- 
				The capacitive CF4/Ar discharges driven by a dual frequency source based on the electrical asymmetry effect (EAE) are studied by using a one-dimensional fluid coupled with Monte-Carlo (MC) model and a two-dimensional trench model. The effects, induced by varying the relative gap distance, on self-bias voltage, electronegativity, ion flux, neutral flux and other plasma characteristics are systematically discussed. In this asymmetric discharge, as the gap distance increases, the absolute value of the self-bias voltage and electronegativity decrease. Meanwhile, the plasma density and absorption power increase accordingly because the effective discharge area expands but the boundary loss is still limited. In addition, both$ \mathrm{\alpha } $ mode and drift-ambipolar (DA) mode can play their important roles in the discharges with different gap distances, though DA mode is weakened in large gap discharge. Owing to the fact that the self-bias is larger and electronegativity is stronger for the case of smaller gap distance, the sheath expansion electric field at the powered electrode and the bulk electric field heat the electrons, leading the ionization rate to greatly increase near the collapse of the sheath at the grounded electrode. Besides, at the larger gap distance, the maximum value of the ionization rate decreases due to the reduction of electrons with relatively high-energy, and the ionization rate near the grounded electrode is reduced evidently. Moreover, with the increase of the gap distance, the maximum ion energy decreases and the ion energy distribution width becomes smaller due to the reduction of the self-bias voltage. Meanwhile, the etching rate increases a lot since the neutral flux increases significantly near the powered electrode. However, as the gap distance increases to 5 cm, the etching rate stops increasing and the trench width at the bottom becomes narrow because the neutral flux increases greatly compared with ion flux, forming a thick layer of polymer. So, besides separately controlling the ion energy and flux, optimizing the synergistic effect of ion flux and neutral group flux to adjust the etching rate and improve the etching morphology is also an interesting topic in the asymmetric CF4/Ar discharges.- 
										Keywords:
										
