Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor

Zhang Meng Yao Ruo-He Liu Yu-Rong Geng Kui-Wei

Citation:

Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor

Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei
PDF
HTML
Get Citation
  • With the development of the semiconductor manufacturing process, the size of the metal-oxide-semiconductor field-effect transistor (MOSFET) device has been on a tens-of-nanometer scale. The shot noise appears in the excess channel noise of the device, and the noise mechanism of the device begins to change gradually. Due to the fact that the electron temperature gradient is neglected in calculation and the significant enhancement of the lateral channel electric field are not taken into consideration, the traditional electron temperature model and the thermal noise model underestimate the effect of hot carrier effects, resulting in the underestimate of the thermal noise. Moreover, the traditional drain-source current model ignores the electron temperature gradient in the calculation and does not include the effect of the electron temperature on the mobility degradation effect either. Therefore, the calculation accuracy of the shot noise and the Fano factor on the basis of the traditional model will be reduced to a certain extent as the size of the device decreases, thus affecting the analysis of the noise mechanism of the device. In this paper, we establish the channel electron temperature model and the electron velocity model by solving the energy balance equation, and develop the drain source current model based on these two models. Moreover, the shot noise model and the thermal noise model suitable for devices below 40 nm are established based on the drain-source current model. Meanwhile, the Fano factor of the shot noise is calculated. The influence of the MOSFET device size on the noise mechanism and the Fano factor of the shot noise are also investigated when the device is under different bias voltages. The results show that the accuracy of the existing thermal noise model and the shot noise model decline as the device size decreases, which eventually leads the Fano factor of the shot noise to be overestimated. When the size of the NMOSFET device is below 20 nm, the shot noise affects the device noise in the strong inversion region. With the size decreasing, the characteristic of the noise mechanism of the NMOSFET device changes from the characteristic of single thermal noise to the common characteristic of both the thermal noise and the shot noise. When the NMOSFET device size is scaled down to 10 nm, the channel noise of the device can no longer be characterized by the thermal noise alone. Instead, the noise mechanism of the device changes and is characterized by both the channel thermal noise and the suppressed shot noise. The shot noise has become an important factor that contributes to the excessive noise in the device.
      Corresponding author: Yao Ruo-He, phrhyao@scut.edu.cn
    [1]

    Scholten A J, Tiemeijer L F, Duijnhoven A T A Z, Havens R J, Kort R, Langevelde R, Klaassen D B M, Jeamsaksiri W, Velghe R M D A 2005 International Conference on Noise and Fluctuations Salamanca, Spain, September 19−23, 2005 p735

    [2]

    贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪 2012 物理学报 61 127202Google Scholar

    Jia X F, Du L, Tang D H, Wang T L, Chen W H 2012 Acta Phys. Sin. 61 127202Google Scholar

    [3]

    Do V A, Dollfus P, Nguyen V L 2007 J. Comput. Electron. 6 125Google Scholar

    [4]

    Spathis C, Georgakopoulou K, Birbas A 2013 22nd International Conference on Noise and Fluctuations (ICNF) Montpellier, France, June 24−28, 2013 p1

    [5]

    Navid R 2007 J. Appl. Phys. 101 124501Google Scholar

    [6]

    Jia X F, He L 2017 AIP Adv. 7 055202Google Scholar

    [7]

    Teng H F, Jang S L, Juang M H 2003 Solid-State Electron. 47 2043Google Scholar

    [8]

    Chan L H K, Yeo K S, Chew K W J, Ong S N, Loo X S, Boon C C, Do M A 2012 IEEE Electron Device Lett. 33 1117Google Scholar

    [9]

    唐冬和, 杜磊, 王婷岚, 陈华, 贾晓菲 2011 物理学报 60 097202Google Scholar

    Tang D H, Du L, Wang T L, Chen H, Jia X F 2011 Acta Phys. Sin. 60 097202Google Scholar

    [10]

    Jeon J, Kang M 2016 Jpn. J. Appl. Phys. 55 054102Google Scholar

    [11]

