Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of surface ablation on plasma and its interaction with electromagnetic field

Ding Ming-Song Liu Qing-Zong Jiang Tao Fu Yang-Ao-Xiao Li Peng Mei Jie

Citation:

Influence of surface ablation on plasma and its interaction with electromagnetic field

Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie
PDF
HTML
Get Citation
  • Surface ablation significantly affects the distribution of plasma in high-speed flow and the characteristics of its interaction with electromagnetic fields. Considering the mechanism of ablation and ejection on the surface of hypersonic vehicle, the participation of ablation products in the plasma generating process in the flow field, the conduction mechanism of mixed ionized gas containing alkali metal and the electromagnetic dynamics mechanism, the coupled calculation method of high-speed flow/plasma/electromagnetic field with alkali metal ablation is established by solving the three-dimensional thermochemical non-equilibrium flow governing equation with electromagnetic source term, the electric field Poisson equation and the magnetic vector Poisson equation. Combined with the common ablation and pyrolysis process of carbon-carbon materials and silicon-based phenolic resin materials, the mechanism and law of the interaction between surface ablation and electromagnetic field on the hypersonic plasma sheath under various conditions are systematically studied. The results show that the ablation effect affects the plasma distribution in the flow field, which is affected by the ablation mass ejection rate and the mass proportion of alkali metal. When the alkali metal content is high, the alkali metal ionization reaction is dominant, and the electron number density can increase by 1–2 orders of magnitude. The influences of different materials on plasma are different. The mass ejector ratio of silicon-based phenolic resin is larger, and the molar concentration of CO+ and C+ produced by ionization is close to that of NO+ and ${\mathrm{O}}_2^+ $, which cannot be ignored. Alkali metal in ablative material can significantly improve the control effect of magnetohydrodynamics. With the increase of the proportion of alkali metal, the coupling effect of electromagnetic field increases, and the relationship between them is nonlinear. When the speed is low, the ionization degree of air itself is low and the coupling effect of electromagnetic field is weak. But the efficiency of “improving the electromagnetic effect by ablation of alkali metal” is higher.
      Corresponding author: Liu Qing-Zong, 546680018@qq.com
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2019YFA0405203) and the National Numerical Wind Tunnel Project of China.
    [1]

    田正雨 2008 博士学位论文(长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [2]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009Google Scholar

    [3]

    党文伟, 李晓升 2020 涂层与防护 41 33

    Dang W W, Li X S 2020 Coat. Prot. 41 33

    [4]

    柴栋, 方洋旺, 童中翔, 高翔 2013 航空动力学报 28 1962

    Chai D, Fang Y W, Tong Z X, Gao X 2013 J. Aerosp. Power 28 1962

    [5]

    Otsu H, Matsuda A, Abe T, Konigorski D 2006 37th AIAA Plasmadynamics and Lasers Conference California, USA, June 5–8, 2006 AIAA 2006–3236

    [6]

    Boettcher C 2009 40th AIAA Plasmadynamics and Lasers Conference San Antonio, Texas, USA, June 22–25, 2009 AIAA 2009–7254

    [7]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference California, USA, June 24–27, 2013 AIAA 2013–3000

    [8]

    Fujino T, Takahashi T 2016 47th AIAA Plasmadynamics and Lasers Conference Washington DC, USA, 13–17 June, 2016 AIAA 2016–3227

    [9]

    Masuda K, Shimosawa Y, Fujino T 2015 46th AIAA Plasmadynamics and Lasers Conference Dallas, USA, June 22–26, 2015 AIAA 2015–3366

    [10]

    Robin A M, Adam S P, Partho P 2019 J. Thermophysics Heat TR 33 1018Google Scholar

    [11]

    Daniel R S, David E G, Peter A J, Cullen T G, James C M 2020 AIAA J. 58 4495Google Scholar

    [12]

    Bisek N J, Poggie J 2011 42th AIAA Plasmadynamics and Lasers Conference Hawii, USA, June 27–30, 2011, AIAA 2011–897

    [13]

    曾学军, 李海燕 2017 宇航学报 38 109

    Zeng X J, Li H Y 2017 J. Astronaut. 38 109

    [14]

    李开 2017 博士学位论文(长沙: 国防科学技术大学)

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [15]

    Park C, Howe J T, Jaffe R L 1994 J. Thermophysics Heat TR 8 9Google Scholar

    [16]

    Beijing: National Defence Industry Press) [乐嘉陵 2005 再入物理(北京: 国防工业出版社]

