Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of H-terminated single crystalline diamond field effect transistors

Ren Ze-Yang Zhang Jin-Feng Zhang Jin-Cheng Xu Sheng-Rui Zhang Chun-Fu Quan Ru-Dai Hao Yue

Citation:

Characteristics of H-terminated single crystalline diamond field effect transistors

Ren Ze-Yang, Zhang Jin-Feng, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Quan Ru-Dai, Hao Yue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Diamond has been considered as an ultimate semiconductor, which has great potential applications in high power, high frequency semiconductor devices. Up to now, the twodimensional hole gas (2DHG) induced on the hydrogenterminated diamond surface is used most popularly to form electric conduction in diamond semiconductor at room temperature, due to the obstacle caused by lacking of easily-ionized dopants. A 200-nm-thick single crystalline diamond is grown by microwave plasma chemical vapor deposition on the type-Ib high-pressure high-temperature synthesized diamond substrate. Then the sample is treated in hydrogen plasma atmosphere to achieve hydrogen terminated diamond surface. The sample is characterized by X-ray photoelectron spectroscopy and atomic force microscope. After that, the normally-on hydrogen-terminated diamond field effect transistors are achieved. The device with a gate length of 2 μup m delivers a saturation leakage current of 96 mA/mm at gate voltage VGS=-6 V, at which, however, the gate leakage current is too large. The saturation current reaches 77 mA/mm at VGS=-3.5 V with safety. The device shows typical long-channel behavior. The gate voltage varies almost linearly. In the saturation region of the device, the transconductance (gm) increases near-linearly to 30 mS/mm with the increase of the gate voltage in a range of 5.9 V. Analyses of the on-resistance and capacitance-voltage (C-V) data show that the 2DHG under the gate achieves a density as high as 1.99×1013 cm-2, and the extracted channel carrier density and mobility are always kept increasing with VGS negatively shifting to -2.5 V. The nearlinearly increasing of gm in a large VGS range is attributed to high 2DHG density, quite a large gate capacitance (good gate control), and increased mobility. The relevant researches of improving the carrier mobility in the channel and of finding proper gate dielectrics to improve the forward gate breakdown voltage are underway.
      Corresponding author: Zhang Jin-Feng, jfzhang@xidian.edu.cn
    [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455

    [3]

    Zhang C M, Zheng Y B, Jiang Z G, L X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 232

    [4]

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101 (in Chinese)[房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安2015物理学报64 228101]

    [5]

    Yamasaki S, Gheeraert E, Koide Y 2014 MRS Bull. 39 499

    [6]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249

    [7]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783

    [8]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111

    [9]

    Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510

    [10]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112

    [11]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Dev. Lett. 33 1471

    [12]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570

    [13]

    Kawarada H 2012 Jpn. J. Appl. Phys. 51 090111

    [14]

    Matsudaira H, Miyamoto S, Ishizaka H, Umezawa H, Kawarada H 2004 IEEE Electron Dev. Lett. 25 480

    [15]

    Feng Z B, Chayahara A, Mokuno Y, Yamada H, Shikata S 2010 Diamond Relat. Mater. 19 171

    [16]

    Vardi A, Tordjman M, Del Alamo J A, Kalish R 2014 IEEE Electron Dev. Lett. 35 1320

    [17]

    Wang W, Hu C, Li S Y, Li F N, Liu Z C, Wang F, Fu J, Wang H X 2015 J. Nanomater. 2015 124640

    [18]

    Wang W, Fu K, Hu C, Li F N, Liu Z C, Li S Y, Lin F, Fu J, Wang J J, Wang H X 2016 Diamond Relat. Mater. 69 237

    [19]

    Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43

    [20]

    Calvani P, Corsaro A, Girolami M, Sinisi F, Trucchi D M, Rossi M C, Conte G, Carta S, Giovine E, Lavanga S, Limiti E, Ralchenko V 2009 Diamond Relat. Mater. 18 786

    [21]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796

    [22]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509

    [23]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741

    [24]

    Cappelluti F, Ghione G, Russell S A O, Moran D A J, Verona C, Limiti E 2015 Appl. Phys. Lett. 106 783

    [25]

    Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266

    [26]

    Hirama K, Takayanagi H, Yamauchi S, Jingu Y, Umezawa H, Kawarada H 2007 IEEE International Electron Devices Meeting Washington, D.C., United States, December 10-12, 2007 p873

  • [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455

    [3]

    Zhang C M, Zheng Y B, Jiang Z G, L X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 232

    [4]

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 228101 (in Chinese)[房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安2015物理学报64 228101]

    [5]

    Yamasaki S, Gheeraert E, Koide Y 2014 MRS Bull. 39 499

    [6]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249

    [7]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783

    [8]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111

    [9]

    Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510

    [10]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112

    [11]

    Russell S A O, Sharabi S, Tallaire A, Moran D A J 2012 IEEE Electron Dev. Lett. 33 1471

    [12]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570

    [13]

    Kawarada H 2012 Jpn. J. Appl. Phys. 51 090111

    [14]

    Matsudaira H, Miyamoto S, Ishizaka H, Umezawa H, Kawarada H 2004 IEEE Electron Dev. Lett. 25 480

