Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance and low power consumption of two-dimensional SiC field effect transistors regulated and optimized with asymmetric electrodes

CHEN Jianju PENG Shuping DENG Shuling ZHOU Wen FAN Zhiqiang ZHANG Xiaojiao

Citation:

Performance and low power consumption of two-dimensional SiC field effect transistors regulated and optimized with asymmetric electrodes

CHEN Jianju, PENG Shuping, DENG Shuling, ZHOU Wen, FAN Zhiqiang, ZHANG Xiaojiao
cstr: 32037.14.aps.74.20250849
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • By using the first-principles method based on density functional theory and non-equilibrium Green’s function, the transport properties of 5-nm two-dimensional SiC field-effect transistors with asymmetric metal phase 1T-MoS2 sources and Pd drain electrodes are investigated. The influence mechanism of increasing the electrode layers of 1T-MoS2 and reducing the working electrical compression on the device performance is systematically analyzed. The Schottky barriers extracted from the zero bias and zero gate voltage transport spectra show that the valence band maximum of SiC in the channel regions of MFET, BFET and TFET are closer to the Fermi level after the source drain electrode has been balanced. Therefore, these three devices belong to P-type contact, and the height of the hole Schottky barrier increases with the increase of the number of 1T-MoS2 layers in the source electrode, which are 0.6, 0.76, and 0.88 eV, respectively. In addition, the increase of 1T-MoS2 layers will also lead to the increase of the density of states in the source electrode, thereby improving the transport coefficient at the band edge. The effects of the two on the transport capacity of the device are opposite, and there is a competitive relationship. The transfer characteristics of devices show that the wide band gap of SiC can significantly suppress the short channel effect, so that all devices can meet the requirements of Off-state. More importantly, the subthreshold swings of all devices at an operating voltage of 0.64 V are all close to the physical limit of 60 mV/dec. The ON-state currents of MFET, BFET and TFET can reach 1553, 1601 and 1702 μA/μm under the more stringent IRDS HP standard, and the three performance parameters, i.e. intrinsic gate capacitance, power-delay product and delay time, can greatly exceed the standards in the international road map of equipment and systems (IRDS) for high-performance devices. In addition, the working voltage of MFET can be reduced to 0.52 V, and the corresponding power-delay product and delay time are as low as 0.086 fJ/μm and 0.038 ps, which are only 14% and 4% of the IRDS standard. The asymmetric source drain electrode design strategy proposed in this work not only solves the problems about low On-state current and short channel effect restricting Off-state current of existing two-dimensional material field-effect transistors, but also provides an important solution for developing ultra-low power nano electronic devices in the post Moore era.
      Corresponding author: FAN Zhiqiang, zqfan@csust.edu.cn ; ZHANG Xiaojiao, xjzhang@hutb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074046).
    [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [2]

    赵俊, 姚璨, 曾晖 2024 物理学报 73 126802Google Scholar

    Zhao J, Yao C, Zeng H 2024 Acta Phys. Sin. 73 126802Google Scholar

    [3]

    Cui Y, Li B, Li J B, Wei Z M 2018 Sci. China-Phys. Mech. Astron. 61 016801Google Scholar

    [4]

    Wu D, Cao X H, Jia P J, et al. 2020 Sci. China-Phys. Mech. Astron. 63 276811Google Scholar

    [5]

    Liu Q, Huang X D, Chen J J, Wu D, Deng X Q, Fan Z Q, Xie H Q, Chen K Q 2025 Appl. Phys. Lett. 126 253502Google Scholar

    [6]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [7]

    Cui Y, Zhou Z Q, Li T, Wang K Y, Li J B, Wei Z M 2019 Adv. Funct. Mater. 29 1900040Google Scholar

    [8]

    Ren Y, Zhou X Y, Zhou G H 2021 Phys. Rev. B 103 045405Google Scholar

    [9]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [10]

    Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829Google Scholar

    [11]

    Quhe R G, Wang Y Y, Lu J 2015 Chin. Phys. B 24 088105Google Scholar

    [12]

    Huang X D, Liu Q, Xie H Q, Deng X Q, Fan Z Q, Wu D, Chen K Q 2023 IEEE Trans. Electron. Dev. 70 5462Google Scholar

    [13]

    郭颖, 潘峰, 姚彬彬, 孟豪, 吕劲 2024 物理学报 73 207304Google Scholar

    Guo Y, Pan F, Yao B B, Meng H, Lü J 2024 Acta Phys. Sin. 73 207304Google Scholar

    [14]

    Qu H Z, Zhang S L, Cao J, et al. 2024 Sci. Bull. 69 1427Google Scholar

    [15]

