Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of screen gird aperture diameter in outer region on performance of dual-mode ion thruster

Zhao Yi-De Li Juan Wu Zong-Hai Huang Yong-Jie Li Jian-Peng Zhang Tian-Ping

Wang Jing-Xin, Wang Yue, Li Yi-Peng, Yuan Jian, Shan Xiu-Ming, Feng Zhen-Ming, Ren Yong. Popularity based network statistical analysis in peer-to-peer application. Acta Phys. Sin., 2011, 60(11): 118901. doi: 10.7498/aps.60.118901
Citation: Wang Jing-Xin, Wang Yue, Li Yi-Peng, Yuan Jian, Shan Xiu-Ming, Feng Zhen-Ming, Ren Yong. Popularity based network statistical analysis in peer-to-peer application. Acta Phys. Sin., 2011, 60(11): 118901. doi: 10.7498/aps.60.118901

Influence of screen gird aperture diameter in outer region on performance of dual-mode ion thruster

Zhao Yi-De, Li Juan, Wu Zong-Hai, Huang Yong-Jie, Li Jian-Peng, Zhang Tian-Ping
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To eliminate the erosion in the apertures at the edge of the decelerate grid of a dual-mode ion thruster three-grid optical system, a new method of reducing the diameter of the apertures in the outer region of the screen grid is proposed. In order to investigate the method of influencing the discharge loss and the uniformity of the beam current density and also reducing the aperture erosion region and erosion rate of the decelerate grid, two kinds of three-grid optical systems are designed and fabricated with the same material and physical parameters except the diameter of the apertures in the outer region of the screen grid. The first kind is that the diameter of the aperture in the outer region of the screen grid is equal to that in middle region of the screen grid, it is designated as the same aperture diameter grid optical system. The second kind of three-grid optical system is that the diameter of screen apertures whose center distance from the center of grid is larger than 0.95 times the beam radius, is reduced by 26% and therefore the physical transparency of optical system is reduced by 8.8%, it is designated as the small aperture diameter grid optical system. The comparison between the same aperture diameter grid optical system and small aperture diameter grid optical system is performed by assembling them into a 30-cm-diameter dual-mode ion thruster, and the ion thruster performance test, beam flatness test and 600-h-endurance test are conducted in the two typical operation modes, namely the low thrust-high specific impulse mode and large thrust-high power mode. A comparison of small aperture diameter grid optical system with the same aperture diameter grid optical system shows that the discharge loss of the 30-cm dual-mode ion thruster in the low thrust-high specific impulse mode and large thrust-high power mode are reduced by 10% and 21% respectively, the beam flatness is decreased by 3% and 10% respectively, the number of rows of the apertures which are sputtered by beam ions at the edge of the decelerate grid is reduced from 5 to 1. In addition, the erosion rate is significantly reduced and the erosion phenomenon disappears after 900-h-long-duration operation. These results signify that reducing the screen grid aperture diameter in the outer region is an effective method to eliminate aperture erosion at the edge of the decelerate grid of a dual-mode ion thruster three-grid optical system and that this method will not reduce the efficiency of the thruster, but cause the beam current uniformity to worsen.
      Corresponding author: Zhao Yi-De, zh_yide@sina.com

    脉冲光纤激光在工业加工、生物成像、医学检测、现代通信等领域需求广泛, 一直受到国内外广泛关注[1-3]. 自从2010年石墨烯可饱和吸收(saturable absorber, SA)调制器件用于掺铒光纤环形腔, 产生了1.5 μm的脉冲激光以来[4,5], 二维材料因其制备简便、非线性吸收可控、带隙可调, 已广泛应用于光纤脉冲激光产生[6-10]. 二维材料中, 含磷材料是重要成员, 含磷一元二维材料黑磷、二元二维材料砷磷等已广泛应用到半导体行业, 并作为可饱和吸收体在不同波长上获得了不同类型的脉冲激光[11-14]. 相比于一元和二元的含磷二维材料, 三元的过渡金属硫代亚磷酸盐(MPS3)二维材料化学多样性高和结构复杂, 表现出新颖的电、光和磁特性[15-17]. 作为含磷家族成员, MPS3不仅具备黑磷优异的工作性能, 还解决了稳定性难题, 能充分发挥磷元素电子施主、化学亲和力、高晶格匹配能力等优势, 且随着过渡金属M的变化, MPS3拥有丰富的光学带隙, 广泛应用于低维材料非线性光学和器件[17-21].

