Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization of high-transconductance long-channel hydrogen-terminated polycrystal diamond field effect transistor

Zhang Jin-Feng Yang Peng-Zhi Ren Ze-Yang Zhang Jin-Cheng Xu Sheng-Rui Zhang Chun-Fu Xu Lei Hao Yue

Citation:

Characterization of high-transconductance long-channel hydrogen-terminated polycrystal diamond field effect transistor

Zhang Jin-Feng, Yang Peng-Zhi, Ren Ze-Yang, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Xu Lei, Hao Yue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Diamond has a great potential to be used in high-power, high-voltage and high-frequency semiconductor devices due to its wide band gap (5.5 eV), high breakdown field (> 10 MV/cm), high thermal conductivity (22 W/(cm·K)), and good carrier transport property. High-quality polycrystal diamond with large size wafers (up to several inches) is more easily obtained than the expensive monocrystal diamond plate with the size of only several mm2, and the good performance of electronic device on polycrystal diamond has been reported. So we fabricate a normally-on hydrogen-terminated polycrystal diamond field effect transistor with a 4-μm aluminum gate by using a gold mask process. The saturation drain current is 160 mA/mm, and the on-resistance is as low as 37.85 Ω ·mm. The maximum transconductance reaches 32 mS/mm, and the gate voltage range with the transconductance higher than 90% of its maximum value reaches 3 V (-2 V ≤ VGS ≤ -5 V). An Ohmic contact resistance of 5.52 Ω ·mm and a quite low square resistance of 5.71 kΩ/sq for the hydrogen-terminated diamond are extracted from the analysis of transmission line model measurement. On the basis of the analyses of the obtained results, the on-resistance of device dependent on gate voltage, and the capacitance-voltage data measured at the gate-source diode, we find that the hole sheet density under the gate reaches 1.56×1013 cm-2 at a gate voltage of -5 V, and the extracted effective mobility of the holes stays at about 170 cm2/(V·s) in the afore-mentioned gate voltage range with high transconductance. In summary, the high and broad transconductance peak and the low on-resistance are attributed to the relatively low gate-source and gate-drain series resistance, the high-density carriers in the channel, and the high-level mobility achieved over a large gate voltage range. The relevant research of finding proper dielectrics for the gate insulator and the passivation layer is under way to further improve the device performance.
      Corresponding author: Zhang Jin-Feng, jfzhang@xidian.edu.cn
    [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455

    [3]

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101 (in Chinese) [房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 228101]

    [4]

    Nebel C E, Rezek B, Zrenner A 2004 Diamond Relat. Mater. 13 2031

    [5]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [6]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 090112

    [7]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Dev. Lett. 33 1471

    [8]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570

    [9]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249

    [10]

    Wang J J, He Z Z, Yu C, Song X B, Wang H X, Lin F, Feng Z H 2016 Diamond Relat. Mater. 70 114

    [11]

    Matsudaira H, Miyamoto S, Ishizaka H, Umezawa H 2004 IEEE Electron Dev. Lett. 25 480

    [12]

    Feng Z H, Wang J J, He Z Z, Dun S B, Cui Y, Liu J L, Zhang P W, Hui G, Li C M, Cai S J 2013 Sci. China:Tech. Sci. 56 957

    [13]

    Gluche P, Aleksov A, Vescan A, Ebert W, Kohn E 1997 IEEE Electron Dev. Lett. 18 547

    [14]

    Ren Z, Zhang J, Zhang J, Zhang C, Chen D, Yang P, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 1302

    [15]

    Ren Z, Zhang J, Zhang J, Zhang C, Xu S, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 786

    [16]

    Zhang J F, Ren Z Y, Zhang J C, Zhang C F, Chen D Z, Xu S R, Li Y, Hao Y 2017 Jpn. J. Appl. Phys. 56 100301

    [17]

    Liu J W, Liao M Y, Imura M, Koide Y 2013 Appl. Phys. Lett. 103 092905

    [18]

    Liu J W, Liao M Y, Imura M, Oosato H, Watanabe E, Tanaka A, Iwai H, Koide Y 2013 J. Appl. Phys. 114 084108

    [19]

    Reeves G K, Harrison H B 2005 IEEE Electron Dev. Lett. 3 111

    [20]

    Moran D A J, Fox O J L, Mclelland H, Russell S, May P W 2011 IEEE Electron Dev. Lett. 32 599

    [21]

    Hirama K, Takayanagi H, Yamauchi S, Jingu Y, Umezawa H, Kawarada H 2007 IEEE International Electron Devices Meeting Washington, D.C., United States, December 10-12, 2007 p873

    [22]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796

    [23]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509

    [24]

    Winter R, Ahn J, Mcintyre P C, Eizenberg M 2013 J. Vac. Sci. Technol. B:Microelectron. Nanometer Struct. 31 030604

    [25]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741

    [26]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783

  • [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455

    [3]

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101 (in Chinese) [房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 228101]

    [4]

    Nebel C E, Rezek B, Zrenner A 2004 Diamond Relat. Mater. 13 2031

    [5]

    Maier F, Riedel M, Mantel B, Ristein J, Ley L 2000 Phys. Rev. Lett. 85 3472

    [6]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 090112

    [7]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Dev. Lett. 33 1471

    [8]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570

    [9]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249

    [10]

    Wang J J, He Z Z, Yu C, Song X B, Wang H X, Lin F, Feng Z H 2016 Diamond Relat. Mater. 70 114

    [11]

