Search

Article

x

Vol. 69, No. 17 (2020)

2020-09-05

Special topic

柔性电子

柔性电子专题编者按  

DOI: 10.7498/aps.69.170101 

       柔性电子技术是利用柔性或可伸缩器件及其集成系统发展起来的一种新兴电子技术. 这种柔性器件或系统是基于在柔性基底上集成大面积、大规模的不同材料和不同功能部件, 实现具有可变形、重量轻和功能可重构的特点. 这种新技术可以像传统的刚性电子器件一样实现数据的采集、处理、传输和显示. 基于其卓越的整合性, 可以实现“万物互联”, 为“物联网”提供强大的工具, 将给信息、能源、医疗等领域带来应用革命. 该技术为医疗保健、环境监测、显示和人机交互、能源、通信和无线互联网等领域开辟了新的前景. 

      柔性电子从广义上讲, 包括了柔性显示、柔性电子、柔性传感与柔性能源. 在柔性传感方面, 许多智能化的检测设备已经大量采用了各种各样的传感器, 其应用早已渗透到诸如工业生产、海洋探测、环境保护、医学诊断、生物工程、智能家居等方方面面. 针对特殊环境, 特别是人体健康参数的测量需求, 普通传感器面临新的挑战. 新型传感器技术已向以下趋势发展: 开发新材料、新工艺和开发新型传感器; 实现传感器的高灵敏度和稳定性, 同时实现优异的生物相容与可降解性能. 同时, 在力学方面, 希望传感器具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点. 随着柔性基质材料的发展, 满足上述各类趋势特点的柔性传感器在此基础上应运而生. 

     此外, 柔性能源器件的制备是柔性电子器件发展的关键技术之一. 可穿戴电子器件的能源供给问题目前仍亟待解决. 自驱动电子器件概念的提出, 为解决续航问题提供了重要思路. 基于摩擦起电与静电感应耦合效应的摩擦纳米发电机具有成本低、选材广、柔性等特点, 可以收集人体的低频、不规律能量并高效地转化为电能, 在可穿戴能源器件领域有着巨大的发展潜力. 另外, 在能源存储方面, 柔性/可拉伸超级电容器由于具备尺寸小、结构多变、安全性高以及舒适度好等优点, 成为可穿戴电子设备中供电单元的热门候选者之一. 与传统电容器、锂离子等相比, 超级电容器可以提供更高的功率密度, 更快的充电速度, 以及更长的使用周期, 这些参数对于可穿戴电子的进一步优化与发展至关重要. 

       柔性电子除具有强大的应用背景之外, 其独特的性质对材料与器件加工工艺提出了全新的要求, 这将是应用电子、物理、光学的新课题. 此外, 如何在柔性介观非有序的介质上, 实现可控力学、声、光、电、磁的功能以及对新机制的描述与定量研究, 无疑将成为统计物理学、软介观物理学、材料学的新挑战. 

        为让广大物理学工作者进一步了解该领域的进展, 我们邀请了国内若干活跃在该领域前沿的中青年专家撰稿, 合成这样一期以短篇综述为主的专题, 较为全面和深入地介绍该领域已取得的部分成果以及最新进展. 从研究内容上, 可大致分为三部分: 第一部分主要涉及柔性/可穿戴传感材料及其器件的研究; 第二部分集中在柔性神经电子元器件的研究; 第三部分集中在柔性自驱动能源及其储能器件方面的探索. 第一类研究包括: 1) 自驱动柔性生物医学传感器的研究进展; 2) 柔性压力传感器的原理及应用; 3) 蚕丝基可穿戴传感器的研究进展; 4) 用于触觉感知的自供能可拉伸压电橡胶皮肤电子器件; 5) 柔性压力传感器. 第二类柔性电子元器件, 包括: 1) 可拉伸导体的最新进展; 2) 蛋白质基忆阻器研究进展; 3) 基于水热法制备三氧化钼纳米片的人工突触器件. 第三类研究的综述包括: 1) 可拉伸超级电容器的研究进展: 电极、电解质和器件; 2) 基于摩擦纳米发电机的可穿戴能源器件; 3) 基于压电纳米发电机的柔性传感与能量存储器件; 4) 柔性纤维状超级电容器的研究进展.希望这个专题能够为国内柔性电子相关领域研究的学术交流做一些贡献.