    Ma L K, Tao Q Y, Chen Y, Lu Z Y, Liu L T, Li Z W, Lu D L, Wang Y L, Liao L, Liu Y 2023 Nano Lett. 23 8303Google Scholar

    [16]

    Chabi S, Guler Z, Brearley A J, Benavidez A D, Luk T S 2021 Nanomaterials 11 1799Google Scholar

    [17]

    Zhou B H, Zhou B L, Liu G, et al. 2016 Physica B 500 106Google Scholar

    [18]

    Farokhnezhad M, Esmaeilzadeh M, Ahmadi S, Pournaghavi N 2015 J. Appl. Phys. 117 173913Google Scholar

    [19]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [20]

    邓旭良, 冀先飞, 王德君, 黄玲琴 2022 物理学报 71 058102Google Scholar

    Deng X L, Ji X F, Wang D J, Huang L Q 2022 Acta Phys. Sin. 71 058102Google Scholar

    [21]

    Xie H Q, Li J Y, Liu G, Cai X Y, Fan Z Q 2019 IEEE Trans. Electron Devices 66 5111Google Scholar

    [22]

    Xie H Q, Wu D, Deng X Q, Fan Z Q, Zhou W X, Xiang C Q, Liu Y Y 2021 Chin. Phys. B 30 117102Google Scholar

    [23]

    International roadmap for devices and systems (IRDS)(2023 Edition) https://irds.ieee.org

    [24]

    Okyay A K, Chui C O, Saraswat K C 2006 Appl. Phys. Lett. 88 063506Google Scholar

    [25]

    Li D W, Zhao M, Liang K, et al. 2020 Nanoscal 12 21610Google Scholar

    [26]

    Wu J Y, Chun Y T, Li S P, Zhang T, Chu D P 2018 ACS Appl. Mater. Interfaces 10 24613Google Scholar

    [27]

    Liu Z, Cao G, Guan Z Z, Tian Y, Liu J D, Chen J, Deng S Z, Liu F 2024 J. Mater. Chem. C 12 17395Google Scholar

    [28]

    Smidstrup S, Markussen T, Vancraeyveld P, et al. 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [29]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [30]

    Liu H, Neal A T, Ye P D 2012 ACS Nano 6 8563Google Scholar

    [31]

    Xie H Q, Li J Y, Liu G, Cai X Y, Fan Z Q 2020 IEEE Trans. Electron Devices 67 4130Google Scholar

    [32]

    Zhao P, Chauhan J, Guo J 2009 Nano Lett. 9 684Google Scholar

    [33]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

  • 图 1  金属相1T-MoS2和Pd金属为非对称源漏电极的5 nm二维SiC场效应晶体管的结构图

    Figure 1.  Detailed structure of 5 nm FET based on two-dimensional SiC with metal 1T-MoS2 contact (source) and palladium contact (drain).

    图 2  (a) MFET, (b) BFET和(c) TFET在零偏压和零栅极电压下的输运谱和投影局域态密度. 费米能级在能量标度中设置为零

    Figure 2.  Transmission spectra and the projected local density of states (LDOS) of (a) MFET, (b) BFET, and (c) TFET under zero-bias voltage and zero-gate voltage. The Fermi level is set to zero in the energy scale.

    图 3  MFET, BFET和TFET的转移特性(a), 开态电流(b)和亚阈值摆幅(c)

    Figure 3.  Transfer characteristic (a), ON-current (b), and subthreshold swing (c) of MFET, BFET and TFET, respectively.

    图 4  (a) MFET在0. 6 V, 0. 56 V, 0. 52 V, 0. 48 V和0. 44 V 工作电压VDD下的(a)转移特性, (b)开态电流和(c)亚阈值摆幅

    Figure 4.  (a) Transfer characteristic, (b) ON-current, and (c) subthreshold swing of MFET under VDD of 0.6 V, 0.56 V, 0.52 V, 0.48 V, and 0.44 V, respectively.

    表 1  MFET, BFET和TFET的性能与IRDS高性能设备要求的对比

    Table 1.  Performances of the MFET, BFET和TFET against the HP devices requirements of the IRDS.