    作为二维层状结构低维材料, MPS3由三种元素组成[15,22], 其中过渡金属元素M主要为Fe, Mn, Ni, Zn, Cd, V等. MnPS3作为典型的MPS3: 1)具有层状单斜晶体结构, 每个晶胞中含有2个Mn2+离子, 1个P2S46基团, 为六方晶格; 2)各向异性, 且层间有较强的磁相互作用; 3)拥有中等的半导体带隙, 在光电探测、二维磁性、光催化等领域应用广泛, 是当前MPS3家族的研究热点之一[23,24]. 20世纪80年代, MnPS3的材料结构和磁性首次报道后, MnPS3在光催化、磁性已开展许多研究工作[19,25-27]. 关于MnPS3低维尺度如少层纳米片的研究还处于起步阶段, 特别是MnPS3可饱和吸收特性较少应用到脉冲激光产生, 目前还没有MnPS3纳米片作为可饱和吸收体产生锁模脉冲的报道.

    本文采用化学气相传输方法制备MnPS3单晶, 并优化机械剥离方法, 制备MnPS3可饱和吸收体(MnPS3-SA)光纤调制器件. 以MnPS3-SA 为调制器件, 掺铒光纤为增益光纤, 实现稳定的自启动双波长锁模输出, 实现双波长输出对激光器的实际应用有重要意义[28].

    与黑砷磷的制备方法类似, 使用化学气相传输法生长三元含磷二维材料MnPS3单晶[17,29], 但区别在于矿化剂和输运剂的选择, 化学气相传输法原理跟化学气相沉积类似, 不同于一般化学气相沉积方法有裂解反应物过程, 化学气相传输方法则是把粉末原料蒸发后跟随载气沉积在低温区的衬底. 实验使用的纯锰粉(Mn, 99.99%)、红磷(RP, 99.999%)、硫(S, 99.99%)和碘(I2, 1 mg/mL)按照特定比例混合均匀并称重2 g作为反应物(均购于Sigma-Aldrich公司), 以适量的碘作为输运剂, 放置于尖头石英安瓿内, 并在1 × 10–3 Pa的真空条件下真空封管. 放置在双温区管式炉中的石英安瓿, 处于700 ℃/650 ℃的双区温度梯度环境中, 在I2和温度梯度的共同作用下通过输运作用在石英管冷端获得干净的厘米级绿色六角形态片状MnPS3单晶(如图1(a)图1(b)所示).

    图 1 MnPS3晶体生长及表征 (a)化学气相传输法制备MnPS3晶体的工艺流程示意图; (b) MnPS3单晶的照片; (c) MnPS3单晶的拉曼光谱\r\nFig. 1. Characteristics of MnPS3 crystals: (a) Chemical vapor transport method; (b) picture of MnPS3; (c) Raman spectrum for MnPS3
    图 1  MnPS3晶体生长及表征 (a)化学气相传输法制备MnPS3晶体的工艺流程示意图; (b) MnPS3单晶的照片; (c) MnPS3单晶的拉曼光谱
    Fig. 1.  Characteristics of MnPS3 crystals: (a) Chemical vapor transport method; (b) picture of MnPS3; (c) Raman spectrum for MnPS3

    可饱和吸收体的制备方法目前主要有三明治型、倏逝波型、可饱和吸收镜型等[30-32]. 使用优化的胶带法机械剥离MnPS3单晶, 而后转移到光纤跳线端帽上, 制备光纤脉冲激光所需的类三明治式结构MnPS3-SA调制器件. 采用同样的机械剥离方法, 将MnPS3-SA转移到特制Si衬底上(表面有285 nm SiO2)表征. 图1(c)给出了使用共聚焦激光拉曼光谱仪(Raman, LabRAM HR Evolution)测得的MnPS3-SA拉曼光谱, 155, 225, 274和568 cm–1处的拉曼峰对应Eg振动模式, 在246, 384和582 cm–1处观察到A1g振动模式, 与之前报道MnPS3典型特征峰相符[33,18].

    图2为使用Quanta 400 FEG场发射扫描电子显微镜(scanning electron microscope, SEM)测得的MnPS3-SA微观结构. 图2(a)为MnPS3-SA的场发射电子显微镜形貌图像, 图像显示样品表面没有杂质、光滑平整, 样品具有MnPS3低维材料特有的六边形和层状形貌. 利用SEM配套的能量散射X射线(energy dispersive X-ray spectroscopy, EDX)表征MnPS3选定区域的元素成分和原子含量, 并做元素面扫描, EDX能谱分析得到Mn原子、P原子和S原子在均匀分布且原子比为19.97%, 20.89%和59.13% (约1∶1∶3), 满足化学式比例(如图2所示).