新加坡国立大学 刘向阳; 厦门大学 郭文熹 Acta Physica Sinica.2020, 69(17).
SPECIAL TOPIC—Flexible electronics
Preface to the special topic: Flexible electronics
2020, 69 (17): 170101. doi: 10.7498/aps.69.170101
Abstract +
Triboelectric nanogenerator based wearable energy harvesting devices
Ding Ya-Fei, Chen Xiang-Yu
2020, 69 (17): 170202. doi: 10.7498/aps.69.20200867
Abstract +
With the miniaturization and functionalization of electronic devices, wearable electronics has drawn generally attention, but the energy supply for wearable electronics becomes one of the most burning questions. The triboelectric nanogenerator based on the coupling effects of electrostatic induction and triboelectrification, which has low cost and wide material selection attributes, proves to be a powerful technology for converting low-frequency mechanical energy into electricity. In this review, the four fundamental modes of triboelectric nanogenerator and the physical mechanism of contact-electrification are presented first. Then, we introduce the research progress of wearable from the direct and indirect aspects. Directly wearable triboelectric nanogenerator can be integrated into a skin while indirectly wearable device is only allowed to assemble into user’s clothing or its appendages. In addition, the power management circuits for driving electronic devices and energy storage are summarized. Finally, we discuss the current bottlenecks and present our perspectives on future directions in this field.
Flexible sensor and energy storage device based on piezoelectric nanogenerator
Shen Mao-Liang, Zhang Yan
2020, 69 (17): 170701. doi: 10.7498/aps.69.20200784
Abstract +
Low-cost, easy-to-deploy and self-driven flexible electronic devices and flexible sensors will bring new opportunities for developing the internet of things, wearable, and implantable technologies, especially human health monitoring, tactile perception and intelligent robot electronic skin. Therefore, it is necessary to provide high-performance and continuous energy supply modules for flexible electronic devices and flexible sensors. Nanogenerator can achieve high-performance sensing and energy storage characteristics by regulating the polarization electric field at the interface and surface, which is indeed an ideal adaptation choice. In particular, flexible piezoelectric nanogenerator can convert mechanical energy into electrical energy by piezoelectric properties, and can be applied to various deformation conditions such as bending, stretching and compression, which provides a novel solution to the problems of limited energy supply and insufficient performance in flexible electronic and self-driven technology. The piezoelectric output response of piezoelectric nanogenerator can be used not only as an energy signal to self-drive flexible electronic devices, but also as a sensing signal that can be integrated into the self-driven flexible sensors such as gas sensor, pressure sensor and biological sensor. Predictably, self-powered gas sensor with energy harvesting and high-sensitivity sensing, and self-charging power cell with energy harvesting and efficient storage will become hot topics. In this paper, we review the recent developments of flexible piezoelectric nanogenerators in flexible sensors and energy storage devices.
Recent progress on stretchable conductors
He Wen-Qian, Zhou Xiang, Liu Zun-Feng
2020, 69 (17): 177401. doi: 10.7498/aps.69.20200632
Abstract +
Flexible stretchable conductors have attracted wide attention due to their promising applications in information, energy, medical, national defense and other fields, where elastic conductors undergo large deformation and form intimate contact with three-dimensional irregular surfaces. Many conductive nanomaterials with excellent properties have been developed over the past decades, such as metal nanowires, carbon nanotubes, graphene and conductive polymers. One efficient method to prepare stretchable conductor is to disperse conductive materials into elastic matrix to form a conductive network, showing stretchability and conductivity. As an alternative way, elastic conductors show stable resistance change during stretch by use of buckled or serpentine structural design for rigid conductors. This review summarizes recent advances in flexible elastic conductors in the past five years. In addition, some flexible electronic devices such as light-emitting diodes, sensors, heaters, etc. are also discussed and the development direction in the field of flexible electronic devices is also suggested.
Sensing mechanisms and applications of flexible pressure sensors
Hou Xing-Yu, Guo Chuan-Fei
2020, 69 (17): 178102. doi: 10.7498/aps.69.20200987
Abstract +
As an emerging type of electronic devices, flexible pressure sensors have more advantages than rigid sensors in human-computer interaction, healthcare, and tactile sensing in robots. These advantages, however, require the materials to be thin and soft. For applications in human bodies, the sensor needs to be biocompatible and mechanically match the biotissue such that they can be conformable to the skin textures, or be implanted in the body. Sensitivity, response time, limitation of detection, and stability are basic properties to evaluate a pressure sensor. Recently, some other parameters of flexible pressure sensors including pressure response range, pressure resolution, space resolution, and stretchability have also been studied, enabling such devices to have a wider application prospect. This review introduces about the state of the arts of flexible pressure sensors in recent years, and is intended to discuss the sensing mechanisms, properties, and potential applications of flexible tactile sensors. At last, we talk about the future of flexible tactile sensors.
Recent advances in flexible fiber-shaped supercapacitors
Zhang Xin, Chen Xing, Bai Tian, You Xing-Yan, Zhao Xin, Liu Xiang-Yang, Ye Mei-Dan
2020, 69 (17): 178201. doi: 10.7498/aps.69.20200159
Abstract +
With the continuous development of today's flexible electronic products, fiber-shaped supercapacitors (fiber-shaped supercapacitors, FSCs) have attracted continuous attention. That’s due to their advantages such as light weight, controllable volume, good bending and tensile properties, and weavable. Fiber-shaped supercapacitors, with their unique one-dimensional fiber structure, can be combined with various other electrical or power generation devices into multifunctional integrated fiber-shaped electronic devices, which have huge application prospects in the field of wearable electronic textiles. This article describes the latest developments in fiber-shaped supercapacitor devices. Firstly, different fiber substrates are introduced and their advantages and disadvantages are analyzed as well. It also summarizes the electrode materials such as carbon materials, metal oxides and sulfides, conductive polymers, and hybrid nanocomposites of fiber-shaped supercapacitors. By analyzing the differences and characteristics of different electrode materials, it is shown that different electrode materials are suitable for different uses in fiber-shaped supercapacitors. Then we also summarize the application of fiber-shaped supercapacitors in cooperation with other devices to form integrated devices, including integration with general power devices, sensors, other photoelectric conversion devices and other power generation devices into hybrid devices and applied to practice. Finally, by summarizing the recent development results of fiber-shaped supercapacitors and the current challenges in the field, some current bottlenecks and problems of fiber-shaped supercapacitors are proposed, and some suggestions and ideas for the future development direction are put forward.
Stretchable self-powered epidermal electronics from piezoelectric rubber for tactile sensing
Yao Kuan-Ming, Yao Jing-Yi, Hai Zhao, Li Deng-Feng, Xie Zhao-Qian, Yu Xin-Ge
2020, 69 (17): 178701. doi: 10.7498/aps.69.20200664
Abstract +
Soft, thin, skin-integrated electronics, i.e. epidermal electronics, has become a hotspot in biomedical engineering and drawn great attention for their applications in health monitoring, disease diagnosis and therapies. However, soft powering system is still a challenge for epidermal electronics, since the thickness and weight of the existing flexible energy harvesting and storage devices are very hard to meet the requirements of epidermal electronics. Here we present a stretchable and flexible self-powering epidermal electronic device based on rubbery piezoelectric composites formed by a ternary blend of PDMS, lead zirconate titanate (PZT) and graphene. The mixed PZT rubber is soft, ultra-thin and light weight and intrinsically stretchable. By combining soft PDMS substrate and advanced mechanics designed interdigital electrodes/interconnects, a stretchable and skin-integrated device for tactile sensing is realized. The soft device can not only accurately measure a board range of force from 2.84 kPa to 11.72 kPa but also exhibit great flexibility that can maintain stable performance under various mechanical deformations, such as bending, stretching and twisting. On-skin demonstration tests reveal that this self-powering device can clearly distinguish the differences among mechanical stimulations such as touching, poking, tapping and hitting. Furthermore, the self-powering nature of these devices allows energy to be harvested from daily body actives, for instance, hard touching by hand can lighten up to 15 light-emitting diodes.
Research progress of protein-based memristor
Shi Chen-Yang, Min Guang-Zong, Liu Xiang-Yang
2020, 69 (17): 178702. doi: 10.7498/aps.69.20200617
Abstract +
Memristor, as a new type of electronic component that can realize high density, multi-function, low power consumption, and multi-level data storage, has brought significant changes to the field of circuit structure design, information storage theory, and artificial synapses simulation. In a wide range of memristors, the protein-based memristors have unparalleled natural advantages in other cutting-edge information technology fields such as implantable computing, human-computer interaction, and human-computer integration due to their controllable degradation, rich and cheap raw materials, and biocompatibility. Therefore, the memristor is considered as the most potential candidate for building the next generation of high-tech information electronic device. In this article, the latest research progress of protein based memristors is comprehensively reviewed. The research progress of other proteins, including the widely studied egg albumen and artificial recombinant protein with excellent performance are first summarized, and then the research process of silk fibroin-based memristors, the performance improvement of silk fibroin-based memristors brought by functional strategies are comprehensively introduced. The Structure-activity relationship between structure and performance of functionalized silk fibroin is analyzed. Finally, the performance of the protein-based memristor is comprehensively analyzed, and the future development opportunities of the green electronic device are also prospected.
Recent advances in silk-based wearable sensors
Li Sheng-You, Liu Jia-Rong, Wen Hao, Liu Xiang-Yang, Guo Wen-Xi
2020, 69 (17): 178703. doi: 10.7498/aps.69.20200818
Abstract +
In recent years, wearable electronics has received extensive attention, providing new opportunities for implementing health monitoring, human disease diagnosis and treatment, and intelligent robotics. Sensor is one of the key components of wearable electronics. Silk (Bombyx Mori) material shows unique features including high yield, excellent tensile strength (0.5–1.3 GPa) and toughness ((6–16) × 104 J/kg), good biocompatibility, programmable/controllable biodegradability, novel dielectric properties, and various material formats. With the rapid development of biomaterials and related manufacturing technologies, advanced silk-based materials have been studied and applied to wearable sensors. Here, we firstly introduce the five-level structure of silk fibroin from bottom to top and characteristics of silk-based advanced materials, and then review the research progress of silk-based advanced materials in wearable sensors in recent years, including mechanical sensors, electrophysiological sensors, temperature sensors and humidity sensors. The working mechanism, structure and performance of different sensors, the role of silk proteins in them, and their applications in health monitoring are discussed and summarized. Finally, the challenges and future prospects of silk-based wearable sensors in practical applications are put forward.
Research progress of self-powered flexible biomedical sensors
Tan Pu-Chuan, Zhao Chao-Chao, Fan Yu-Bo, Li Zhou
2020, 69 (17): 178704. doi: 10.7498/aps.69.20201012
Abstract +
In recent years, flexible biomedical sensors have received extensive attention and achieved great development. However, the battery life of flexible biomedical sensors is limited, which has become a bottleneck restricting the development of flexible biomedical sensors. The concept of self-powered flexible biomedical sensor provides an important idea for solving battery life problem. This review summarizes the research progress of self-powered flexible biomedical sensors over the years. Besides, this review discusses several self-powered flexible biomedical sensors based on different power generation technologies and different materials, as well as their respective advantages and scope of application. Further, some representative research works are selected and discussed in detail. Self-powered flexible biomedical sensors can be divided into wearable self-powered flexible biomedical sensors and implantable self-powered flexible biomedical sensors according to their working positions, which can be used to collect important physiological indicators such as human respiration, pulse, temperature, etc. Finally, this paper also predicts and evaluates the future research direction of self-powered flexible biomedical sensors.