    Le J L 2005 Reentry Physics

    [17]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030Google Scholar

    [18]

    Macheret S O, Shneider M N 2004 35th AIAA Plasmadynamics and Lasers Conference Oregon, USA, June 28–July 1, 2004 AIAA 2004–1024

    [19]

    李开, 柳军, 刘伟强 2017 物理学报 66 054701Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 054701Google Scholar

    [20]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2019 物理学报 68 174702Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2019 Acta Phys. Sin. 68 174702Google Scholar

    [21]

    丁明松, 刘庆宗, 江涛, 董维中, 高铁锁 2020 航空学报 41 123278

    Ding M S, Liu Q Z, Jiang T, Dong W Z, Gao T S 2020 Acta Aeronaut. Astronaut. Sin. 41 123278

    [22]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁 2020 物理学报 69 134702Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S, Fu Y A X 2020 Acta Phys. Sin. 69 134702Google Scholar

    [23]

    丁明松, 刘庆宗, 江涛, 董维中, 高铁锁, 傅杨奥骁 2020 航空学报 42 124501Google Scholar

    Ding M S, Liu Q Z, Jiang T, Dong W Z, Gao T S, Fu Y A X 2020 Acta Aeronaut. Astronaut. Sin. 42 124501Google Scholar

    [24]

    Keenan J A, Candler G V 1993 24th AIAA Plasmadynamics and Lasers Conference Orlando, USA, June 6–9, 1993 AIAA 93–2789

    [25]

    董维中, 高铁锁2010 空气动力学学报 28 708

    Dong W Z, Gao T S 2010 Acta Aerodyn. Sin. 28 708

    [26]

    Fujino T, Ishikawa M 2006 IEEE T. Plasma Sci. 34 409Google Scholar

    [27]

    Dunn M G, Kang S W 1973 NASA CR-2232

    [28]

    Candler G V, Maccormack R W 1988 19th AIAA Plasmadynamics and Lasers Conference, USA, June, 1988 AIAA 1988–511

    [29]

    李开, 刘伟强 2016 物理学报 65 064701Google Scholar

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar

    [30]

    姚霄, 刘伟强, 谭建国 2018 物理学报 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

  • 图 1  非平衡流动和烧蚀耦合 (a)驻点线组分(文献[24]); (b)驻点线组分(本文); (c)表面热流

    Figure 1.  Non-equilibrium flow coupling with ablation: (a) Stationary line components (Ref. [24]); (b) stationary line components (this study); (c) surface heat flux.

    图 2  非平衡流场磁流体力学控制 (a)流场压力分布; (b)驻点线温度分布

    Figure 2.  MHD control of non-equilibrium flow: (a) Flow field pressure distribution; (b) temperature distribution of stagnation line.

    图 3  RAM-C电子数密度分布(无烧蚀、无磁场)

    Figure 3.  Electronic number density of RAM-C (No Abl., No Mag.).

    图 4  不同表面材料流场电子数密度分布比较(无碱金属杂质D = 0) (a) C-C和无烧蚀; (b) Si-PR和无烧蚀

    Figure 4.  Electronic number density of different surface materials (D = 0): (a) C-C and no ablation; (b) Si-PR and no ablation.

    图 5  驻点线电子数密度和电导率分布(无碱金属) (a)电子数密度; (b)电导率

    Figure 5.  Electronic number density and conductivity along stagnation line (D = 0): (a) Electronic number density; (b) conductivity.

    图 6  表面烧蚀的质量引射率和流场中烧蚀产物分布 (a)表面烧蚀的质量引射率; (b)烧蚀产物质量分数

    Figure 6.  Ablative mass generation rate and its products: (a) The mass ejection rate of surface ablation; (b) mass fraction of ablation products.

    图 7  驻点线主要电离组分分布(无碱金属) (a) C-C材料烧蚀电离组分摩尔分数; (b)硅基酚醛树脂烧蚀电离组分摩尔分数; (c) C和CO+质量分数

    Figure 7.  Main ionizing components along stagnation line(D = 0): (a) Molar fraction of ablative ionization components in C-C materials; (b) molar fraction of ablative ionization components in silicon-based phenolic resin; (c) quality scores of C and CO+.