    图 2 MnPS3-SA的SEM表征 (a)随机选取的样品SEM图像和元素分析表; (b)−(d) Mn, P和S的EDX元素面扫描\r\nFig. 2. SEM characteristics of MnPS3 -SA: (a) SEM image of a randomly selected MnPS3 flake, and elemental analysis of this sample; (b)−(d) EDX element mappings for Mn, P, and S.
    图 2  MnPS3-SA的SEM表征 (a)随机选取的样品SEM图像和元素分析表; (b)−(d) Mn, P和S的EDX元素面扫描
    Fig. 2.  SEM characteristics of MnPS3 -SA: (a) SEM image of a randomly selected MnPS3 flake, and elemental analysis of this sample; (b)−(d) EDX element mappings for Mn, P, and S.

    采用透射电子显微镜(transmission electron microscope, TEM)表征MnPS3样品的晶体结构, 结果如图3所示. MnPS3透射样品如图3(a)所示. 图3(b)图3(c)分别展示了高分辨率透射电子显微镜(high-resolution transmission electron microscope, HRTEM)图像和区域电子衍射(selected area electron diffraction, SAED)图, 图示平面距离为0.29 nm的清晰晶格条纹对应于(131)晶面. 这些表征, 证明了本方法制备MnPS3样品结构均一、组分准确.

    图 3 MnPS3纳米片的TEM表征 (a) MnPS3纳米片形貌; (b) MnPS3纳米片的HRTEM像; (c) SAED图\r\nFig. 3. TEM characterization of MnPS3 nanosheets: (a) TEM image of a MnPS3 nanosheet on a copper grid; (b) the HRTEM image of the MnPS3 nanosheet; (c) the corresponding SAED showing its single crystal nature.
    图 3  MnPS3纳米片的TEM表征 (a) MnPS3纳米片形貌; (b) MnPS3纳米片的HRTEM像; (c) SAED图
    Fig. 3.  TEM characterization of MnPS3 nanosheets: (a) TEM image of a MnPS3 nanosheet on a copper grid; (b) the HRTEM image of the MnPS3 nanosheet; (c) the corresponding SAED showing its single crystal nature.

    将MnPS3-SA调制器件接入光纤环形腔构建如图4所示实验装置: 环形腔使用976 nm稳波长激光二极管(laser diode, LD)作为抽运源, 并通过980/1550波分复用器(wavelength division multiplexing, WDM)接入环形腔; 增益介质使用3.2 m长的掺铒光纤(6/125); 为了保证环形腔中能量单向传输, 在掺铒光纤后端接入偏振无关隔离器(polarization independent isolator, PI-ISO); 为了管理腔内色散, 在PI-ISO后连接了约20 m长的单模光纤(SMF-28); 采用偏振控制器(polarization controller, PC)对偏振态进行调节; 采用20∶80的光耦合器(optical coupler, OC)从激光腔中耦合出20%的腔内能量. 光纤环形腔的总长度约为35 m, 在耦合器的输出端, 使用2 GHz的光电探头将光信号转化为电信号, 并使用1 GHz的带射频分析功能示波器记录输出激光的时域和频域特性; 利用最高分辨率0.02 nm的精密光谱仪记录输出激光的光谱; 使用毫瓦功率计记录激光功率.

    图 4 MnPS3-SA掺铒光纤激光器的实验装置\r\nFig. 4. Experimental setup of the erbium-doped fiber laser.
    图 4  MnPS3-SA掺铒光纤激光器的实验装置
    Fig. 4.  Experimental setup of the erbium-doped fiber laser.

    基于光纤环形腔实验装置, 随着抽运光功率增加, 当输入抽运功率增加到70 mW时, 在示波器上观测到激光输出的脉冲时域型号信号, 并在70—270 mW的抽运范围内连续变化时可以观测到被动锁模激光输出. 输出激光功率和抽运功率的关系如图5(a)所示, 输出功率随抽运光功率的增加而线性增加, 最大输出功率为27.2 mW.