EDITOR'S SUGGESTION

Stretchable supercapacitors: Electrodes, electrolytes, and devices
Shao Guang-Wei, Guo Shan-Shan, Yu Rui, Chen Nan-Liang, Ye Mei-Dan, Liu Xiang-Yang
2020, 69 (17): 178801. doi: 10.7498/aps.69.20200881
Abstract +
Stretchable supercapacitors have received more and more attention due to their potential applications in wearable electronics and health monitoring. The stretchable supercapacitors have not only the advantages of high power density, long cycle life, safety and low cost of ordinary supercapacitor, but also good flexibility and stretchability to integrate well with wearable system. In this review, according to the structures of supercapacitors, the methods of preparing stretchable electrodes/devices reported in the literature are categorized and analyzed. We particularly highlight the key findings of creating stretchable electrodes/devices, which include elastic polymer substrates, tensile structure design and elastic polymer + tensile structure. In addition, the research progress of multi-functional stretchable supercapacitors and high elastic gel electrolytes are discussed. Finally, the challenges to the future development of the stretchable supercapacitors are analyzed and summarized. We expect to stimulate more research in creating stretchable supercapacitors for wide practical applications.
REVIEW

EDITOR'S SUGGESTION

Research progress of hydrogen/helium effects in metal materials by positron annihilation spectroscopy
Zhu Te, Cao Xing-Zhong
2020, 69 (17): 177801. doi: 10.7498/aps.69.20200724
Abstract +
An important feature of the irradiation process in nuclear system is the formation of large displacement cascades, in which primary knock-on atoms and secondary particles formed by nuclear reactions generate a considerable number of defects such as dislocations, vacancies and transmutation gases. Predicting and mitigating the adverse effects of damage defect and transmutation hydrogen/helium produced by high-dose neutron irradiation on the mechanical properties of structural materials is the most significant challenge facing the current development of nuclear energy. To solve this problem, understanding the interaction mechanism between hydrogen/helium atoms and micro-defects is a very important breakthrough. Precursors of helium/ hydrogen bubble, small helium/hydrogen-filled vacancy complexes, may play an important role in realizing bubble nucleation, and the formation of these complexes is affected by many factors. However, only a little information about helium/hydrogen-vacancy clusters’ behavior has been obtained in metal/alloy materials. This is mainly limited by the characterization methods, such as the limited resolution of transmission electron microscope (TEM). Helium/hydrogen-vacancy clusters cannot be observed by TEM before the formation of helium bubbles. Applications of positron annihilation to the study of crystal lattice defects started around 1970s, when it was realized that positron annihilation is particularly sensitive to vacancy-type defects and that annihilation properties manifest the nature of each specific type of defect. In recent years, with the continuous development of slow positron beam and the improvement of various experimental testing methods based on slow positron beam, the application of positron annihilation technology has been extended to the research field of hydrogen/helium behavior in metal materials, which plays an important role in studying the hydrogen/helium radiation damage to metal materials. In this review, the basic principles of positron annihilation spectroscopy are briefly discussed and the three most important measurement methods used for hydrogen/helium effect studies are described (i.e. positron annihilation lifetime spectroscopy (PALS), Doppler broadening spectroscopy (DBS), coincidence Doppler broadening spectroscopy (CDBS)). In this paper, the application of positron annihilation spectroscopy to the study of hydrogen/helium behavior in metal materials is reviewed in combination with the reported relevant developments (including our research group’s achieve-ments). The advantages of three commonly used measurement methods in the following specific studies are highlighted: 1) The estimation of bubble size and concentration; 2) irradiation damage induced by hydrogen/helium; 3) the evolution behavior of irradiation-induced defects in the heat treatment process; 4) sy-nergistic effect of hydrogen and helium.

EDITOR'S SUGGESTION

Theoretical and computational study on defects of solar cell materials
Yin Yuan, Li Ling, Yin Wan-Jian
2020, 69 (17): 177101. doi: 10.7498/aps.69.20200656
Abstract +
Defect control of semiconductors is critical to the photoelectric conversion efficiency of solar cells, because the defect and doping directly determine the carrier distribution, concentration, charge transfer and non-radiative recombination of photogenerated carriers. The defect types, structures and properties are complicated in the real semiconductors, which makes experimental characterization difficult, especially for the point defects. In this review, we firstly introduce the approaches of defect calculation based on the first-principles calculations, and take a series of typical solar cell materials for example, including CdTe, Cu(In/Ga)Se2, Cu2ZnSnS(Se)4 and CH3NH3PbI3. The elucidating of computations is also conducible to understanding and controlling the defect properties of solar cell materials in practical ways. The comparative study of these solar cell materials indicates that their efficiency bottlenecks are closely related to their defect properties. Unlike the traditional four-coordination semiconductor, the unique “defect tolerance” characteristic shown in the six-coordination perovskite materials enables the battery to have a high photoelectric conversion efficiency even when it is prepared not under harsh experimental conditions. Based on the first principles, the defect calculation plays an increasingly important role in understanding the material properties of solar cells and the bottleneck of device efficiency. At present, the calculation of defects based on the first principle mainly focuses on the formation energy and transition energy levels of defects. However, there is still a lack of researches on the dynamic behavior of carriers, especially on the non-radiative recombination of carriers, which directly affects the photoelectric conversion efficiency. Recently, with the improvement of computing power and the development of algorithms, it is possible to quantitatively calculate the electron-ion interaction, then quantitatively calculate the carriers captured by defect state. These methods have been used to study the defects of solar cells, especially perovskite solar cells. In this direction, how to combine these theoretical calculation results with experimental results to provide a more in-depth understanding of experimental results and further guide experiments in improving the efficiency of solar cells is worthy of further in-depth research.
GENERAL
An improved Kalman filter time scale algorithm for atomic clock noise variation
Song Hui-Jie, Dong Shao-Wu, Wang Xiang, Zhang Yu, Wang Yan-Ping
2020, 69 (17): 170201. doi: 10.7498/aps.69.20191920
Abstract +
Kalman filter time scale algorithm is a method of real-time estimating atomic clock state. It is of great practical value in the time-keeping work. Reliable Kalman filter time scale algorithm requires a reliable atomic clock state model, a random model and a reasonable estimation method. However, it is difficult to construct accurate state model when the noises of atomic clock change. The random model is generally based on the prior statistical information about atomic clock noises, and the prior statistical information may be distorted. In the process of time scale calculation, the noises of atomic clocks need estimating in the Kalman filter time scale algorithm, which is quantified according to the intensity of the noise. With the change of the external environment or aging of atomic clock, the noise intensity may change, resulting in the disturbance of atomic clock state estimation in the Kalman filter time scale algorithm, which further affects the accuracy and stability of the time scale. On the other hand, the error of the noise intensity estimation of atomic clocks will also affect the performance of time scale. Therefore, it is necessary to control the disturbance caused by the variation of noise intensity or the estimation error of noise intensity. In this regard, an adaptive factor is introduced to improve the Kalman filter time scale algorithm, and another adaptive factor is introduced into the state prediction covariance matrix in Kalman filter time scale algorithm. And the values of the two adaptive factors are calculated in real time by using statistics to control the growth of the state prediction covariance. The disturbance of state estimation of atomic clock is reduced, and the accuracy and stability of time scale are improved. In this paper, the sampling interval of simulated data and the measured data are 300 s and 3600 s respectively. The simulated data and measured data are used to calculate the overlapping Allan deviations of the time scale. The results show that the improved Kalman filter time scale algorithm can improve the stability of the sampling time more than 14400 s compared with classical Kalman filter time scale algorithm, and affect the stability of the sampling time less than 14400 s. The degree of influence is related to the weight algorithm of atomic clock. The measured data in this paper are treated by the “predictability” weighting algorithm, which guarantees the long-term stability of time scale. So the simulated data and measured data show that compared with classical Kalman filter time scale algorithm, the improved Kalman filter clock time scale algorithm can improve the accuracy and the long-term stability of time scale.