    Jeon J, Lee J, Kim J, Park C H, Lee H, Oh H, Kang H K, Park B G, Shin H 2009 Symposium on VLSI Technology Honolulu, HI, USA, June 15−17, 2009 p48

    [12]

    Smit G D J, Scholten A J, Pijper R M T, Tiemeijer L F, Toorn R V D, Klaassen D B M 2014 IEEE Trans. Electron Devices 61 245Google Scholar

    [13]

    王军, 王林, 王丹丹 2016 物理学报 65 237102Google Scholar

    Wang J, Wang L, Wang D D 2016 Acta Phys. Sin. 65 237102Google Scholar

    [14]

    Wang J, Peng X M, Liu Z J, Wang L, Luo Z, Wang D D 2018 Chin. Phys. B 27 027201Google Scholar

    [15]

    Mahajan V M, Patalay P R, Jindal R P, Shichijo H, Martin S, Hou F C, Machala C, Trombley D E 2012 IEEE Trans. Electron Devices 59 197Google Scholar

    [16]

    Chen X S, Chen C H, Deen M J 2017 International Conference on Noise and Fluctuations (ICNF) Vilnius, Lithuania, June 20−13, 2017 p1

    [17]

    Spathis C, Birbas A, Georgakopoulou K 2015 AIP Adv. 5 087114Google Scholar

    [18]

    Wang J 2017 Electron. Lett. 53 1671Google Scholar

    [19]

    Barral V, Poiroux T, Saint-Martin J, Munteanu D, Autran J L, Deleonibus S 2009 IEEE Trans. Electron Devices 56 408Google Scholar

    [20]

    Shen Y F, Cui J, Mohammadi S 2017 Solid-State Electron. 131 45Google Scholar

    [21]

    Chen X S, Chih H C, Ryan L 2018 IEEE Trans. Electron Devices 65 1502Google Scholar

    [22]

    Lu Z Q, Lai F C 2009 Analog. Integr. Circ. Process 59 185Google Scholar

    [23]

    Lee K Y 2017 Solid-State Electron. 130 63Google Scholar

    [24]

    Chen C H, Deen M J 2002 IEEE Trans. Electron Devices 49 1484Google Scholar

    [25]

    艾罗拉 N 著 (张兴, 李映雪 译) 1999 用于VLSI模拟的小尺寸MOS器件模型 (北京: 科学出版社) 第248−251页

    Arora N (translated by Zhang X, Li Y X) 1999 MOSFET Models for VLSI Circuit Simulation (Beijing: Science Press) pp248−251 (in Chinese)

    [26]

    Lim K Y, Zhou X 2002 Microelectron. Reliab. 42 1857Google Scholar

    [27]

    Wei C Q, See G H, Zhou X, Chan L 2008 IEEE Trans. Electron Devices 55 2378Google Scholar

    [28]

    Ong S N, Yeo K S, Chew K W J, Chan L H K, Loo X S, Boon C C, Do M A 2012 Solid-State Electron. 68 32Google Scholar

    [29]

    Lundstrom M 2009 Fundamentals of Carrier Transport (2nd Ed.) (Cambridge: Cambridge University Press) pp230−293

    [30]

    Tsividis Y 2011 Operation and Modeling of the MOS Transistor (3rd Ed.) (New York: Oxford University Press) pp194−201

    [31]

    Ong S N, Yeo K S, Chew K W J, Chan L H K, Loo X S, Boon C C, Do M A 2012 Solid-State Electron. 72 8Google Scholar

    [32]

    Paasschens J C J, Scholten A J, van Langevelde R 2005 IEEE Trans. Electron Devices 52 2463Google Scholar

    [33]

    Li Z Y, Ma J G, Ye Y Z, Yu M Y 2009 IEEE Trans. Electron Devices 56 1300Google Scholar

    [34]

    张梦, 姚若河, 刘玉荣 2020 物理学报 69 057101Google Scholar

    Zhang M, Yao R H, Liu Y R 2020 Acta Phys. Sin. 69 057101Google Scholar

    [35]

    Chen C H, Chen D, Lee R, Lei P, Wan D 2013 Proceedings of the IEEE 2013 Custom Integrated Circuits Conference San Jose, CA, USA, September 22−25, 2013 p1

    [36]

    Yamaguchi K, Sakurai S, Tomizawa K 2010 Jpn. J. Appl. Phys. 49 024303Google Scholar

  • 图 1  NMOSFET器件的结构示意图

    Figure 1.  Structure diagram of the NMOSFET device.