- electrical asymmetry effect /
- the synergy of ions and neutrals /
- gap distance /
- discharge mode
 [1] Makabe T, Petrović Z 2006 Plasma Electronics: Applications in Microelectronic Device Fabrication (London: Taylor and Francis) pp3−9 [2] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley) pp1−750 [3] Agarwal A, Kushner M J 2009 J. Vac. Sci. Technol. A 27 37  Google Scholar Google Scholar[4] Sherpa S D, Ranjan A 2016 J. Vac. Sci. Technol. A 35 01A102  Google Scholar Google Scholar[5] Sekine M 2002 Appl. Surf. Sci. 192 270  Google Scholar Google Scholar[6] Kanarik K J, Tan S, Gottscho R A 2018 J. Phys. Chem. Lett. 9 4814  Google Scholar Google Scholar[7] Kanarik K J, Hudson E A, Gottscho R A, et al. 2015 J. Vac. Sci. Technol. A 33 020802  Google Scholar Google Scholar[8] Huang S, Huard C, Shim S, Nam S K, Song I C, Lu S, Kushner M J 2019 J. Vac. Sci. Technol. A 37 031304  Google Scholar Google Scholar[9] Takayoshi T, Hiroki K, HoriMasaru Z M, Akiko K, Toshihisa N, Nobuyoshi K 2016 J. Vac. Sci. Technol. A 35 01A103  Google Scholar Google Scholar[10] Booth J P, Cunge G, Chabert P, Sadeghi N 1999 J. Appl. Phys. 85 3097  Google Scholar Google Scholar[11] Williams K L, Martin I T, Fisher E R 2002 J. Am. Soc. MASS Spectrom. 13 518  Google Scholar Google Scholar[12] Flamm D L, Herb G K 1989 WITHDRAWN: Plasma Etching Technology—An Overview (Pittsburgh: Academic Press) pp1−89 [13] Sankaran A, Kushner M J 2004 J. Vac. Sci. Technol. A 22 1260  Google Scholar Google Scholar[14] Gasvoda R J, Van De Steeg A W, Bhowmick R, Hudson E A, Agarwal S 2017 ACS Appl. Mater. Interfaces 9 31067  Google Scholar Google Scholar[15] Stoffels W W, Stoffels E, Tachibana K 1998 J. Vac. Sci. Technol. A 16 87  Google Scholar Google Scholar[16] Cunge G, Booth J P 1999 J. Appl. Phys. 85 3952  Google Scholar Google Scholar[17] Zhang D, Kushner M J 2000 J. Vac. Sci. Technol. A 18 2661  Google Scholar Google Scholar[18] Metzler D, Engelmann S, Bruce R L, Oehrlein G S, Joseph E A, Li C 2015 J. Vac. Sci. Technol. A 34 01B101  Google Scholar Google Scholar[19] Winters H F, J.W.Coburn 1992 Surf. Sci. Rep. 14 161  Google Scholar Google Scholar[20] Sasaki K, Furukawa H, Suzuki C, Kadota K 1999 J. Appl. Phys. 38 954  Google Scholar Google Scholar[21] Kimizuka M, Ozaki Y, Watanabe Y 1997 J. Vac. Sci. Technol. B 15 66  Google Scholar Google Scholar[22] Capps N E, Mackie N M, Fisher E R 1998 J. Appl. Phys. 84 4736  Google Scholar Google Scholar[23] Fendel P, Francis A, Czarnetzki U 2005 Plasma Sources Sci. Technol. 14 1  Google Scholar Google Scholar[24] Booth J P, Abada H, Chabert P, Graves D B 2005 Plasma Sources Sci. Technol. 14 273  Google Scholar Google Scholar[25] Kanarik K J, Tan S, Yang W, et al. 2017 J. Vac. Sci. Technol. A 35 05C302  Google Scholar Google Scholar[26] Huard C M Sriraman S, Kanarik K J, Zhang Y, Kushner M J, Paterson A 2017 J. Vac. Sci. Technol. A 35 031306  Google Scholar Google Scholar[27] Heil B G, Czarnetzki U, Brinkmann R P, Mussenbrock T 2008 J. Phys. D. Appl. Phys. 41 165202  Google Scholar Google Scholar[28] Zhang Y, Kushner M J, Sriraman S, Marakhtanov A, Holland J, Paterson A 2015 J. Vac. Sci. Technol. A 33 031302  Google Scholar Google Scholar[29] Zhang Y, Zafar A, Coumou D J, Shannon S C, Kushner M J 2015 J. Appl. Phys. 117 233302  Google Scholar Google Scholar[30] Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 55003  Google Scholar Google Scholar[31] Zhang Y R, Hu Y T, Wang Y N 2020 Plasma Sources Sci. Technol. 29 84003  Google Scholar Google Scholar[32] Schulze J, Derzsi A, Donkó Z 2011 Plasma Sources Sci. Technol. 20 045008  Google Scholar Google Scholar[33] Brandt S, Berger B, Donkó Z, Derzsi A, Schüngel E, Koepke M, Schulze J 2019 Plasma Sources Sci. Technol. 28 95021  Google Scholar Google Scholar[34] Wang X F, Jia W Z, Song Y H, Zhang Y Y, Dai Z L, Wang Y N 2017 Phys. Plasmas 24 113503  Google Scholar Google Scholar[35] Phelps A V, Petrović Z L 1999 Plasma Sources Sci. Technol. 8 06B101  Google Scholar Google Scholar[36] Tinck S, Boullart W, Bogaerts A 2009 J. Phys. D. Appl. Phys. 42 095204  Google Scholar Google Scholar[37] Brandt S, Berger B, Schüngel E, et al. 2016 Plasma Sources Sci. Technol. 25 045015  Google Scholar Google Scholar[38] Vasenkov A V, Li X, Oehrlein G S, Kushner M J 2004 J. Vac. Sci. Technol. A 22 511  Google Scholar Google Scholar[39] Zhao S X, Gao F, Wang Y N, Bogaerts A 2012 Plasma Sources Sci. Technol. 21 025008  Google Scholar Google Scholar[40] Huard C M, Sriraman S, Paterson A, Kushner M J 2018 J. Vac. Sci. Technol. A 36 06B101  Google Scholar Google Scholar[41] Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donkó Z 2011 Phys. Rev. Lett. 107 275001  Google Scholar Google Scholar
- 
				
    
    