    图 5 基于MnPS3-SA的脉冲光纤激光器的性能 (a)输出功率与抽运功率的关系; (b)输出光谱; (c)脉冲序列; (d)脉冲脉宽; (e) 0−10 MHz射频信号; (f)射频基频信号\r\nFig. 5. Performances of the pulse fiber laser based on MnPS3-SA: (a) The output power versus the pump power; (b) output optical spectrum; (c) the pulse trace; (d) the duration of single pulse; (e) the radio frequency spectrum from 0−10 MHz; (f) the radio frequency spectrum with ~64 dB (inset).
    图 5  基于MnPS3-SA的脉冲光纤激光器的性能 (a)输出功率与抽运功率的关系; (b)输出光谱; (c)脉冲序列; (d)脉冲脉宽; (e) 0−10 MHz射频信号; (f)射频基频信号
    Fig. 5.  Performances of the pulse fiber laser based on MnPS3-SA: (a) The output power versus the pump power; (b) output optical spectrum; (c) the pulse trace; (d) the duration of single pulse; (e) the radio frequency spectrum from 0−10 MHz; (f) the radio frequency spectrum with ~64 dB (inset).

    利用高精度光谱仪记录输出激光的光谱, 显示输出脉冲激光为双波长. 记录抽运功率为180 mW时典型输出光谱如图5(b)所示, 两个波长峰值分别为1565.19 nm和1565.63 nm, 双波长间隔为0.44 nm. 光谱展宽不明显, 且没有克利边带. 同时记录此抽运功率下激光器输出激光的时域特性如图5(c)图5(d)所示, 输出锁模脉冲脉冲间隔为196.1 ns (图5(c)), 脉冲宽度为3.8 ns (图5(d)). 利用示波器的频谱分析功能分析脉冲激光的频谱特性如图5(e)图5(f)所示, 图5(e)为射频基频信号, 输出脉冲射频信号基频信噪比超过64 dB, 显示脉冲具有较高的稳定性.

    在相同条件下记录抽运功率为70, 120, 170, 220和270 mW时激光器输出光谱和功率. 图6(a)给出了不同抽运功率下激光器的发射光谱, 双波长稳定在1565.18 nm (± 0.01 nm)和1565.64 nm (± 0.02 nm), 双波长间隔0.46 nm (± 0.02 nm), 如图6(b)所示. 记录不同抽运功率下脉冲激光的重复频率(图6(c)), 输出频率稳定在5.109 MHz (± 0.011 MHz). 随抽运功率的增加, 长波长强度呈非线性减弱, 双波长效果逐渐减弱, 在270 mW抽运功率下, 下降到第一个峰值的29.7%. 因为抽运功率的增加会导致线性增益的增加, 使得腔内模式更容易达到可饱和吸收体的吸收光强. 因此双波长锁模输出需要在70—270 mW功率区间内实现, 且功率越低, 双波长效果越好. 此双波长光纤脉冲激光在不同抽运功率下发射激光具有稳定的输出波长和重复频率.

    图 6 基于MnPS3-SA的脉冲光纤激光器在70, 120, 170, 220和270 mW抽运功率下的(a)光谱、(b)波长和(c)频率特性\r\nFig. 6. Performances of the pulse fiber laser based on MnPS3-SA with the pump power at 70, 120, 170, 220, and 270 mW pump power: (a) Spectrum; (b) wavelength; (c) frequency.
    图 6  基于MnPS3-SA的脉冲光纤激光器在70, 120, 170, 220和270 mW抽运功率下的(a)光谱、(b)波长和(c)频率特性
    Fig. 6.  Performances of the pulse fiber laser based on MnPS3-SA with the pump power at 70, 120, 170, 220, and 270 mW pump power: (a) Spectrum; (b) wavelength; (c) frequency.

    实验过程中为了测试被动锁模激光输出的长时间稳定性, 在相同的环境条件下, 使用相同测试方法记录第1, 7, 8, 11, 12天光纤激光器在抽运功率为180 mW时的出光特性. 实验显示, 光纤激光正当其可以实现自启动锁模, 输出激光的波长和输出功率特性如图7所示. 从图7(a)可看出, 输出光谱的2个输出波长稳定在1565.19 nm (±0.01 nm)和1565.58 nm (±0.03 nm), 双波长间隔0.39 nm (± 0.04 nm), 输出功率为16.67 mW (± 0.10 mW, ± 0.6%). 实验数据证实该激光器长时间工作时, 发射波长、波长间隔和频率均保持高稳定性. 分析误差增大的主要原因是谐振腔在实验环境变化(温度、振动等)的影响下, 等价腔长可能发生漂移以及温度导致折射率的微小变化.