    图 2  沟道中含虚拟直流源的晶体管结构图

    Figure 2.  Schematic diagram of the transistor with a fictitious dc source in the channel.

    图 3  全散粒噪声和热噪声随栅源偏置电压的变化(Leff = 40 nm)

    Figure 3.  Full-shot noise and thermal noise vs. gate-source bias voltage (Leff = 40 nm).

    图 4  散粒噪声抑制因子随栅源偏置电压的变化(Leff = 40 nm)

    Figure 4.  Fano factor of shot noise vs. gate-source bias voltage (Leff = 40 nm).

    图 5  全散粒噪声和热噪声随栅源偏置电压的变化(Leff = 20 nm)

    Figure 5.  Full-shot noise and thermal noise vs. gate-source bias voltage (Leff = 20 nm).

    图 6  散粒噪声抑制因子随栅源偏置电压的变化(Leff = 20 nm)

    Figure 6.  Fano factor of shot noise vs. gate-source bias voltage (Leff = 20 nm).

    图 7  全散粒噪声和热噪声随栅源偏置电压的变化(Leff = 10 nm)

    Figure 7.  Full-shot noise and thermal noise vs. gate-source bias voltage (Leff = 10 nm).

    图 8  散粒噪声抑制因子随栅源偏置电压的变化(Leff = 10 nm)

    Figure 8.  Fano factor of shot noise vs. gate-source bias voltage (Leff = 10 nm).

  • [1]

    Scholten A J, Tiemeijer L F, Duijnhoven A T A Z, Havens R J, Kort R, Langevelde R, Klaassen D B M, Jeamsaksiri W, Velghe R M D A 2005 International Conference on Noise and Fluctuations Salamanca, Spain, September 19−23, 2005 p735

    [2]

    贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪 2012 物理学报 61 127202Google Scholar

    Jia X F, Du L, Tang D H, Wang T L, Chen W H 2012 Acta Phys. Sin. 61 127202Google Scholar

    [3]

    Do V A, Dollfus P, Nguyen V L 2007 J. Comput. Electron. 6 125Google Scholar

    [4]

    Spathis C, Georgakopoulou K, Birbas A 2013 22nd International Conference on Noise and Fluctuations (ICNF) Montpellier, France, June 24−28, 2013 p1

    [5]

    Navid R 2007 J. Appl. Phys. 101 124501Google Scholar

    [6]

    Jia X F, He L 2017 AIP Adv. 7 055202Google Scholar

    [7]

    Teng H F, Jang S L, Juang M H 2003 Solid-State Electron. 47 2043Google Scholar

    [8]

    Chan L H K, Yeo K S, Chew K W J, Ong S N, Loo X S, Boon C C, Do M A 2012 IEEE Electron Device Lett. 33 1117Google Scholar

    [9]

    唐冬和, 杜磊, 王婷岚, 陈华, 贾晓菲 2011 物理学报 60 097202Google Scholar

    Tang D H, Du L, Wang T L, Chen H, Jia X F 2011 Acta Phys. Sin. 60 097202Google Scholar

    [10]

    Jeon J, Kang M 2016 Jpn. J. Appl. Phys. 55 054102Google Scholar

    [11]

    Jeon J, Lee J, Kim J, Park C H, Lee H, Oh H, Kang H K, Park B G, Shin H 2009 Symposium on VLSI Technology Honolulu, HI, USA, June 15−17, 2009 p48

    [12]

    Smit G D J, Scholten A J, Pijper R M T, Tiemeijer L F, Toorn R V D, Klaassen D B M 2014 IEEE Trans. Electron Devices 61 245Google Scholar

    [13]

    王军, 王林, 王丹丹 2016 物理学报 65 237102Google Scholar

    Wang J, Wang L, Wang D D 2016 Acta Phys. Sin. 65 237102Google Scholar

    [14]