    图 8  驻点线电子数密度和电导率分布(不同碱金属含量) (a) C-C材料烧蚀流场电导率; (b) C-C材料烧蚀流场电子数密度; (c) Si-PR材料烧蚀流场电导率; (d) Si-PR材料烧蚀流场电子数密度; (e) Si-PR材料烧蚀流场NO+和Na+

    Figure 8.  Electronic number density and conductivity along stagnation line (different alkali metal content ratios): (a) Electrical conductivity of C-C material ablation flow field; (b) electron number density in the ablation flow field of C-C materials; (c) Si-PR material ablation flow field conductivity; (d) electron number density in the ablation flow field of Si PR material; (e) Si-PR material ablation flow field NO+ and Na+.

    图 9  磁场对驻点线温度分布的影响 (a) C-C材料; (b) Si-PR材料

    Figure 9.  Effect of magnetic field on temperature along stagnation line: (a) C-C materials; (b) Si-PR material.

    图 10  磁场对表面热流的影响(不同材料和碱金属含量) (a) C-C烧蚀表面热流; (b) Si-PR烧蚀表面热流; (c)驻点热流磁控下降幅度

    Figure 10.  Effect of magnetic field on heat flux (different materials and alkali metal content ratios): (a) C-C ablation surface heat flux; (b) Si-PR ablation surface heat flux; (c) decline amplitude of stationary heat flux magnetic control.

    图 11  流场环形感应电流和洛伦兹力矢量分布(碱金属D = 0.01)

    Figure 11.  Annular electric current and Lorentz force vector (alkali metal D = 0.01).

    图 12  不同高度条件下磁场使驻点热流下降的幅度

    Figure 12.  Reduction of stagnation heat flux caused by magnetic field under different conditions.

    图 13  不同高度条件的烧蚀质量引射率、电导率及磁相互作用数 (a) 壁面烧蚀质量引射率; (b)电导率峰值; (c)磁相互作用数

    Figure 13.  Ablative mass generation rate, conductivity and magnetic interaction number under different conditions: (a) Wall erosion mass injection rate; (b) peak conductivity; (c) number of magnetic interactions.

    图 14  不同速度条件下磁场使驻点热流下降的幅度

    Figure 14.  Reduction of stagnation heat flux caused by magnetic field under different velocity conditions.

    图 15  不同速度条件的流场电子数密度峰值和驻点热流 (a)电子数密度峰值; (b)驻点热流

    Figure 15.  Electronic number density and stagnation heat flux under different velocity conditions: (a) Peak electron number density; (b) stagnation heat flux.

    表 1  干燥空气主要电离机制

    Table 1.  Chemical ionization model of air.

    序号 反应 反应类型
    1 O + N + 2.76 eV ⇔ NO+ + e 缔合电离
    2 N + N + 5.82 eV ⇔ $\rm N_2^+$+e 缔合电离
    3 O + O + 6.96 eV ⇔ $\rm O_2^+ $ + e 缔合电离
    4 NO + M + 9.25 eV ⇔ NO+ + e + M 碰撞电离
    5 O2 + M + 12.08 eV ⇔ $\rm O_2^+ $ + e + M 碰撞电离
    6 O + M + 13.61 eV ⇔ O+ + e + M 碰撞电离
    7 N + M + 14.54 eV ⇔ N+ + e + M 碰撞电离
    8 N2 + M + 15.58 eV ⇔ $\rm N_2^+ $ + e + M 碰撞电离
    9 O + e + M – 1.46 eV ⇔ O + M 附着电离
    10 O2 + e + M – 0.44 eV ⇔ $\rm O_2^- $ + M 附着电离
    DownLoad: CSV

    表 2  含C的主要电离反应

    Table 2.  Chemical ionization model of C components.

    序号 反应 序号 反应
    1 C + O⇔ CO+ + e 4 C+ + CO ⇔ CO+ + C
    2 C + e ⇔ C+ + e + e 5 C+ + O2 ⇔$\rm O_2^+ $ + C
    3 NO+ + C ⇔ NO + C+
    DownLoad: CSV

    表 3  含Na的主要电离反应

    Table 3.  Chemical ionization model of Na components.

    序号 反应
    1 Na + M ⇔ Na+ + e + M
    2 Na + CO2 ⇔ Na+ + e + CO2
    3 Na + H2O ⇔ Na+ + e + H2O
    4 Na+ + NO ⇔ NO+ + Na
    5 Na+ + O2 ⇔ $\rm O_2^+ $ + Na
    DownLoad: CSV
  • [1]

    田正雨 2008 博士学位论文(长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [2]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009Google Scholar

    [3]

    党文伟, 李晓升 2020 涂层与防护 41 33

    Dang W W, Li X S 2020 Coat. Prot. 41 33

    [4]