EDITOR'S SUGGESTION

Synchronization in coupled oscillators with multiplex interactions
Wang Xue-Bin, Xu Can, Zheng Zhi-Gang
2020, 69 (17): 170501. doi: 10.7498/aps.69.20200394
Abstract +
The study of synchronizations in coupled oscillators is very important for understanding the occurrence of self-organized behaviors in complex systems. In the traditional Kuramoto model that has been extensively applied to the study of synchronous dynamics of coupled oscillators, the interaction function among oscillators is pairwise. The multiplex interaction mechanism that describes triple or multiple coupling functions has been a research focus in recent years. When the multiplex coupling dominates the interactions among oscillators, the phase oscillator systems can exhibit the typical abrupt desynchronization transitions. In this paper, we extensively investigate the synchronous dynamics of the Kuramoto model with mean-field triple couplings. We find that the abrupt desynchronization transition is irreversible, i.e. the system may experience a discontinuous transition from coherent state to incoherent state as the coupling strength deceases adiabatically, while the reversed transition cannot occur by adiabatically increasing the coupling. Moreover, the coherent state strongly depends on initial conditions. The dynamical mechanism of this irreversibility is theoretically studied by using the self-consistency approach. The neutral stability of ordered state is also explained through analyzing the linear-stability of the incoherent state. Further studies indicate that the system may experience a cascade of desynchronized standing-wave transitions when the width of the distribution function of natural frequencies of oscillators is changed. At the critical coupling, the motion of coupled oscillators in high-dimensional phase space becomes unstable through the saddle-node bifurcation and collapses into a stable low-dimensional invariant torus, which corresponds to the standing-wave state. The above conclusions and analyses are further extended to the case of multi-peak natural-frequency distributions. The results in this work reveal various collective synchronous states and the mechanism of the transitions among these macroscopic states brought by multiplex coupling. This also conduces to the in-depth understanding of transitions among collective states in other complex systems.