    Wang J, Peng X M, Liu Z J, Wang L, Luo Z, Wang D D 2018 Chin. Phys. B 27 027201Google Scholar

    [15]

    Mahajan V M, Patalay P R, Jindal R P, Shichijo H, Martin S, Hou F C, Machala C, Trombley D E 2012 IEEE Trans. Electron Devices 59 197Google Scholar

    [16]

    Chen X S, Chen C H, Deen M J 2017 International Conference on Noise and Fluctuations (ICNF) Vilnius, Lithuania, June 20−13, 2017 p1

    [17]

    Spathis C, Birbas A, Georgakopoulou K 2015 AIP Adv. 5 087114Google Scholar

    [18]

    Wang J 2017 Electron. Lett. 53 1671Google Scholar

    [19]

    Barral V, Poiroux T, Saint-Martin J, Munteanu D, Autran J L, Deleonibus S 2009 IEEE Trans. Electron Devices 56 408Google Scholar

    [20]

    Shen Y F, Cui J, Mohammadi S 2017 Solid-State Electron. 131 45Google Scholar

    [21]

    Chen X S, Chih H C, Ryan L 2018 IEEE Trans. Electron Devices 65 1502Google Scholar

    [22]

    Lu Z Q, Lai F C 2009 Analog. Integr. Circ. Process 59 185Google Scholar

    [23]

    Lee K Y 2017 Solid-State Electron. 130 63Google Scholar

    [24]

    Chen C H, Deen M J 2002 IEEE Trans. Electron Devices 49 1484Google Scholar

    [25]

    艾罗拉 N 著 (张兴, 李映雪 译) 1999 用于VLSI模拟的小尺寸MOS器件模型 (北京: 科学出版社) 第248−251页

    Arora N (translated by Zhang X, Li Y X) 1999 MOSFET Models for VLSI Circuit Simulation (Beijing: Science Press) pp248−251 (in Chinese)

    [26]

    Lim K Y, Zhou X 2002 Microelectron. Reliab. 42 1857Google Scholar

    [27]

    Wei C Q, See G H, Zhou X, Chan L 2008 IEEE Trans. Electron Devices 55 2378Google Scholar

    [28]

    Ong S N, Yeo K S, Chew K W J, Chan L H K, Loo X S, Boon C C, Do M A 2012 Solid-State Electron. 68 32Google Scholar

    [29]

    Lundstrom M 2009 Fundamentals of Carrier Transport (2nd Ed.) (Cambridge: Cambridge University Press) pp230−293

    [30]

    Tsividis Y 2011 Operation and Modeling of the MOS Transistor (3rd Ed.) (New York: Oxford University Press) pp194−201

    [31]

    Ong S N, Yeo K S, Chew K W J, Chan L H K, Loo X S, Boon C C, Do M A 2012 Solid-State Electron. 72 8Google Scholar

    [32]

    Paasschens J C J, Scholten A J, van Langevelde R 2005 IEEE Trans. Electron Devices 52 2463Google Scholar

    [33]

    Li Z Y, Ma J G, Ye Y Z, Yu M Y 2009 IEEE Trans. Electron Devices 56 1300Google Scholar

    [34]

    张梦, 姚若河, 刘玉荣 2020 物理学报 69 057101Google Scholar

    Zhang M, Yao R H, Liu Y R 2020 Acta Phys. Sin. 69 057101Google Scholar

    [35]

    Chen C H, Chen D, Lee R, Lei P, Wan D 2013 Proceedings of the IEEE 2013 Custom Integrated Circuits Conference San Jose, CA, USA, September 22−25, 2013 p1

    [36]

    Yamaguchi K, Sakurai S, Tomizawa K 2010 Jpn. J. Appl. Phys. 49 024303Google Scholar