    图 7 基于MnPS3-SA的脉冲激光长时间工作稳定性 (a)第1, 7, 8, 11, 12 天的输出光谱; (b)中心波长; (c)输出功率\r\nFig. 7. Output spectrum of the EDFL based on MnPS3-SA: (a) Output spectrum recorded on 1st, 7th, 8th, 11th, 12th day; (b) wavelength peak position; (c) output power.
    图 7  基于MnPS3-SA的脉冲激光长时间工作稳定性 (a)第1, 7, 8, 11, 12 天的输出光谱; (b)中心波长; (c)输出功率
    Fig. 7.  Output spectrum of the EDFL based on MnPS3-SA: (a) Output spectrum recorded on 1st, 7th, 8th, 11th, 12th day; (b) wavelength peak position; (c) output power.

    实验中为验证光纤环形腔是否有类似的可饱和吸收特性, 将MnPS3 可饱和吸收体从腔内移除, 改变抽运功率和调节偏振控制器都没有观察到脉冲和双波长现象, 验证MnPS3是产生双波长锁模的惟一因素. 同时, 去除MnPS3 可饱和吸收体后, 激光器输出为较好的单波长光纤激光.

    MnPS3作为一种可饱和吸收材料, 插入在谐振腔中可被动地周期性调制谐振腔的内部吸收损耗, 来实现激光器的锁模运转, 其具体作用机理是: 初始激光脉冲包含了所有模式, 彼此之间相位无规则分布, 此时输出光强随机, 未实现锁模. MnPS3的吸收特性导致对特定波长的吸收弱. 光强大于可饱和吸收光强时脉冲被吸收, 在增益介质的线性放大下, 对强脉冲的吸收弱, 对弱脉冲吸收强, 弱脉被抑制, 强脉冲高速增长, 最终得到双波长的锁模输出.

    本文采用化学气相传输方法制备了MnPS3单晶, 并利用优化胶带法机械剥离制备光纤脉冲激光所需的MnPS3-SA调制器件, 并对其进行材料表征和分析, MnPS3-SA调制器件光纤激光振荡器实现了稳定的全光纤被动锁模激光自启动输出. 基于该环形腔, 可实现最大输出功率为27.2 mW, 双波长稳定在1565.18 nm (± 0.01 nm)和1565.64 nm (± 0.02 nm), 双波长间隔0.46 nm (± 0.02 nm), 基频信噪比约为64 dB, 频率为5.109 MHz (± 0.011 MHz)的脉冲输出. 此外, MnPS3-SA光纤激光振荡器可实现280 h以上稳定自启动锁模, 输出双波长稳定在1565.19 nm (± 0.01 nm)和1565.58 nm (± 0.03 nm), 双峰间隔0.39 nm (± 0.04 nm), 输出的功率为16.67 mW (± 0.10 mW, ± 0.6%). 实验表明, 二维材料MnPS3作为可饱和吸收体, 可以提供一种新型方法实现低成本、稳定性好的双波长的锁模脉冲输出, 在光纤通信、工业加工、医疗器械等领域都有潜在的应用价值.

    [1]

    于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propul. Technol. 41 1

    [2]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7−10, 2002 p2002-4348-1

    [3]

    Rawlin V K, Sovey J S, Hamley J A, et al. 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28−30, 1999 p99-4612-1

    [4]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference& Exhibit Huntsville, USA, 20−July 23, 2003 p2003-4542-1

    [5]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar

    [6]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1

    [7]

    Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5212-1

    [8]

    Snyder J S, Goebel D M, Hofer R R, Polk J E, Wallace N C, Simpson H 2012 J. Propul. Power 28 371Google Scholar

    [9]

    陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar

    [10]

    陈茂林, 夏广庆, 杨正岩, 张斌, 徐宗琦, 毛根旺 2014 高电压技术 40 3012Google Scholar

    Chen M L, Xia G Q, Yang Z Y, Zhang B, Xu Z Q, Mao G W 2014 High Volt. Eng. 40 3012Google Scholar

    [11]

    温正, 钟凌伟, 王一白, 李娟, 任军学 2011 强激光与粒子束 23 1640Google Scholar

    Wen Z, Zhong L W, Wang Y B, Li J, Ren J X 2011 High Power Laser and Particle Beams 23 1640Google Scholar

    [12]

    Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7−10, 2002 p2002-4261-1

    [13]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [14]

    Peng X H, Ruyten W M, Friedly V, Keefer D, Zhang Q 1994 Rev. Sci. Instrum. 65 1770Google Scholar

    [15]

    钟凌伟, 刘宇, 任军学, 仇钎 2010 航空动力学报 25 2125Google Scholar

    Zhong L W, Liu Y, Ren J X, Qiu Q 2010 J. Aerosp. Power 25 2125Google Scholar

    [16]

