, Huang W B, Xia X, Fu Y L, Hu Z 2019 J. Astronaut. 40 1478Google Scholar

    [17]

    Hiramoto K, Nakagawa Y, Koizumi H, Takao Y 2017 Phys. Plasmas 24 064504Google Scholar

    [18]

    Sato Y, Koizumi H, Nakano M, Takao Y 2019 J. Appl. Phys. 126 243302Google Scholar

    [19]

    Fu Y L, Yang J, Geng H, Wu X M, Hu Z, Xia X 2021 Vacuum 184 109932Google Scholar

    [20]

    付瑜亮 2022 博士学位论文(西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [21]

    付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠 2024 物理学报 73 095203Google Scholar

    Fu Y L, Zhang S Y, Yang J Y, Sun A B, Wang Y N 2024 Acta Phys. Sin. 73 095203Google Scholar

    [22]

    Fu Y L, Yang J, Mou H, Tan R W, Xia X, Gao Z Y 2022 Comput. Phys. Commun. 278 8395

  • 图 1  磁阵列微波放电中和器结构简图

    Figure 1.  Structure diagram of magnet array microwave discharge neutralizer.

    图 2  磁阵列微波放电中和器的磁场结构

    Figure 2.  Magnetic field of magnet array microwave discharge neutralizer.

    图 3  磁阵列微波放电中和器伏安特性曲线

    Figure 3.  I-V curves of magnet array microwave discharge neutralizer.

    图 4  计算域和边界条件

    Figure 4.  Calculation region and boundary condition setting.

    图 5  初始放电仿真结果 (a)磁场结构A的电子密度分布; (b)磁场结构A的离子密度分布; (c)磁场结构B的电子密度分布; (d)磁场结构B的离子密度分布

    Figure 5.  Initial discharge simulation results: (a) Electron density distribution of magnetic field structure A; (b) the ion density distribution of magnetic field structure A; (c) the electron density distribution of magnetic field structure B; (d) the ion density distribution of magnetic field structure B.

    图 6  电子引出仿真结果 (a)磁场结构A, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (b)磁场结构A, $ {\varphi }_{{\mathrm{a}}} $=80 V; (c)磁场结构B, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (d)磁场结构B, $ {\varphi }_{{\mathrm{a}}} $ = 80 V

    Figure 6.  Simulation results of electron beam in extraction stage: (a) Magnetic field structure A, $ {\varphi }_{{\mathrm{a}}} $=40 V; (b) Magnetic field structure A, $ {\varphi }_{{\mathrm{a}}} $ = 80 V; (c) Magnetic field structure B, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (d) Magnetic field structure B, $ {\varphi }_{{\mathrm{a}}} $ = 80 V.

    图 7  电子引出阶段电势变化 (a)磁场结构A, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (b)磁场结构A, $ {\varphi }_{{\mathrm{a}}} $=80 V; (c)磁场结构B, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (d)磁场结构B, $ {\varphi }_{{\mathrm{a}}} $ = 80 V

    Figure 7.  Potential distribution in extraction stage: (a) Magnetic field structure A, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (b) magnetic field structure A, $ {\varphi }_{{\mathrm{a}}} $ = 80 V; (c) magnetic field structure B, $ {\varphi }_{{\mathrm{a}}} $ = 40 V; (d) magnetic field structure B, $ {\varphi }_{{\mathrm{a}}} $=80 V.

    图 8  假设引出孔外无离子的仿真结果 (a)电子分布; (b)电势分布

    Figure 8.  Electron beam (a) and potential distribution (b) assuming no ion outside orifice.

    表 1  参数设置

    Table 1.  Simulation parameter setting.