    Cg/
    (fF·μm–1)
    PDP/
    (fJ·μm–1)
    τ/ps
    IRDS标准 0.39 0.49 0.96
    MFET (VDD = 0.64 V) 0.150 0.061 0.064
    BFET (VDD = 0.64 V) 0.155 0.063 0.064
    TFET (VDD = 0.64 V) 0.134 0.055 0.051
    MFET (VDD = 0.60 V) 0.146 0.071 0.056
    MFET (VDD = 0.56 V) 0.138 0.078 0.043
    MFET (VDD = 0.52 V) 0.142 0.086 0.038
    DownLoad: CSV
  • [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [2]

    赵俊, 姚璨, 曾晖 2024 物理学报 73 126802Google Scholar

    Zhao J, Yao C, Zeng H 2024 Acta Phys. Sin. 73 126802Google Scholar

    [3]

    Cui Y, Li B, Li J B, Wei Z M 2018 Sci. China-Phys. Mech. Astron. 61 016801Google Scholar

    [4]

    Wu D, Cao X H, Jia P J, et al. 2020 Sci. China-Phys. Mech. Astron. 63 276811Google Scholar

    [5]

    Liu Q, Huang X D, Chen J J, Wu D, Deng X Q, Fan Z Q, Xie H Q, Chen K Q 2025 Appl. Phys. Lett. 126 253502Google Scholar

    [6]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [7]

    Cui Y, Zhou Z Q, Li T, Wang K Y, Li J B, Wei Z M 2019 Adv. Funct. Mater. 29 1900040Google Scholar

    [8]

    Ren Y, Zhou X Y, Zhou G H 2021 Phys. Rev. B 103 045405Google Scholar

    [9]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [10]

    Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829Google Scholar

    [11]

    Quhe R G, Wang Y Y, Lu J 2015 Chin. Phys. B 24 088105Google Scholar

    [12]

    Huang X D, Liu Q, Xie H Q, Deng X Q, Fan Z Q, Wu D, Chen K Q 2023 IEEE Trans. Electron. Dev. 70 5462Google Scholar

    [13]

    郭颖, 潘峰, 姚彬彬, 孟豪, 吕劲 2024 物理学报 73 207304Google Scholar

    Guo Y, Pan F, Yao B B, Meng H, Lü J 2024 Acta Phys. Sin. 73 207304Google Scholar

    [14]

    Qu H Z, Zhang S L, Cao J, et al. 2024 Sci. Bull. 69 1427Google Scholar

    [15]

    Ma L K, Tao Q Y, Chen Y, Lu Z Y, Liu L T, Li Z W, Lu D L, Wang Y L, Liao L, Liu Y 2023 Nano Lett. 23 8303Google Scholar

    [16]

    Chabi S, Guler Z, Brearley A J, Benavidez A D, Luk T S 2021 Nanomaterials 11 1799Google Scholar

    [17]

    Zhou B H, Zhou B L, Liu G, et al. 2016 Physica B 500 106Google Scholar

    [18]

    Farokhnezhad M, Esmaeilzadeh M, Ahmadi S, Pournaghavi N 2015 J. Appl. Phys. 117 173913Google Scholar

    [19]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [20]

    邓旭良, 冀先飞, 王德君, 黄玲琴 2022 物理学报 71 058102Google Scholar

    Deng X L, Ji X F, Wang D J, Huang L Q 2022 Acta Phys. Sin. 71 058102Google Scholar

    [21]

    Xie H Q, Li J Y, Liu G, Cai X Y, Fan Z Q 2019 IEEE Trans. Electron Devices 66 5111Google Scholar

    [22]

    Xie H Q, Wu D, Deng X Q, Fan Z Q, Zhou W X, Xiang C Q, Liu Y Y 2021 Chin. Phys. B 30 117102Google Scholar

    [23]

    International roadmap for devices and systems (IRDS)(2023 Edition) https://irds.ieee.org

    [24]

    Okyay A K, Chui C O, Saraswat K C 2006 Appl. Phys. Lett. 88 063506Google Scholar

    [25]

    Li D W, Zhao M, Liang K, et al. 2020 Nanoscal 12 21610Google Scholar

    [26]

    Wu J Y, Chun Y T, Li S P, Zhang T, Chu D P 2018 ACS Appl. Mater. Interfaces 10 24613Google Scholar

    [27]

    Liu Z, Cao G, Guan Z Z, Tian Y, Liu J D, Chen J, Deng S Z, Liu F 2024 J. Mater. Chem. C 12 17395Google Scholar

    [28]

    Smidstrup S, Markussen T, Vancraeyveld P, et al. 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [29]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [30]

    Liu H, Neal A T, Ye P D 2012 ACS Nano 6 8563Google Scholar

    [31]

    Xie H Q, Li J Y, Liu G, Cai X Y, Fan Z Q 2020 IEEE Trans. Electron Devices 67 4130Google Scholar

    [32]

    Zhao P, Chauhan J, Guo J 2009 Nano Lett. 9 684Google Scholar

    [33]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

Metrics
  • Abstract views:  1494
  • PDF Downloads:  40
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2025
  • Accepted Date:  08 August 2025
  • Available Online:  12 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回