    王二蒙, 楚豫川, 曹勇, 李娟 2013 高电压技术 39 1763Google Scholar

    Wang E M, Chu Y C, Cao Y, Li J 2013 High Volt. Eng. 39 1763Google Scholar

    [17]

    贾艳辉, 李忠明, 张天平, 李娟 2012 中国空间科学技术 32 72Google Scholar

    Jia Y H, Li Z M, Zhang T P, Li J 2012 Chin. Space Sci. Technol. 32 72Google Scholar

    [18]

    李娟, 刘洋, 楚豫川, 曹勇 2011 推进技术 32 751

    Li J, Liu Y, Chu Y C, Cao Y 2011 J. Propul. Technol. 32 751

    [19]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar

    [20]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3784-1

    [21]

    Patterson M J, Haag T W, Hovan S A 1993 Presented at the 23rd International Electric Propulsion Conference Seattle, USA, September 13−16, 1993 p1993-108-1

    [22]

    Soulas G C, Kamhawi H, Patterson M J, Britton M A, Frandina M M 2004 Presented at the 40th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3791-1

    [23]

    Van Noord J L, Soulas G C, Sovey J S 2009 Presented at the 33th International Electric Propulsion Conference Ann Arbor, USA, September 20−24, 2009 p2009-163-1

    [24]

    Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5272-1

    [25]

    赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942

    Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942

    [26]

    赵以德, 吴宗海, 张天平, 耿海, 李娟, 李建鹏, 孙小菁, 杨浩 2020 推进技术 41 187

    Zhao Y D, Wu Z H, Zhang T P, Geng H, LI J, Li J P, Sun X J, Yang H 2020 J. Propul. Technol. 41 187

  • 图 1  30 cm双模式离子推力器束流密度径向分布曲线

    Figure 1.  Radial beam current density profiles of 30 cm dual-mode ion thruster.

    图 2  等孔径栅下30 cm双模式离子推力器在300 h内功耗和放电损耗变化情况 (a)小推力高比冲模式; (b)大推力高功率模式

    Figure 2.  The power and discharge loss of 30 cm dual-mode ion thruster with same aperture diameter grid optical system during 300 h operation: (a) Low thrust-high specific impulse mode; (b) large thrust-high power mode.

    图 3  小孔径栅下30 cm双模式离子推力器300 h内功耗和放电损耗变化情况 (a)小推力高比冲模式; (b)大推力高功率模式

    Figure 3.  The power and discharge loss of 30 cm dual-mode ion thruster with small aperture diameter grid optical system during 300 h operation: (a) Low thrust-high specific impulse mode; (b) large thrust-high power mode.

    图 4  实验后减速栅外观照片 (a)等孔径栅300 h后; (b)等孔径栅600 h后; (c)小孔径栅300 h后; (d)小孔径栅600 h后

    Figure 4.  Photography of decelerate grid: (a) and (b) are the same aperture diameter grid optical system after 300 h and 600 h operation respectively; (c) and (d) are the small aperture diameter grid optical system after 300 h and 600 h opera-tion respectively.

    图 5  栅极不同径向位置处减速栅小孔孔径相对变化情况 (a)等孔径栅; (b)小孔径栅

    Figure 5.  Relative variation of decelerate grid apertures diameter at the different radial position after 300 h and 600 h operation: (a) The same aperture diameter grid optical system; (b) the small aperture diameter grid optical system.

    表 1  30 cm双模式离子推力器主要参数

    Table 1.  Main parameters of 30 cm dual-mode ion thruster.

    参数小推力高比冲模式大推力高功率模式
    束电压/V14501200
    束电流/A1.683.68
    加速电压/V–220–400
    总流率/mg·s–12.5515.831
    理论推力/mN100200
    理论比冲/s40003500
    理论功率/kW2.85.1
    DownLoad: CSV

    表 2  两种栅极下30 cm双模式离子推力器工作平衡时电参数

    Table 2.  Steady-state operating parameters of 30 cm dual-mode ion thruster at two kinds of grid optical system.