    参数 设定值
    微波频率/GHz 4.2
    微波功率/W 1
    氙气流量/sccm 0.3
    初始等离子体密度/m–3 1 × 1016
    初始宏粒子数量 10000
    时间步长/s 1 × 10–11
    DownLoad: CSV
  • [1]

    Nono A, Morishita T, Hosoda S, Tsukizaki R, Nishiyama K 2023 Acta Astronaut. 212 130Google Scholar

    [2]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 2208095

    Yang J, Mou H, Geng H, Wu X M 2023 J. Propuls. Tech. 44 2208095

    [3]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propuls. Power. 34 960Google Scholar

    [4]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Tech. 12 1884

    [5]

    Tsukizaki R, Ise T, Koizumi H, Togo H, Nishiyama K, Kuninaka H 2014 J. Propuls. Power. 30 91

    [6]

    Barquero S, Tabata K, Tsukizaki R, Merino M, Navarro-Cavallé J, Nishiyama K 2023 Acta Astronaut. 211 750Google Scholar

    [7]

    Sekine H, Minematsu R, Ataka Y, Ominetti P, Koizumi H, Komurasaki K 2022 J. Appl. Phys. 131 093302Google Scholar

    [8]

    Motoki T, Takasaki D, Koizumi H, Ataka Y, Komurasaki K, Takao Y 2022 Acta Astronaut. 196 231Google Scholar

    [9]

    Sato Y, Koizumi H, Nakano M, Takao Y 2020 Phys. Plasmas. 27 063505Google Scholar

    [10]

    Tsuru T, Kondo S, Yamamoto N, Nakashima H 2009 Trans. JSASS Aerospace Tech. 7 163

    [11]

    Yamamoto N, Maeda Y, Nakashima H, Watanabe H, Funaki I 2016 Trans. JSASS Aerospace Tech. 59 100

    [12]

    Foster J E, Patterson M J 2005 J. Propuls. Power. 21 862Google Scholar

    [13]

    夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮 2022 物理学报 71 045201Google Scholar

    Xia X, Yang J, Geng H, Wu X M, Fu Y L, Mou H, Tan R W 2022 Acta Phys. Sin. 71 045201Google Scholar

    [14]

    Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 Trans. JSASS Aerospace Tech. 49 87

    [15]

    Kubota K, Watanabe H, Yamamoto N, Nakashima H, Miyasaka T, Funaki I 2014 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, OH, July 28–30, 2014 pp1–12

    [16]

    孟海波, 杨涓, 黄文斌, 夏旭, 付瑜亮, 胡展 2019 宇航学报 40 1478Google Scholar

    Meng H B, Yang J, Huang W B, Xia X, Fu Y L, Hu Z 2019 J. Astronaut. 40 1478Google Scholar

    [17]

    Hiramoto K, Nakagawa Y, Koizumi H, Takao Y 2017 Phys. Plasmas 24 064504Google Scholar

    [18]

    Sato Y, Koizumi H, Nakano M, Takao Y 2019 J. Appl. Phys. 126 243302Google Scholar

    [19]

    Fu Y L, Yang J, Geng H, Wu X M, Hu Z, Xia X 2021 Vacuum 184 109932Google Scholar

    [20]

    付瑜亮 2022 博士学位论文(西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University

    [21]

    付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠 2024 物理学报 73 095203Google Scholar

    Fu Y L, Zhang S Y, Yang J Y, Sun A B, Wang Y N 2024 Acta Phys. Sin. 73 095203Google Scholar

    [22]

    Fu Y L, Yang J, Mou H, Tan R W, Xia X, Gao Z Y 2022 Comput. Phys. Commun. 278 8395