COVER ARTICLE

In-beam γ-rays of back-streaming white neutron source at China Spallation Neutron Source
Ren Jie, Ruan Xi-Chao, Chen Yong-Hao, Jiang Wei, Bao Jie, Luan Guang-Yuan, Zhang Qi-Wei, Huang Han-Xiong, Wang Zhao-Hui, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Gu Min-Hao, Han Chang-Cai, Han Zi-Jie, He Guo-Zhu, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Xie Li-Kun, Yang Yi-Wei, Yi Han, Yu Li, Yu Tao, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong
2020, 69 (17): 172901. doi: 10.7498/aps.69.20200718
Abstract +
The back-streaming neutron beam line (Back-n) was built in the beginning of 2018, which is part of the China Spallation Neutron Source (CSNS). The Back-n is the first white neutron beam line in China, and its main application is for nuclear data measurement. For most of neutron-induced nuclear reaction measurements based on white neutron facilities, the beam of gamma rays accompanied with neutron beam is one of the most important experimental backgrounds. The back streaming neutron beam is transported directly from the spallation target to the experimental station without any moderator or shielding, the flux of the in-beam gamma rays in the experimental station is much larger than those of these facilities with neutron moderator and shielding. Therefore, it is necessary to consider the influence of in-beam gamma rays on the experimental results. Studies of the in-beam gamma rays are carried out at the back-n. Monte-Carlo simulation is employed to obtain the energy distribution and the time structure of the in-beam gamma rays. According to the simulation results, when the neutron flight time is longer than 1.0 μs the energy distribution of the in-beam gamma rays does not vary with flight time. Therefore, the time structure of these gamma rays can be measured without the correction of the detection efficiency. In this work, the time structure of the in-beam gamma rays in the low neutron energy region is measured by both direct and indirect methods. In the direct measurement, a 6Li loaded ZnS(Ag) scintillator is located on the neutron beam line and the time of flight method is used to determine the time structure of neutrons and gamma rays. The gamma rays are separated from neutrons with pulse-shape discrimination. The black filter method is used to verify the particle discrimination results. In the indirect measurement, the C6D6 scintillation detectors are used to measure the gamma rays scattered off a Pb sample on the way of the neutron beam. The time structure of the in-beam gamma rays is derived from that of the scattered gamma rays. The experimental results are in good agreement with the simulations with the time-of-flight between 12 μs and 2.0 ms. Besides, according to the simulation results, the intensity of the in-beam gamma rays is 1.21 × 106 s–1·cm–2 in the center of the experimental station 2 of Back-n, which is 76.5 m away from the spallation target of CSNS.
ATOMIC AND MOLECULAR PHYSICS
The theoretical study of terahertz-streaking photoionization for ultrafast imaging of density matrix in rubidium atom
Ling Zhong-Huo, Wang Shuai, Zhang Jin-Cang, Zhang Yi-Zhu, Yan Tian-Min, Jiang Yu-Hai
2020, 69 (17): 173401. doi: 10.7498/aps.69.20200218
Abstract +
Terahertz-streaking photoionization can be exploited to resolve ultrafast quantum beating and reconstruct the ultrafast evolution of density matrix. Here, we propose an experimental strategy to implement the method merely with the tabletop femtosecond system and magneto-optical trap reaction microscopy. The probe pulse consists of an ultraviolet pulse with pulse duration of about 30 fs and a strong terahertz pulse with strength of about 2.6 fs in rubidium-atom superposition. The population and coherence terms of the density matrix can be projected into different positions of the photoelectron momentum distribution. The reconstruction algorithm was designed to acquire the ultrafast evolution of density matrix from the time-dependent photoelectron spectrum. The experimental conception can demonstrate the newly proposed transient spectral method only with the commercial femtosecond laser system and magneto-optical trap reaction microscopy, thus preventing the complex laser system, such as extreme ultraviolet free electron lasers and attosecond higher harmonics, allowing a new metrology to explore the coherence dynamics of quantum systems.
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS
Multiband plasmon-induced transparency based on nanometals-graphene hybrid model
Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing
2020, 69 (17): 174201. doi: 10.7498/aps.69.20200200
Abstract +
In this paper, we have proposed a multiband plasmon-induced transparency (PIT) hybrid model based on silver nanorods, silver nanodisk and graphene. The electromagnetic properties are numerically and theoretically studied in this paper. The research results show that using the bright-bright mode coupling between silver nanorods and silver nanodisk, based on the weak hybridization effect induced by the detuning of each bright mode unit, the single-band, dual-band and triple-band PIT effects can be achieved. By changing the chemical potential of graphene, the tunability of the resonant frequencies and transmission amplitude can be achieved simultaneously in each PIT model. When the chemical potential of graphene is 0 in each of the three PIT models, that is, without graphene, the resonant frequencies of its transparent window is the smallest. As the chemical potential of graphene increases from 0 to 0.5 eV, the resonant notches of the transparent peak in all three PIT models are both enhanced and blue shifted. Especially, when the chemical potential is 0.5 eV, the absolute increment of resonance notch generated by the sing-band PIT transparent window is $\Delta f = 1.01$ THz and the relative increment is 2.91% while the largest absolute increment of resonance notch generated by the dual-band PIT transparent window is $\Delta f = 1.77$ THz and the largest relative increment is 5.97%. In the next place, when the chemical potential is 0.3 eV, the absolute increment of resonance notch generated by the triple-band PIT transparent window is $\Delta f = 1.26$ THz and the relative increment of the window is 4.02%. On the other hand, when graphene is existent in none of the three models, the resonance between silver nanodisk and silver nanorods, and the resonance between silver nanorods and silver nanorods are the weakest and the transmission amplitude of transparent window is the strongest in each of the three PIT models. Thereafter, with the increase of chemical potential, the number of surface charges on the silver nanodisk and silver nanorods increases and the intensity of electric field is enhanced. At the same time, the coupling strength between silver nanodisk and silver nanorods, and the coupling strength between silver nanorods and silver nanorods are also gradually enhanced. As a result, the transmission amplitude of each PIT model will gradually decrease. Especially, when the chemical potential is 0.5 eV, the amplitude modulation depth of the single-band PIT transparent peak is 20.2% and the amplitude modulation depth of the two transparent windows in dual-band PIT model are 31.2% and 24.2% respectively. In addition, when the chemical potential is 0.3 eV, the amplitude modulation depths of the three transparent windows in triple-band PIT model are 29.8%, 33.8%, and 20.5%. Finally, the sensing properties of the single-band PIT model are further investigated. The results show that the sensitivities of the model with refractive index of different background materials reach 3906.6 nm/RIU all, which provides a theoretical reference for the design of multiband filtering and ultrasensitive sensors.
Technique of detecting optical components based on coherent modulation imaging
Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang
2020, 69 (17): 174202. doi: 10.7498/aps.69.20200224
Abstract +
As one of the coherent diffractive imaging (CDI) techniques, coherent modulation imaging (CMI) is a lensless phase imaging technology with diffraction limited resolution in theory. Unlike multiple measurement phase retrieval algorithms, the CMI can achieve fast convergence speed with single-shot measurement by introducing a pre-characterized random phase modulator. Besides, it has simple structure without reference wave based on iterative engine. Despite the fact that the matured phase imaging can be used to implement the on-line wave diagnostics of laser pulse, in this work we accurately measure the face-type of optical component with peak-to-valley value below 0.5λ (λ = 632.8 nm) by using the CMI for the first time. In order to verify its measurement capability, 10 quartz windows with a diameter of 80 mm and PV value between 0.1λ and 0.5λ are repeatedly measured. Compared with the results of commercial interferometer, the root mean square error (Root MSE) of the peak-to-valley (PV) ratio of the results of the CMI is 0.0305λ, and the Root MSE of the root mean square (RMS) is 0.00522λ. The measurement accuracy of PV ratio and RMS can reach 0.1λ and 0.01λ respectively. In addition, the parallel flat with PV ratio = λ/20 is measured and analyzed with CMI, and its noise level is also analyzed. Considering that the potential improvement of CMI is available in the future, the CMI is expected to become a new technique for optical metrology with high precision, which is different from interferometry.
Controlling collision properties of solitons in five-level M-type triple quantum dot electromagnetically induced transparency medium by inter-dot tunneling coupling
Yang Xuan, Wang Yin, Wang Deng-Long, Ding Jian-Wen
2020, 69 (17): 174203. doi: 10.7498/aps.69.20200141
Abstract +
Experimentally, the triple-quantum-dots system can be produced on a GaAs $ \left[ {001} \right]$ substrate by molecular beam epitaxy or in-situ atomic layer precise etching, thus enabling a triangle triple quantum dot (QD) aligned along the $ \left[ {1\bar 10} \right]$ direction. According to this, we first propose a five-level M-type triple QD electromagnetically induced transparency (EIT) model which consists of a triple QD molecule interacting with a weakly linearly polarized probe field with two orthogonal polarization components under the action of a magnetic field parallel to the light propagation direction. Subsequently, by using the multiple-scale method combined with the Fourier integration method, the propagation characteristics of the optical solitons and the collision characteristics of two solitons in the system are studied. It is shown that the optical solitons can form and propagate stably in this system under the action of quantum inter-dot tunneling coupling whose formation mechanism is different from the soliton-forming mechanism in ultra-cold atomic, single QD, and double QD EIT system. This is because the necessary condition for forming a soliton is to use a strong light beam to modulate a weak light beam, whether it is in an ultra-cold atom system, or a single quantum dot EIT medium or a double quantum dot EIT medium. In a word, the formation of soliton in previous EIT systems needs an additional strong controlling field, while the five-level M-type triple QD EIT system is dependent on the inter-dot tunneling.Since the solitons can propagate stably, the collision properties of the solitons may be studied in this system. Finally, by applying Fourier integration method, it is found that the collision behaviors of two solitons are determined by their initial phase difference. When their initial phase difference is 0, the collision behavior between the solitons is periodic elastic collision. While their initial phase difference is separately $ {\rm{\pi }}/4$, $ \text{π}/2$, and $ \text{π}$, the collision behaviors exhibit separation phenomenon due to repulsive effect. Interestingly, the collision characteristics of two solitons are controlled by the inter-dot tunneling strength. With the increase of inter-dot tunneling strength, the collision period of two solitons with the initial phase difference of 0 decreases, and the repulsive force of two solitons with the initial phase difference being separately π/4, π/2 and π increases. This provides some theoretical basis for experimentally controlling the soliton dynamical properties in semiconductor quantum dot devices.