    柴栋, 方洋旺, 童中翔, 高翔 2013 航空动力学报 28 1962

    Chai D, Fang Y W, Tong Z X, Gao X 2013 J. Aerosp. Power 28 1962

    [5]

    Otsu H, Matsuda A, Abe T, Konigorski D 2006 37th AIAA Plasmadynamics and Lasers Conference California, USA, June 5–8, 2006 AIAA 2006–3236

    [6]

    Boettcher C 2009 40th AIAA Plasmadynamics and Lasers Conference San Antonio, Texas, USA, June 22–25, 2009 AIAA 2009–7254

    [7]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference California, USA, June 24–27, 2013 AIAA 2013–3000

    [8]

    Fujino T, Takahashi T 2016 47th AIAA Plasmadynamics and Lasers Conference Washington DC, USA, 13–17 June, 2016 AIAA 2016–3227

    [9]

    Masuda K, Shimosawa Y, Fujino T 2015 46th AIAA Plasmadynamics and Lasers Conference Dallas, USA, June 22–26, 2015 AIAA 2015–3366

    [10]

    Robin A M, Adam S P, Partho P 2019 J. Thermophysics Heat TR 33 1018Google Scholar

    [11]

    Daniel R S, David E G, Peter A J, Cullen T G, James C M 2020 AIAA J. 58 4495Google Scholar

    [12]

    Bisek N J, Poggie J 2011 42th AIAA Plasmadynamics and Lasers Conference Hawii, USA, June 27–30, 2011, AIAA 2011–897

    [13]

    曾学军, 李海燕 2017 宇航学报 38 109

    Zeng X J, Li H Y 2017 J. Astronaut. 38 109

    [14]

    李开 2017 博士学位论文(长沙: 国防科学技术大学)

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [15]

    Park C, Howe J T, Jaffe R L 1994 J. Thermophysics Heat TR 8 9Google Scholar

    [16]

    Beijing: National Defence Industry Press) [乐嘉陵 2005 再入物理(北京: 国防工业出版社]

    Le J L 2005 Reentry Physics

    [17]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030Google Scholar

    [18]

    Macheret S O, Shneider M N 2004 35th AIAA Plasmadynamics and Lasers Conference Oregon, USA, June 28–July 1, 2004 AIAA 2004–1024

    [19]

    李开, 柳军, 刘伟强 2017 物理学报 66 054701Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 054701Google Scholar

    [20]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2019 物理学报 68 174702Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2019 Acta Phys. Sin. 68 174702Google Scholar

    [21]

    丁明松, 刘庆宗, 江涛, 董维中, 高铁锁 2020 航空学报 41 123278

    Ding M S, Liu Q Z, Jiang T, Dong W Z, Gao T S 2020 Acta Aeronaut. Astronaut. Sin. 41 123278

    [22]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁 2020 物理学报 69 134702Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S, Fu Y A X 2020 Acta Phys. Sin. 69 134702Google Scholar

    [23]

    丁明松, 刘庆宗, 江涛, 董维中, 高铁锁, 傅杨奥骁 2020 航空学报 42 124501Google Scholar

    Ding M S, Liu Q Z, Jiang T, Dong W Z, Gao T S, Fu Y A X 2020 Acta Aeronaut. Astronaut. Sin. 42 124501Google Scholar

    [24]

    Keenan J A, Candler G V 1993 24th AIAA Plasmadynamics and Lasers Conference Orlando, USA, June 6–9, 1993 AIAA 93–2789

    [25]

    董维中, 高铁锁2010 空气动力学学报 28 708

    Dong W Z, Gao T S 2010 Acta Aerodyn. Sin. 28 708

    [26]

    Fujino T, Ishikawa M 2006 IEEE T. Plasma Sci. 34 409Google Scholar

    [27]

    Dunn M G, Kang S W 1973 NASA CR-2232

    [28]

    Candler G V, Maccormack R W 1988 19th AIAA Plasmadynamics and Lasers Conference, USA, June, 1988 AIAA 1988–511

    [29]

    李开, 刘伟强 2016 物理学报 65 064701Google Scholar

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar

    [30]