  • [1] Fu Yu-Liang, Zhang Si-Yuan, Yang Jin-Yuan, Sun An-Bang, Wang Ya-Nan. Electron heating mode in magnetic field diffusion region of microwave discharge ion thruster. Acta Physica Sinica, 2024, 73(9): 095203. doi: 10.7498/aps.73.20240017
    [2] Luo Ling-Feng, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao. Numerical simulation of magnetic field influence on plasma and electron extraction of electron cyclotron resonance neutralizer. Acta Physica Sinica, 2024, 73(16): 165203. doi: 10.7498/aps.73.20240612
    [3] Li Xin, Zeng Ming, Liu Hui, Ning Zhong-Xi, Yu Da-Ren. Iodine electron cyclotron resonance plasma source for electric propulsion. Acta Physica Sinica, 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [4] Fu Yu-Liang, Yang Juan, Xia Xu, Sun An-Bang. Study on the effect of discharge chamber length on the performance of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [5] Tan Ren-Wei, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao. Experimental study on 10-cm ECRIT neutralizer with nitrogen gas. Acta Physica Sinica, 2023, 72(4): 045202. doi: 10.7498/aps.72.20221951
    [6] Fu Yu-Liang, Yang Juan, Wang Bin, Hu Zhan, Xia Xu, Mu Hao. Numerical study on abnormal flameout of 2-cm electron cyclotron resonance ion source. Acta Physica Sinica, 2022, 71(8): 085203. doi: 10.7498/aps.71.20212151
    [7] Zhang Gang, Yang Guo-Jun, He Xiao-Zhong, Du Yang, Shi Jin-Shui, Li Xiao-An. Key technologies of 18 MeV self-extraction cyclotron. Acta Physica Sinica, 2022, 71(21): 212901. doi: 10.7498/aps.71.20220934
    [8] Wu Wen-Bin, Peng Shi-Xiang, Zhang Ai-Lin, Zhou Hai-Jing, Ma Teng-Hao, Jiang Yao-Xiang, Li Kai, Cui Bu-Jian, Guo Zhi-Yu, Chen Jia-Er. Global model of miniature electron cyclotron resonance ion source. Acta Physica Sinica, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [9] Xia Xu, Yang Juan, Geng Hai, Wu Xian-Ming, Fu Yu-Liang, Mou Hao, Tan Ren-Wei. Numerical simulation of electron extraction from micro electron cyclotron resonance neutralizer under different magnetic circuits. Acta Physica Sinica, 2022, 71(4): 045201. doi: 10.7498/aps.71.20211519
    [10] Xia Xu, Yang Juan, Fu Yu-Liang, Wu Xian-Ming, Geng Hai, Hu Zhan. Numerical simulation of influence of magnetic field on plasma characteristics and surface current of ion source of 2-cm electron cyclotron resonance ion thruster. Acta Physica Sinica, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [11] Xia Xu, Yang Juan, Jin Yi-Zhou, Hang Guan-Rong, Fu Yu-Liang, Hu Zhan. Experimental study of magnetic circuit and antenna position influence on performance of 2 cm electron cyclotron resonance ion thruster. Acta Physica Sinica, 2019, 68(23): 235202. doi: 10.7498/aps.68.20191122
    [12] Jin Yi-Zhou, Yang Juan, Feng Bing-Bing, Luo Li-Tao, Tang Ming-Jie. Ion extraction experiment for electron cyclotron resonance ion source with different magnetic topology. Acta Physica Sinica, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [13] Tang Ming-Jie, Yang Juan, Jin Yi-Zhou, Luo Li-Tao, Feng Bing-Bing. Experimental optimization in ion source configuration of a miniature electron cyclotron resonance ion thruster. Acta Physica Sinica, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [14] Gao Bi-Rong, Liu Yue. Numerical study on uniformity of electron cyclotron resonance plasma density. Acta Physica Sinica, 2011, 60(4): 045201. doi: 10.7498/aps.60.045201
    [15] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [16] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅰ)——Physical model and theoretical methods. Acta Physica Sinica, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [17] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅱ)——Numerical simulation and discussion of results. Acta Physica Sinica, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [18] Liu Ming-Hai, Hu Xi-Wei, Wu Qin-Chong, Yu Guo-Yang. . Acta Physica Sinica, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [19] GONG YE, WEN XIAO-JUN, ZHANG PENG-YUN, DENG XIN-LU. NUMERICAL STUDY OF ION TRANSPORT IN ECR MICROWAVE PLASMA WITH A CYLINDER MODEL. Acta Physica Sinica, 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
    [20] LI ZHUANG, XU CHENG-HE. THEORETICAL ANALYSIS OF ELECTRON CYCLOTRON RESONANCE AMPLIFIER. Acta Physica Sinica, 1983, 32(10): 1237-1246. doi: 10.7498/aps.32.1237
Metrics
  • Abstract views:  2233
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  19 February 2024
  • Accepted Date:  23 March 2024
  • Available Online:  09 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回