    Matsudaira H, Miyamoto S, Ishizaka H, Umezawa H 2004 IEEE Electron Dev. Lett. 25 480

    [12]

    Feng Z H, Wang J J, He Z Z, Dun S B, Cui Y, Liu J L, Zhang P W, Hui G, Li C M, Cai S J 2013 Sci. China:Tech. Sci. 56 957

    [13]

    Gluche P, Aleksov A, Vescan A, Ebert W, Kohn E 1997 IEEE Electron Dev. Lett. 18 547

    [14]

    Ren Z, Zhang J, Zhang J, Zhang C, Chen D, Yang P, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 1302

    [15]

    Ren Z, Zhang J, Zhang J, Zhang C, Xu S, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 786

    [16]

    Zhang J F, Ren Z Y, Zhang J C, Zhang C F, Chen D Z, Xu S R, Li Y, Hao Y 2017 Jpn. J. Appl. Phys. 56 100301

    [17]

    Liu J W, Liao M Y, Imura M, Koide Y 2013 Appl. Phys. Lett. 103 092905

    [18]

    Liu J W, Liao M Y, Imura M, Oosato H, Watanabe E, Tanaka A, Iwai H, Koide Y 2013 J. Appl. Phys. 114 084108

    [19]

    Reeves G K, Harrison H B 2005 IEEE Electron Dev. Lett. 3 111

    [20]

    Moran D A J, Fox O J L, Mclelland H, Russell S, May P W 2011 IEEE Electron Dev. Lett. 32 599

    [21]

    Hirama K, Takayanagi H, Yamauchi S, Jingu Y, Umezawa H, Kawarada H 2007 IEEE International Electron Devices Meeting Washington, D.C., United States, December 10-12, 2007 p873

    [22]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796

    [23]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509

    [24]

    Winter R, Ahn J, Mcintyre P C, Eizenberg M 2013 J. Vac. Sci. Technol. B:Microelectron. Nanometer Struct. 31 030604

    [25]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741

    [26]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783

  • [1] Liu Zi-Yi, Chu Fu-Qiang, Wei Jun-Jun, Feng Yan-Hui. Interface thermal conductance and phonon thermal transport characteristics of diamond/carbon nanotube interface. Acta Physica Sinica, 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [2] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] Xing Yu-Fei, Ren Ze-Yang, Zhang Jin-Feng, Su Kai, Ding Sen-Chuan, He Qi, Zhang Jin-Cheng, Zhang Chun-Fu, Hao Yue. Characteristics of hydrogen terminated single crystalline diamond logic inverter. Acta Physica Sinica, 2022, 71(8): 088102. doi: 10.7498/aps.71.20211447
    [4] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [5] Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei. Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [6] Zhang Jin-Feng, Xu Jia-Min, Ren Ze-Yang, He Qi, Xu Sheng-Rui, Zhang Chun-Fu, Zhang Jin-Cheng, Hao Yue. Characteristics of hydrogen-terminated single crystalline diamond field effect transistors with different surface orientations. Acta Physica Sinica, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [7] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [8] Ren Ze-Yang, Zhang Jin-Feng, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Quan Ru-Dai, Hao Yue. Characteristics of H-terminated single crystalline diamond field effect transistors. Acta Physica Sinica, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [9] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [10] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng. Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [11] Liu Chang, Lu Ji-Wu, Wu Wang-Ran, Tang Xiao-Yu, Zhang Rui, Yu Wen-Jie, Wang Xi, Zhao Yi. Gate length dependence of hot carrier injection degradation in short channel silicon on insulator planar MOSFET. Acta Physica Sinica, 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [12] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [13] Yan Bing-Min, Jia Xiao-Peng, Qin Jie-Ming, Sun Shi-Shuai, Zhou Zhen-Xiang, Fang Chao, Ma Hong-An. Characterization of typical infrared characteristic peaks of hydrogen in nitrogen and hydrogen co-doped diamond crystals. Acta Physica Sinica, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [14] Lin Xue-Ling, Pan Feng-Chun. The magnetism study of N-doped diamond. Acta Physica Sinica, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [15] Liu Feng-Bin, Wang Jia-Dao, Chen Da-Rong, Zhao Ming, He Guang-Ping. The microstructures of the diamond (100) surfaces with different density of hydrogen adsorption. Acta Physica Sinica, 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [16] Zhang Jun-Yan, Deng Tian-Song, Shen Xin, Zhu Kong-Tao, Zhang Qi-Feng, Wu Jin-Lei. Electrical and optical properties of single As-doped ZnO nanowire field effect transistors. Acta Physica Sinica, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [17] Liu Feng-Bin, Wang Jia-Dao, Chen Da-Rong. Electronic structures of hydrogenated and oxygenated boron-doped diamond films. Acta Physica Sinica, 2008, 57(2): 1171-1176. doi: 10.7498/aps.57.1171
    [18] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [19] Hu Xiao-Jun, Li Rong-Bin, Shen He-Sheng, He Xian-Chang, Deng Wen, Luo Li-Xiong. Investigation of defect properties in doped diamond films. Acta Physica Sinica, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [20] Li Rong-Bin, Dai Yong-Bing, Hu Xiao-Jun, Shen He-Sheng, He Xian-Chang. A molecular dynamics study of energetic particle bombardment on diamond. Acta Physica Sinica, 2003, 52(12): 3135-3141. doi: 10.7498/aps.52.3135
Metrics
  • Abstract views:  6357
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  04 September 2017
  • Accepted Date:  28 December 2017
  • Published Online:  20 March 2019

/

返回文章
返回