EDITOR'S SUGGESTION

Analysis and measurement of high-order photon correlations of light fields
Guo Yan-Qiang, Wang Li-Jing, Wang Yu, Fang Xin, Zhao Tong, Guo Xiao-Min
2020, 69 (17): 174204. doi: 10.7498/aps.69.20200325
Abstract +
High-order photon correlations of light fields are important for characterizing the quantum nature. Since Hanbury Brown and Twiss conducted the pioneering experiments in the 1950s, the HBT effect has inspired extensive research on high-order photon correlation in quantum optics, quantum information, and quantum imaging. The Single-photon counting module is one of the most widely used single-photon detectors. Due to its high detection efficiency and low dark counts in the visible and near-infrared region, it is reasonably chosen for basic research on quantum mechanics. Many researches have demonstrated that the maximum value of second-order photon correlation g(2)(τ) at zero delay (τ = 0) can be used to distinguish different light fields. Therefore, the HBT scheme containing two single photon detectors have been widely used in many advanced studies, such as space interference, ghost imaging, single photon detection with high efficiency, etc. However, higher-order photon correlations g(n) (n > 2) can reveal more measurable characteristics of light fields, such as information about the non-Gaussian scattering process, the skewness and kurtosis of photon number distribution, etc. When the extended HBT scheme is used to measure higher-order photon correlations, the experimental conditions including quantum efficiency and background noise greatly affect the photon correlation measurement. The influences of the counting rate and resolution time of the detection system on the measurements are also very important and cannot be ignored. Therefore, the comprehensive considering of various influence factors is necessary for accurately measuring the high-order photon correlations and also a challenge.In this paper, we present a method based on double Hanbury Brown-Twiss scheme for the accurate measuring of high-order photon correlations g(n) (n > 2). The system consists of four single photon counting modules and is used to detect and analyze the joint distribution probability of temporal photon correlation. Considering the effects of the background noise and overall efficiency, theoretically, we analyze the correlations of the third- and fourth-order photon with the incident light intensity, squeezing parameter and photon number respectively for thermal state, coherent state, squeezed vacuum state, and Fock state. Meanwhile, experimentally we study the influences of resolution time and counting rate on correlations of the coherent state and thermal state with third- and fourth-order photon. On condition that the resolution time is 210 ns and the counting rate is 80 kc/s, the correlations of third and fourth-order photon with the thermal state at zero time delay are accurately measured, and the relative statistical deviations of the measured vales from the theoretical values are 0.3% and 0.8%, respectively. In addition, the third- and fourth-order photon correlations of the thermal state at different delay times are also observed. It is demonstrated that the high-order photon correlations of light fields are measured accurately by comprehensively analyzing various influencing factors. This technique provides a promising and useful tool to investigate quantum correlated imaging and quantum coherence of light fields.
Theoretical study on the modulation characteristics of THz wave by two-dimensional black phosphorus
Song Ke-Chao, Huo Shuai-Nan, Tu Dong-Ming, Hou Xin-Fu, Wu Xiao-Jing, Wang Ming-Wei
2020, 69 (17): 174205. doi: 10.7498/aps.69.20200105
Abstract +
Using the Delude model. we theoretically calculate the dispersion of conductivity with frequency in the orthogonal direction of the two-dimensional black phosphorus (2D BP) x and y direction in the THz band. We find that the conductivity in the x direction is more sensitive to the electron doping concentration. The difference between 2D BP conductivities in both directions leads to the difference in dielectric constant which in turn can modulate light in different polarization directions. Using 2D BP to polarize the THz wave, the 2D BP-SiO2 periodic sandwich structure is designed. The three-dimensional electromagnetic field simulation software CST Microwave Studio can be used to calculate the regulation characteristics of this structure to THz wave. It is found that this structure has different polarization directions, and the incident THz wave has different absorption. By changing the thickness of the underlying SiO2 layer in the structure it is found that the absorption rate of this structure also changes accordingly. When the polarization direction of the THz pulse is parallel to the x axis, the absorption rate first increases and then decreases. When d5 = 9.5 μm, the absorption rate reaches 93% near 3.86 THz; when the polarization direction of the THz pulse is parallel to the y axis, the absorption rate gradually increases. The absorption peak has a significant red shift.
Effect of spin levels broadening in electronic localized states of oxygen-doped nanosilocon localized state
Li Xin, Huang Zhong-Mei, Liu Shi-Rong, Peng Hong-Yan, Huang Wei-Qi
2020, 69 (17): 174206. doi: 10.7498/aps.69.20200336
Abstract +
It is interesting that the electronic spin gap is opened in the localized states of nanosilicon doped with oxygen, where spin splitting of the individual two-level ±1/2 states isolated in the localized states increases by 1−2 order of magnitude (on the order of 100 meV). The opening spin level effect in the localized states is observed in experiment, which originates from the twin states of quantum vibration measured in the photovaltaic system consisting of the quantum dots and the quantum layers of silicon prepared by using a pulsed laser in an oxygen environment. The opening spin level effect in the localized states is investigated by using density functional theory (DFT) in the simulation models of the quantum dots and the quantum layers of silicon with Si=O bond or Si—O—Si bond on surface. The detailed simulating calculations show that the broader splitting gaps of the electronic spin polarization confined at the individual impurity atoms occur in the localized states, which are consistent with experimental results. A physical model is built to explain the opening spin levels effect, in which the opening spin level effect mechanism in the localized states originates from the quantum confinement at doping atom. The opening spin level effect will improve the fidelity of information stored and processed within such a spin qubit.
Analysis of ArF excimer laser system discharge characteristics in different buffer gases
Wang Qian, Zhao Jiang-Shan, Fan Yuan-Yuan, Guo Xin, Zhou Yi
2020, 69 (17): 174207. doi: 10.7498/aps.69.20200087
Abstract +
Excimer laser is the current mainstream source of international semiconductor lithography. The stable operation of the laser system directly affects the working efficiency of the semiconductor lithography machine, so it is very important to optimize the laser system. The buffer gas commonly used in ArF excimer laser systems is He, Ne. In the early years, Shinjin Nagai and Mieko Ohwa have studied the output characteristics of the system when using He or Ne as a buffer gas from the aspect of pump efficiency and gain coefficient, and pointed out that using Ne instead of He has no obvious advantages in terms of efficiency. However, when Ne is used as the buffer gas, the reaction between Ne and electrons is more complicated. In addition to direct ionization and excitation reactions, it also contains a large amount of step ionization and secondary ionization, which releases free electrons. The stability of the system is improved, when Ne is used as the buffer gas. The ArF excimer laser system discharge characteristics in different buffer gases are analyzed based on fluid model in the paper. The role of photoionization is discussed. The simulation results show that the width of the electron depletion layer and the cathode sheath are both smaller, and the discharge stability is higher when Ne is used as the buffer gas. The expansion of the discharge region is accelerated and the threshold voltage of the discharge is reduced by adding Xe into Ne to trigger photoionization. The excimer laser discharge process is very complicated and is affected by many factors. Only two factors of the buffer gas and the photoionization process are studied in this paper. The simulation model will be extended from one-dimensional case to two-dimensional case in the future, and multiple physical factors of the ArF excimer laser system will be considered.
Photoluminescence spectrum study of defects of potassium dihydrogen phosphate crystals irradiated by different laser fluences
Li Xiang-Cao, Liu Bao-An, Li Meng, Yan Chun-Yan, Ren Jie, Liu Chang, Ju Xin
2020, 69 (17): 174208. doi: 10.7498/aps.69.20200482
Abstract +