    [15]

    Feng Z B, Chayahara A, Mokuno Y, Yamada H, Shikata S 2010 Diamond Relat. Mater. 19 171

    [16]

    Vardi A, Tordjman M, Del Alamo J A, Kalish R 2014 IEEE Electron Dev. Lett. 35 1320

    [17]

    Wang W, Hu C, Li S Y, Li F N, Liu Z C, Wang F, Fu J, Wang H X 2015 J. Nanomater. 2015 124640

    [18]

    Wang W, Fu K, Hu C, Li F N, Liu Z C, Li S Y, Lin F, Fu J, Wang J J, Wang H X 2016 Diamond Relat. Mater. 69 237

    [19]

    Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43

    [20]

    Calvani P, Corsaro A, Girolami M, Sinisi F, Trucchi D M, Rossi M C, Conte G, Carta S, Giovine E, Lavanga S, Limiti E, Ralchenko V 2009 Diamond Relat. Mater. 18 786

    [21]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796

    [22]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509

    [23]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741

    [24]

    Cappelluti F, Ghione G, Russell S A O, Moran D A J, Verona C, Limiti E 2015 Appl. Phys. Lett. 106 783

    [25]

    Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266

    [26]

    Hirama K, Takayanagi H, Yamauchi S, Jingu Y, Umezawa H, Kawarada H 2007 IEEE International Electron Devices Meeting Washington, D.C., United States, December 10-12, 2007 p873

  • [1] Liu Zi-Yi, Chu Fu-Qiang, Wei Jun-Jun, Feng Yan-Hui. Interface thermal conductance and phonon thermal transport characteristics of diamond/carbon nanotube interface. Acta Physica Sinica, 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [2] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] Xing Yu-Fei, Ren Ze-Yang, Zhang Jin-Feng, Su Kai, Ding Sen-Chuan, He Qi, Zhang Jin-Cheng, Zhang Chun-Fu, Hao Yue. Characteristics of hydrogen terminated single crystalline diamond logic inverter. Acta Physica Sinica, 2022, 71(8): 088102. doi: 10.7498/aps.71.20211447
    [4] Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei. Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [5] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [6] Zhang Jin-Feng, Xu Jia-Min, Ren Ze-Yang, He Qi, Xu Sheng-Rui, Zhang Chun-Fu, Zhang Jin-Cheng, Hao Yue. Characteristics of hydrogen-terminated single crystalline diamond field effect transistors with different surface orientations. Acta Physica Sinica, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [7] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [8] Zhang Jin-Feng, Yang Peng-Zhi, Ren Ze-Yang, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Xu Lei, Hao Yue. Characterization of high-transconductance long-channel hydrogen-terminated polycrystal diamond field effect transistor. Acta Physica Sinica, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [9] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [10] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng. Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [11] Liu Chang, Lu Ji-Wu, Wu Wang-Ran, Tang Xiao-Yu, Zhang Rui, Yu Wen-Jie, Wang Xi, Zhao Yi. Gate length dependence of hot carrier injection degradation in short channel silicon on insulator planar MOSFET. Acta Physica Sinica, 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [12] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [13] Yan Bing-Min, Jia Xiao-Peng, Qin Jie-Ming, Sun Shi-Shuai, Zhou Zhen-Xiang, Fang Chao, Ma Hong-An. Characterization of typical infrared characteristic peaks of hydrogen in nitrogen and hydrogen co-doped diamond crystals. Acta Physica Sinica, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [14] Lin Xue-Ling, Pan Feng-Chun. The magnetism study of N-doped diamond. Acta Physica Sinica, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [15] Liu Feng-Bin, Wang Jia-Dao, Chen Da-Rong, Zhao Ming, He Guang-Ping. The microstructures of the diamond (100) surfaces with different density of hydrogen adsorption. Acta Physica Sinica, 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [16] Zhang Jun-Yan, Deng Tian-Song, Shen Xin, Zhu Kong-Tao, Zhang Qi-Feng, Wu Jin-Lei. Electrical and optical properties of single As-doped ZnO nanowire field effect transistors. Acta Physica Sinica, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [17] Liu Feng-Bin, Wang Jia-Dao, Chen Da-Rong. Electronic structures of hydrogenated and oxygenated boron-doped diamond films. Acta Physica Sinica, 2008, 57(2): 1171-1176. doi: 10.7498/aps.57.1171
    [18] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [19] Hu Xiao-Jun, Li Rong-Bin, Shen He-Sheng, He Xian-Chang, Deng Wen, Luo Li-Xiong. Investigation of defect properties in doped diamond films. Acta Physica Sinica, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [20] Li Rong-Bin, Dai Yong-Bing, Hu Xiao-Jun, Shen He-Sheng, He Xian-Chang. A molecular dynamics study of energetic particle bombardment on diamond. Acta Physica Sinica, 2003, 52(12): 3135-3141. doi: 10.7498/aps.52.3135
Metrics
  • Abstract views:  7159
  • PDF Downloads:  311
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2017
  • Accepted Date:  23 August 2017
  • Published Online:  05 October 2017

/

返回文章
返回