    参数名称小推力高比冲模式大推力高功率模式
    等孔径栅小孔径栅等孔径栅小孔径栅
    屏栅电压/V1420142011701170
    屏栅电流/A1.681.683.683.68
    加速电压/V–220–220–400–400
    放电电压/V29.930.231.730.2
    放电电流/A9.828.7223.6219.62
    阴极触持电压/V9.08.99.28.3
    阴极触持电流/A0.60.60.60.6
    中和器触持电压/V14.214.211.711.0
    中和器触持电流/A1.61.61.61.6
    DownLoad: CSV
  • [1]

    于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1

    Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propul. Technol. 41 1

    [2]

    Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7−10, 2002 p2002-4348-1

    [3]

    Rawlin V K, Sovey J S, Hamley J A, et al. 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28−30, 1999 p99-4612-1

    [4]

    Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference& Exhibit Huntsville, USA, 20−July 23, 2003 p2003-4542-1

    [5]

    Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar

    [6]

    Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1

    [7]

    Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5212-1

    [8]

    Snyder J S, Goebel D M, Hofer R R, Polk J E, Wallace N C, Simpson H 2012 J. Propul. Power 28 371Google Scholar

    [9]

    陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar

    [10]

    陈茂林, 夏广庆, 杨正岩, 张斌, 徐宗琦, 毛根旺 2014 高电压技术 40 3012Google Scholar

    Chen M L, Xia G Q, Yang Z Y, Zhang B, Xu Z Q, Mao G W 2014 High Volt. Eng. 40 3012Google Scholar

    [11]

    温正, 钟凌伟, 王一白, 李娟, 任军学 2011 强激光与粒子束 23 1640Google Scholar

    Wen Z, Zhong L W, Wang Y B, Li J, Ren J X 2011 High Power Laser and Particle Beams 23 1640Google Scholar

    [12]

    Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7−10, 2002 p2002-4261-1

    [13]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar

    [14]

    Peng X H, Ruyten W M, Friedly V, Keefer D, Zhang Q 1994 Rev. Sci. Instrum. 65 1770Google Scholar

    [15]

    钟凌伟, 刘宇, 任军学, 仇钎 2010 航空动力学报 25 2125Google Scholar

    Zhong L W, Liu Y, Ren J X, Qiu Q 2010 J. Aerosp. Power 25 2125Google Scholar

    [16]

    王二蒙, 楚豫川, 曹勇, 李娟 2013 高电压技术 39 1763Google Scholar

    Wang E M, Chu Y C, Cao Y, Li J 2013 High Volt. Eng. 39 1763Google Scholar

    [17]

    贾艳辉, 李忠明, 张天平, 李娟 2012 中国空间科学技术 32 72Google Scholar

    Jia Y H, Li Z M, Zhang T P, Li J 2012 Chin. Space Sci. Technol. 32 72Google Scholar

    [18]

    李娟, 刘洋, 楚豫川, 曹勇 2011 推进技术 32 751

    Li J, Liu Y, Chu Y C, Cao Y 2011 J. Propul. Technol. 32 751

    [19]

    龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar

    Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar

    [20]

    Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3784-1

    [21]

    Patterson M J, Haag T W, Hovan S A 1993 Presented at the 23rd International Electric Propulsion Conference Seattle, USA, September 13−16, 1993 p1993-108-1

    [22]

    Soulas G C, Kamhawi H, Patterson M J, Britton M A, Frandina M M 2004 Presented at the 40th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3791-1

    [23]

    Van Noord J L, Soulas G C, Sovey J S 2009 Presented at the 33th International Electric Propulsion Conference Ann Arbor, USA, September 20−24, 2009 p2009-163-1

    [24]

    Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5272-1

    [25]

    赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942

    Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942

    [26]

    赵以德, 吴宗海, 张天平, 耿海, 李娟, 李建鹏, 孙小菁, 杨浩 2020 推进技术 41 187

    Zhao Y D, Wu Z H, Zhang T P, Geng H, LI J, Li J P, Sun X J, Yang H 2020 J. Propul. Technol. 41 187