  • [1] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [2] Lan Kang, Du Qian, Kang Li-Sha, Jiang Lu-Jing, Lin Zhen-Yu, Zhang Yan-Hui. The electron transfer properties of an open double quantum dot based on a quantum point contact. Acta Physica Sinica, 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [3] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [4] Zhang Jin-Feng, Xu Jia-Min, Ren Ze-Yang, He Qi, Xu Sheng-Rui, Zhang Chun-Fu, Zhang Jin-Cheng, Hao Yue. Characteristics of hydrogen-terminated single crystalline diamond field effect transistors with different surface orientations. Acta Physica Sinica, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [5] Zhang Meng, Yao Ruo-He, Liu Yu-Rong. A channel thermal noise model of nanoscaled metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [6] Song Zhi-Jun, Lü Zhao-Zheng, Dong Quan, Feng Jun-Ya, Ji Zhong-Qing, Jin Yong, Lü Li. Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures. Acta Physica Sinica, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [7] Yan Zhi-Meng, Wang Jing, Guo Jian-Hong. Low-bias oscillations of shot noise as signatures of Majorana zero modes. Acta Physica Sinica, 2018, 67(18): 187302. doi: 10.7498/aps.67.20172372
    [8] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [9] Zhang Jin-Feng, Yang Peng-Zhi, Ren Ze-Yang, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Xu Lei, Hao Yue. Characterization of high-transconductance long-channel hydrogen-terminated polycrystal diamond field effect transistor. Acta Physica Sinica, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [10] Ren Ze-Yang, Zhang Jin-Feng, Zhang Jin-Cheng, Xu Sheng-Rui, Zhang Chun-Fu, Quan Ru-Dai, Hao Yue. Characteristics of H-terminated single crystalline diamond field effect transistors. Acta Physica Sinica, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [11] Liu Chang, Lu Ji-Wu, Wu Wang-Ran, Tang Xiao-Yu, Zhang Rui, Yu Wen-Jie, Wang Xi, Zhao Yi. Gate length dependence of hot carrier injection degradation in short channel silicon on insulator planar MOSFET. Acta Physica Sinica, 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [12] Jia Xiao-Fei, Du Lei, Tang Dong-He, Wang Ting-Lan, Chen Wen-Hao. Research on shot noise suppression in quasi-ballistic transport nano-mOSFET. Acta Physica Sinica, 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [13] Zhuang Yi-Qi, Bao Jun-Lin, Sun Peng, Wang Ting-Lan, Chen Wen-Hao, Du Lei, He Liang, Chen Hua. Shot noise measurement methods in electronic devices. Acta Physica Sinica, 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [14] Liang Zhi-Peng, Dong Zheng-Chao. Shot noise in the semiconductor/ferromagnetic d-wave superconductor tunnel junction. Acta Physica Sinica, 2010, 59(2): 1288-1293. doi: 10.7498/aps.59.1288
    [15] Shi Zhen-Gang, Wen Wei, Chen Xiong-Wen, Xiang Shao-Hua, Song Ke-Hui. Shot noise spectrum of a double quantum dot charge qubit. Acta Physica Sinica, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [16] Zhang Jun-Yan, Deng Tian-Song, Shen Xin, Zhu Kong-Tao, Zhang Qi-Feng, Wu Jin-Lei. Electrical and optical properties of single As-doped ZnO nanowire field effect transistors. Acta Physica Sinica, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [17] Chen Hua, Du Lei, Zhuang Yi-Qi. Monte Carlo simulation of shot noise in the coherent and mesoscopic system. Acta Physica Sinica, 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [18] Chen Chang-Hong, Huang De-Xiu, Zhu Peng. Infrared absorption of VO2 based Mott transition field effect transistor dependent on optical phonon in α-SiN: H films. Acta Physica Sinica, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [19] Zhang Zhi-Yong, Wang Tai-Hong. Luttinger parameter of carbon nanotubes investigated by shot noise experiment. Acta Physica Sinica, 2004, 53(3): 942-946. doi: 10.7498/aps.53.942
    [20] DONG ZHENG-CHAO, XING DING-YU, DONG JIN-MING. SHOT NOISE IN FERROMAGNET-SUPERCONDUCTOR TUNNELING JUNCTION. Acta Physica Sinica, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
Metrics
  • Abstract views:  8676
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  05 April 2020
  • Accepted Date:  23 May 2020
  • Available Online:  01 June 2020
  • Published Online:  05 September 2020

/

返回文章
返回