    
- 
				
[1] Makabe T, Petrović Z 2006 Plasma Electronics: Applications in Microelectronic Device Fabrication (London: Taylor and Francis) pp3−9 [2] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley) pp1−750 [3] Agarwal A, Kushner M J 2009 J. Vac. Sci. Technol. A 27 37  Google Scholar Google Scholar[4] Sherpa S D, Ranjan A 2016 J. Vac. Sci. Technol. A 35 01A102  Google Scholar Google Scholar[5] Sekine M 2002 Appl. Surf. Sci. 192 270  Google Scholar Google Scholar[6] Kanarik K J, Tan S, Gottscho R A 2018 J. Phys. Chem. Lett. 9 4814  Google Scholar Google Scholar[7] Kanarik K J, Hudson E A, Gottscho R A, et al. 2015 J. Vac. Sci. Technol. A 33 020802  Google Scholar Google Scholar[8] Huang S, Huard C, Shim S, Nam S K, Song I C, Lu S, Kushner M J 2019 J. Vac. Sci. Technol. A 37 031304  Google Scholar Google Scholar[9] Takayoshi T, Hiroki K, HoriMasaru Z M, Akiko K, Toshihisa N, Nobuyoshi K 2016 J. Vac. Sci. Technol. A 35 01A103  Google Scholar Google Scholar[10] Booth J P, Cunge G, Chabert P, Sadeghi N 1999 J. Appl. Phys. 85 3097  Google Scholar Google Scholar[11] Williams K L, Martin I T, Fisher E R 2002 J. Am. Soc. MASS Spectrom. 13 518  Google Scholar Google Scholar[12] Flamm D L, Herb G K 1989 WITHDRAWN: Plasma Etching Technology—An Overview (Pittsburgh: Academic Press) pp1−89 [13] Sankaran A, Kushner M J 2004 J. Vac. Sci. Technol. A 22 1260  Google Scholar Google Scholar[14] Gasvoda R J, Van De Steeg A W, Bhowmick R, Hudson E A, Agarwal S 2017 ACS Appl. Mater. Interfaces 9 31067  Google Scholar Google Scholar[15] Stoffels W W, Stoffels E, Tachibana K 1998 J. Vac. Sci. Technol. A 16 87  Google Scholar Google Scholar[16] Cunge G, Booth J P 1999 J. Appl. Phys. 85 3952  Google Scholar Google Scholar[17] Zhang D, Kushner M J 2000 J. Vac. Sci. Technol. A 18 2661  Google Scholar Google Scholar[18] Metzler D, Engelmann S, Bruce R L, Oehrlein G S, Joseph E A, Li C 2015 J. Vac. Sci. Technol. A 34 01B101  Google Scholar Google Scholar[19] Winters H F, J.W.Coburn 1992 Surf. Sci. Rep. 14 161  Google Scholar Google Scholar[20] Sasaki K, Furukawa H, Suzuki C, Kadota K 1999 J. Appl. Phys. 38 954  Google Scholar Google Scholar[21] Kimizuka M, Ozaki Y, Watanabe Y 1997 J. Vac. Sci. Technol. B 15 66  Google Scholar Google Scholar[22] Capps N E, Mackie N M, Fisher E R 1998 J. Appl. Phys. 84 4736  Google Scholar Google Scholar[23] Fendel P, Francis A, Czarnetzki U 2005 Plasma Sources Sci. Technol. 14 1  Google Scholar Google Scholar[24] Booth J P, Abada H, Chabert P, Graves D B 2005 Plasma Sources Sci. Technol. 14 273  Google Scholar Google Scholar[25] Kanarik K J, Tan S, Yang W, et al. 2017 J. Vac. Sci. Technol. A 35 05C302  Google Scholar Google Scholar[26] Huard C M Sriraman S, Kanarik K J, Zhang Y, Kushner M J, Paterson A 2017 J. Vac. Sci. Technol. A 35 031306  Google Scholar Google Scholar[27] Heil B G, Czarnetzki U, Brinkmann R P, Mussenbrock T 2008 J. Phys. D. Appl. Phys. 41 165202  Google Scholar Google Scholar[28] Zhang Y, Kushner M J, Sriraman S, Marakhtanov A, Holland J, Paterson A 2015 J. Vac. Sci. Technol. A 33 031302  Google Scholar Google Scholar[29] Zhang Y, Zafar A, Coumou D J, Shannon S C, Kushner M J 2015 J. Appl. Phys. 117 233302  Google Scholar Google Scholar[30] Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Sources Sci. Technol. 27 55003  Google Scholar Google Scholar[31] Zhang Y R, Hu Y T, Wang Y N 2020 Plasma Sources Sci. Technol. 29 84003  Google Scholar Google Scholar[32] Schulze J, Derzsi A, Donkó Z 2011 Plasma Sources Sci. Technol. 20 045008  Google Scholar Google Scholar[33] Brandt S, Berger B, Donkó Z, Derzsi A, Schüngel E, Koepke M, Schulze J 2019 Plasma Sources Sci. Technol. 28 95021  Google Scholar Google Scholar[34] Wang X F, Jia W Z, Song Y H, Zhang Y Y, Dai Z L, Wang Y N 2017 Phys. Plasmas 24 113503  Google Scholar Google Scholar[35] Phelps A V, Petrović Z L 1999 Plasma Sources Sci. Technol. 8 06B101  Google Scholar Google Scholar[36] Tinck S, Boullart W, Bogaerts A 2009 J. Phys. D. Appl. Phys. 42 095204  Google Scholar Google Scholar[37] Brandt S, Berger B, Schüngel E, et al. 2016 Plasma Sources Sci. Technol. 25 045015  Google Scholar Google Scholar[38] Vasenkov A V, Li X, Oehrlein G S, Kushner M J 2004 J. Vac. Sci. Technol. A 22 511  Google Scholar Google Scholar[39] Zhao S X, Gao F, Wang Y N, Bogaerts A 2012 Plasma Sources Sci. Technol. 21 025008  Google Scholar Google Scholar[40] Huard C M, Sriraman S, Paterson A, Kushner M J 2018 J. Vac. Sci. Technol. A 36 06B101  Google Scholar Google Scholar[41] Schulze J, Derzsi A, Dittmann K, Hemke T, Meichsner J, Donkó Z 2011 Phys. Rev. Lett. 107 275001  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 8730
- PDF Downloads: 237
- Cited By: 0


 
					 
		         
	         
  
					 
												







 
							 DownLoad:
DownLoad: 
				 
							





 
							 
							 
							 
							 
							 
							 
							 
							 
							