  • [1] ZHAO Shiyu, GAO Fen, HE Yuzhun. Visual alignment technology of diffraction pinhole in pinhole point diffraction interferometer. Acta Physica Sinica, 2025, 74(7): 074204. doi: 10.7498/aps.74.20241180
    [2] Zhang Sheng-Yuan, Xia Kang-Long, Zhang Mao-Lin, Bian Ang, Liu Zeng, Guo Yu-Feng, Tang Wei-Hua. Self-powered dual-mode UV detector based on GaN/(BA)2PbI4 heterojunction. Acta Physica Sinica, 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [3] Fu Yu-Liang, Yang Juan, Xia Xu, Sun An-Bang. Study on the effect of discharge chamber length on the performance of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [4] Gao Zhao-Lin, Liu Rui-Hua, Wen Kai, Ma Ying, Li Jian-Lang, Gao Peng. Phase/fluorescence dual-mode microscopy imaging based on structured light illumination. Acta Physica Sinica, 2022, 71(24): 244203. doi: 10.7498/aps.71.20221518
    [5] Li Jian-Peng, Zhao Yi-De, Jin Wu-Yin, Zhang Xing-Min, Li Juan, Wang Yan-Long. Design and performance test of discharge chamber and grid for multi-mode ion thrusters. Acta Physica Sinica, 2022, 71(19): 195203. doi: 10.7498/aps.71.20220720
    [6] Li Jian-Peng, Jin Wu-Yin, Zhao Yi-De. Design of input parameters and operating characteristics for multi-mode ion thruster. Acta Physica Sinica, 2022, 71(7): 075203. doi: 10.7498/aps.71.20212045
    [7] Wang Ya-Nan, Ren Lin-Yuan, Ding Wei-Dong, Sun An-Bang, Geng Jin-Yue. Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster. Acta Physica Sinica, 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [8] Dong Wan, Xu Hai-Wen, Dai Zhong-Ling, Song Yuan-Hong, Wang You-Nian. Gap length effect on discharge mode and etching profiles in asymmetric dual frequency capacitive CF4/Ar discharges. Acta Physica Sinica, 2021, 70(9): 095213. doi: 10.7498/aps.70.20210546
    [9] Zhao Jie, Tang De-Li, Xu Li, Li Ping-Chuan, Zhang Fan, Li Jian, Gui Bing-Yi. Effect of anode magnetic shield on inner magnetic pole etched in anode layer Hall thruster. Acta Physica Sinica, 2019, 68(21): 215202. doi: 10.7498/aps.68.20190654
    [10] Gao Yang-Fu, Song Yi-Xu, Sun Xiao-Min. An optimization method for ion etching yield modeling based on etching velocity matching. Acta Physica Sinica, 2014, 63(4): 048201. doi: 10.7498/aps.63.048201
    [11] Ren Dan, Du Ping-An, Nie Bao-Lin, Cao Zhong, Liu Wen-Kui. An equivalent approach to modeling aperture array with considering size effect of apertures. Acta Physica Sinica, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [12] Li Shi-Chun, Chen Gen-Yu, Zhou Cong, Chen Xiao-Feng, Zhou Yu. Plasma inside and outside keyhole during 10 kW level fiber laser welding. Acta Physica Sinica, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [13] Wang Pei-Pei, Yang Chao-Jie, Li Jie, Tang Peng, Lin Feng, Zhu Xing. Polarization properties of plasmonic color filters comprised of arrays of subwavelength size holes on Au films. Acta Physica Sinica, 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [14] Han Ke, Jiang Bin-Hao, Ji Yan-Chao. Study on the mechanism of Hall effect thruster discharge with bistable state. Acta Physica Sinica, 2012, 61(7): 075209. doi: 10.7498/aps.61.075209
    [15] Wang Guo-Jun, Wu Shi-Fa, Li Xu-Feng, Li Rui, Duan Jian-Min, Pan Shi. Numerical simulation of the near-field distribution of light spot of aperture pyramid-type optical probe with a metal tip. Acta Physica Sinica, 2010, 59(1): 192-198. doi: 10.7498/aps.59.192
    [16] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [17] Song Guo-Feng, Gan Qiao-Qiang, Qu Xin, Fang Pei-Yuan, Gao Jian-Xia, Cao Qing, Xu Jun, Kang Xiang-Ning, Xu Yun, Zhong Yuan, Yang Guo-Hua, Chen Liang-Hui. Fabrication process and power and lifetime characteristics of very-small-aperture laser. Acta Physica Sinica, 2005, 54(12): 5609-5613. doi: 10.7498/aps.54.5609
    [18] Yi Yong-Xiang, Wang Guo-Ping, Long Yong-Bing, Shan Hong. Optical transmission enhancement of two-dimensional subwavelength hole arrays in metallic films. Acta Physica Sinica, 2003, 52(3): 604-608. doi: 10.7498/aps.52.604
    [19] . Acta Physica Sinica, 1975, 24(1): 61-71. doi: 10.7498/aps.24.61
    [20] LIN WEI-GUAN. COUPLING BETWEEN A RECTANGULAR WAVEGUIDE AND A CIRCULAR WAVEGUIDE OR A CYLINDRICAL CAVITY THROUGH A SMALL HOLE. Acta Physica Sinica, 1959, 15(7): 368-376. doi: 10.7498/aps.15.368
Metrics
  • Abstract views:  6652
  • PDF Downloads:  66
Publishing process
  • Received Date:  11 March 2020
  • Accepted Date:  30 March 2020
  • Published Online:  05 June 2020

/

返回文章
返回