    姚霄, 刘伟强, 谭建国 2018 物理学报 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

  • [1] Yang Yu-Sen, Wang Lin, Gou De-Zhi, Tang Zheng-Ming. Electromagnetic characteristics of waveguide model of plasma-photon crystal array structure. Acta Physica Sinica, 2024, 73(24): 245201. doi: 10.7498/aps.73.20241300
    [2] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Ma Wei-Cong, Wang Gang. Radiation enhancement phenomenon of isotropic plasma layer coated cylinderical metal antenna. Acta Physica Sinica, 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [3] Niu Zhong-Guo, Xu Xiang-Hui, Wang Jian-Feng, Jiang Jia-Li, Liang Hua. Experiment on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [4] Niu Hai-Bo, Yi Shi-He, Liu Xiao-Lin, Huo Jun-Jie, Gang Dun-Dian. Experimental study of crossflow instability in a Mach 6 delta wing flow. Acta Physica Sinica, 2021, 70(13): 134701. doi: 10.7498/aps.70.20201777
    [5] Experimental study on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211425
    [6] Zhang Shi-Jian, Yu Xiao, Zhong Hao-Wen, Liang Guo-Ying, Xu Mo-Fei, Zhang Nan, Ren Jian-Hui, Kuang Shi-Cheng, Yan Sha, Gennady Efimovich Remnev, Le Xiao-Yun. Influence of ablation on energy deposition in polymer material under irradiation of intense pulsed ion beam. Acta Physica Sinica, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [7] Cai Song, Chen Gen-Yu, Zhou Cong, Zhou Feng-Lin, Li Guang. Research and application of plasma recoil pressure physical model for pulsed laser ablation material. Acta Physica Sinica, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [8] Yu Jue-Zhi, Hu Yong-Sheng, Li Hong, Huang Xue-Jie, Chen Li-Quan. Radical anion based liquid electrode materials. Acta Physica Sinica, 2017, 66(8): 088201. doi: 10.7498/aps.66.088201
    [9] Zhang Jie, Zhong Hao-Wen, Shen Jie, Liang Guo-Ying, Cui Xiao-Jun, Zhang Xiao-Fu, Zhang Gao-Long, Yan Sha, Yu Xiao, Le Xiao-Yun. Characteristics of metal ablation product by intense pulsed ion beam irradiation. Acta Physica Sinica, 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [10] Feng Pei-Pei, Wu Han, Zhang Nan. Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite. Acta Physica Sinica, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [11] Li Zhi-Hui, Peng Ao-Ping, Fang Fang, Li Si-Xin, Zhang Shun-Yu. Gas-kinetic unified algorithm for hypersonic aerothermodynamics covering various flow regimes solving Boltzmann model equation. Acta Physica Sinica, 2015, 64(22): 224703. doi: 10.7498/aps.64.224703
    [12] Chen Wen-Bo, Gong Xue-Yu, Lu Xing-Qiang, Feng Jun, Liao Xiang-Bai, Huang Guo-Yu, Deng Xian-Jun. Analysis of one-dimensional electromagnetic wave transmission characteristics of plasma based on a kinetic theory model. Acta Physica Sinica, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [13] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [14] Zheng Ling, Zhao Qing, Luo Xian-Gang, Ma Ping, Liu Shu-Zhang, Huang Cheng, Xing Xiao-Jun, Zhang Chun-Yan, Chen Xu-Lin. Theoretical and experimental studies of electromagnetic wave transmission in plasma. Acta Physica Sinica, 2012, 61(15): 155203. doi: 10.7498/aps.61.155203
    [15] Chen Xiang-Rong, Fu Zhi-Jian, Chen Qi-Feng. Transport properties of titanium and silver plasmas in the region of partial ionization. Acta Physica Sinica, 2011, 60(5): 055202. doi: 10.7498/aps.60.055202
    [16] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [17] Dispersion analysis of a coupled-cavity slow wave structure filled with plasma. Acta Physica Sinica, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [18] Wu Di, Gong Ye, Liu Jin-Yuan, Wang Xiao-Gang, Liu Yue, Ma Teng-Cai. Numerical research on intense pulsed ion beam ablation plasma expansion into ambient gases. Acta Physica Sinica, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [19] Su Wei-Yi, Yang Juan, Wei Kun, Mao Gen-Wang, He Hong-Qing. Calculation and analysis on the wave reflected characteristics of plasma before the conductor plate. Acta Physica Sinica, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [20] Dong Jia-Fu, Tang Nian-Yi, Li Wei, Luo Jun-Lin, Guo Gan-Cheng, Zhong Yun-Ze, Liu Yi, Fu Bing-Zhong, Yao Liang-Ye, Feng Bin-Bin, Qin Yun-Wen. . Acta Physica Sinica, 2002, 51(9): 2074-2079. doi: 10.7498/aps.51.2074
Metrics
  • Abstract views:  2078
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  01 November 2023
  • Accepted Date:  20 March 2024
  • Available Online:  17 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回