The laser-induced damage to potassium dihydrogen phosphate (KDP) crystal restricts the development of high power laser systems and attract the attention of researchers. The defects are essential for the understanding of the laser-induced damage to KDP crystals. The defects in KDP crystals are commonly related to $ \rm H_2PO_4^{-} $ groups. The defects of KDP crystal have been studied extensively, however the changes of defects of KDP crystal with low fluence and high fluence have not been investigated sufficiently. The synchrotron radiation technology is a sensitive method of detecting the defects. The vacuum ultraviolet photoluminescence (PL) emission spectra can provide microscopic structural changes in KDP crystals. In this work, we investigate the defects of KDP crystals irradiated with different fluences by vacuum ultraviolet PL emission spectra. The vacuum ultraviolet spectra are obtained at the 4B8 beam line in Beijing synchrotron radiation facilities. Each KDP crystal spectrum is measured from 200 to 400 nm and 400 to 800 nm. The emission spectra of KDP crystal irradiated with different fluences are fitted for illustration. Each Gaussian curve represents a kind of defect. Comparing the retired components with KDP crystal irradiated by 11.5 J/cm2, the new band at 231.55 nm emerges in the spectra of KDP crystal irradiated by 9.0 J/cm2. The intrinsic luminescence band is assigned to the radiative annihilation of self-trapped excitons. According to our previous work, the short chain structures mainly exist in the crystal irradiated by 9.0 J/cm2, and the long chain structure is mainly in the crystal irradiated by 11.5 J/cm2. The retired components have the short, medium and long chain. The length of P—O bond in the short chain is shorter than that in the long chain structure. The overlap between phosphorus 3s orbitals and oxygen 2p increases, and the radiative annihilation of STEs becomes stronger. So the band at 231.55 nm emerges in the spectrum of KDP crystal irradiated by 9.0 J/cm2. It suggests that the structure of the retired component and the structure of KDP crystal irradiated by 9.0 J/cm2 are different. The results provide an insight into the defects in KDP crystals. It is meaningful to study the mechanism of laser-induced damage to KDP crystal.
Two-parameter fitting of temperature profile and its characteristics in turbulent convection
Fang Ming-Wei, He Jian-Chao, Bao Yun
2020, 69 (17): 174701. doi: 10.7498/aps.69.20200073
Abstract +
The two-dimensional thermal convection with three-Pr series Ra number is calculated by using the highly efficient parallel DNS method. The two-parameter temperature boundary layer theory, with the pulsation influence taken into account, is used to fit the temperature boundary layer profile for the field averaged over all calculations. The distributions of the fitted parameters a and c are obtained. Parameter a determines the basic characteristics of the temperature profile, and parameter c plays a role in correcting the outer area of the temperature profile. Therefore, the simulation results of the temperature boundary layer profile is well matched with the theoretical solution in the 5 boundary layers. The variation characteristic of parameter c is the opposite to that of parameter a, and the c value decreases as the a value increases. The fitting parameters for the different Pr numbers have different distribution characteristics as the Ra number changes, but they have all suddenly decreasing interruptions, and as the Pr number becomes large, the characteristic Ra number for the interruption increases. The variation characteristic of parameter c is the opposite to that of parameter a. With the same Ra number, the larger the Pr number, the smaller the fitting parameter of the temperature profile is, indicating that the influence of pulsation in the temperature boundary layer is smaller. The heat transfer characteristic Nu/Ra0.3, the large-scale circulation path circumference for the characteristics of plume movement, and the temperature boundary layer fitting parameter all have the interruptions with the change of Ra number, and their corresponding characteristic Ra numbers are identical. The results show that the three have good correlation and are directly related to the change of flow pattern.
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES
Drift wave in strong collisional dusty magnetoplasma
Yang Jian-Rong, Mao Jie-Jian, Wu Qi-Cheng, Liu Ping, Huang Li
2020, 69 (17): 175201. doi: 10.7498/aps.69.20200468
Abstract +
The study about the wave mechanism of magnetized dusty plasmas has important value to related experiment, industrial processing and exploring celestial space. The linear and nonlinear fluctuation characteristics of the nonuniform magnetized dust plasma system are researched in this paper. For the homogeneous external magnetic field and the nonuniform environment with density and temperature gradients, a two-dimensional nonlinear dynamic magnetoplasma equation is derived considering the strong impact between dust and neutral particles. The linear dispersion relation is obtained by the linearized method. There are both the damping wave causing by strong collision and the harmonic wave by particle drift. Employing the typical numerical parameters for analysis, the results display that the quantum parameter modifies the system lengths; the real wave frequency is proportion to the drift frequency; the imaginary wave frequency has complex relationship with the collision frequency between dust and neutrals, and the collision of particles causes the dissipation effects to the system. Besides, the analytical solutions of drift shock wave and explosive wave are solved by function change method. The variation about the electrostatic potential with the main physical parameters is discussed in detail. It is shown that the strength of the electrostatic shock wave and the width of the explosive wave increase with increasing the dust density and magnetic field intensity, decrease with increasing the collision frequency, change with the drift velocity. When the space-time phase is small, the electrostatic potential changes quickly; once big enough, the potential tends to be stable value and reaches stable state eventually. Finally, the stability of the system is discussed. It is found that the dusty charge, quantum parameter, drift velocity all appear in the disturbed solution. All these results in the paper show that the strong collision effect, quantum effect, particle drift and magnetic field all play important role to the generation, evolution and stability of drift waves.
Measurement of magnetic field of capacitor-coil target using proton radiography
Han Bo, Liang Ya-Qiong
2020, 69 (17): 175202. doi: 10.7498/aps.69.20200215
Abstract +
Proton radiography is a widely used method to diagnose the electromagnetic field of plasma. When protons pass through the electromagnetic field of plasma, they are deflected by Lorentz force and redistributed on the recorder. How to reconstruct electromagnetic field from the experimental result is an open problem. In this paper, we take the laser-driven capacitor-coil target for example to introduce and compare particle tracing and flux analysis, which are two widely used methods in proton radiography experiment to reconstruct the magnetic field. The capacitor-coil target is an important method to generate strong magnetic field in laser plasma experiment, where the strong current flows in the coil and its producing magnetic field may be larger than kilotesla. Firstly, the theoretical magnetic fields of capacitor-coil target are calculated with current being 10 kA and 50 kA. Secondly, the Geant4 is used to simulate the proton radiographs, where protons with 7.5 MeV pass through the target and the theoretical magnetic field is recorded. Thirdly, the theoretical proton radiographs are analyzed by the flux analysis method, and two magnetic fields are reconstructed. Finally, the theoretical magnetic fields are compared with the reconstructed ones, and the advantages and disadvantages of these two methods are analyzed. Particle tracing rebuilds the geometry distribution of proton source, plasma magnetic field and recorder in experiment, and it needs few assumptions. However, it strongly relies on accurate calculation of theoretical magnetic field and proton trajectory, and it requires to change the magnetic field over and over to achieve a closest result to the experimental proton radiograph. Meanwhile, particle tracing method consumes a lot of computation sources. The flux analysis directly reconstructs the magnetic field from experimental proton radiograph. However, it is only applicable to the case of weak magnetic field, and the error becomes larger for the case of stronger magnetic field. A dimensionless parameter μ is used to estimate the deflection of proton in the magnetic field, which measures the amount of deflection per unit length in the interaction region. The flux analysis method is applicable to the $\mu\ll 1$ regime. Additionally, the target may absorb the proton when the energy of proton is low and produces shadow on the proton radiograph, which leads to some difference between the original magnetic field and the reconstructed result.
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES
Dynamic behaviors of RDX single crystal under ramp compression
Chong Tao, Mo Jian-Jun, Zheng Xian-Xu, Fu Hua, Zhao Jian-Heng, Cai Jin-Tao
2020, 69 (17): 176101. doi: 10.7498/aps.69.20200318
Abstract +
The dynamics of RDX single crystal under ramp wave loading is studied experimentally and numerically. The ramp wave loading experiments on RDX single crystal in the orientation of (210) and (100) within 15 GPa are carried out with the magnetic driven device CQ-4, which can provide a loading pressure waveform with a rising time of 450–600 ns. The particle velocity curves of the interface between RDX single crystal and LiF window are obtained with the photonic Doppler velocimetry (PDV). The velocity profiles show an obvious three-wave structure, indicating that the RDX undergoes physical processes such as elastic-plastic transition and α-to-γ phase transition in the loading section. The stress yield limits of different crystallographic orientations of RDX single crystal show obvious difference. The onset phase transition pressures in two crystallographic orientations are the same, which is between 3.5 GPa and 4.0 GPa. The pressure range of phase transition is between initial phase transition pressure and 5 GPa. The γ phase is stable from 5 GPa to 15 GPa. The Hayes multi-phase equation of state and non-equilibrium phase transition kinetic model are employed to simulate the experimental process, and the numerical results can well describe the experimental physical processes such as elastoplastic transformation and phase transformation in the loading section. The calculated results reveal that the correction of the bulk modulus with pressure is necessary under ramp wave compression.
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES

EDITOR'S SUGGESTION

Shot noise model of the short channel metal-oxide-semiconductor field-effect transistor
Zhang Meng, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei
2020, 69 (17): 177102. doi: 10.7498/aps.69.20200497
Abstract +
With the development of the semiconductor manufacturing process, the size of the metal-oxide-semiconductor field-effect transistor (MOSFET) device has been on a tens-of-nanometer scale. The shot noise appears in the excess channel noise of the device, and the noise mechanism of the device begins to change gradually. Due to the fact that the electron temperature gradient is neglected in calculation and the significant enhancement of the lateral channel electric field are not taken into consideration, the traditional electron temperature model and the thermal noise model underestimate the effect of hot carrier effects, resulting in the underestimate of the thermal noise. Moreover, the traditional drain-source current model ignores the electron temperature gradient in the calculation and does not include the effect of the electron temperature on the mobility degradation effect either. Therefore, the calculation accuracy of the shot noise and the Fano factor on the basis of the traditional model will be reduced to a certain extent as the size of the device decreases, thus affecting the analysis of the noise mechanism of the device. In this paper, we establish the channel electron temperature model and the electron velocity model by solving the energy balance equation, and develop the drain source current model based on these two models. Moreover, the shot noise model and the thermal noise model suitable for devices below 40 nm are established based on the drain-source current model. Meanwhile, the Fano factor of the shot noise is calculated. The influence of the MOSFET device size on the noise mechanism and the Fano factor of the shot noise are also investigated when the device is under different bias voltages. The results show that the accuracy of the existing thermal noise model and the shot noise model decline as the device size decreases, which eventually leads the Fano factor of the shot noise to be overestimated. When the size of the NMOSFET device is below 20 nm, the shot noise affects the device noise in the strong inversion region. With the size decreasing, the characteristic of the noise mechanism of the NMOSFET device changes from the characteristic of single thermal noise to the common characteristic of both the thermal noise and the shot noise. When the NMOSFET device size is scaled down to 10 nm, the channel noise of the device can no longer be characterized by the thermal noise alone. Instead, the noise mechanism of the device changes and is characterized by both the channel thermal noise and the suppressed shot noise. The shot noise has become an important factor that contributes to the excessive noise in the device.
A compact model of shield-gate trench MOSFET based on BSIM4
Jiang Yi-Xun, Qiao Ming, Gao Wen-Ming, He Xiao-Dong, Feng Jun-Bo, Zhang Sen, Zhang Bo
2020, 69 (17): 177103. doi: 10.7498/aps.69.20200359
Abstract +
Shield-gate trench MOSFET in a low-to-medium voltage range (12-250 V) plays a key role in the power conversion market due to its low power loss caused by the sheild-gate structure. In order to eliminate the faults resulting from the parasitic effects of the device and improve the conversion efficiency, the device model is indispensable in designing a circuit system. In this paper, a compact model of shield-gate trench MOSFET based on BSIM4 is proposed, including the DC model and the capacitance model. In the DC model, the basic MOSFET structure uses BSIM4, and the equivalent resistances of the basic MOSFET in series are divided into three parts. The equivalent resistance model of JFET region is established by using the electric potential difference between both ends for the first time, and the equivalent resistance model of electron diffusion region is also introduced, in order to solve the problem of current error caused by neglecting the source potential of JFET region. The equivalent resistance between drain and JFET region and the equivalent resistance of electron diffusion region both prove to be constant. In the capacitance model based on BSIM4, the model of shield-gate to drain capacitance is added to the model of drain to source capacitance, and the voltage bias between drain and gate in the model of gate to drain capacitance is modified into the potential difference between the node at the end of the gate-drift overlap region and the gate. Poisson equations are used to solve the electric potential of this node. Furthermore, the gate oxide thickness factor k1, the shield-gate oxide thickness factor k2, the equivalent length of gate-drift overlap Lovequ and the equivalent length of shield-gate LSHequ are introduced to redefine the position of gate and shield-gate, thereby simplifying the Poisson equations and ensuring the smoothness of the potential curve of the node. Comparison of the data from the simulation by using Verilog-A program with the test results from the experimental platform shows that the model simulation results fit well with the test data, Therefore, the proposed model is verified.
GaN based micro-light-emitting diode size effect and array display
Tai Jian-Peng, Guo Wei-Ling, Li Meng-Mei, Deng Jie, Chen Jia-Xin
2020, 69 (17): 177301. doi: 10.7498/aps.69.20200305
Abstract +
Single micro-light emitting diodes(LEDs) with different sizes and array micro-LED are designed and prepared, where the sizes of the single micro-LEDs are in a range of 40−100 μm, their electrodes are all co-N electrodes, P electrode is drawn out alone; the number of array pixels is $ 8\times8 $, which is a passively driving structure with a pixel size of 60 μm. In the process of device preparation, N electrode and P electrode are fabricated by the sputtering & stripping method. The electrode thickness is 2.4 μm. Thick photoresist 5120 is used as a mask, and N GaN is etched to the substrate by using the ICP dry etching to form an isolation trench. The PECVD technique is used to deposit an SiO2 insulating layer with a thickness of 10000 Å. By optimizing the electrode structure and thickness, the reliability of the P electrode at the slope of the isolation trench is improved, and the SiO2 insulating layer has good encapsulation; field programmable gate array (FPGA) is used to drive and display the micro-LED passive array. The single micro-LEDs of different sizes are tested and analyzed in the aspects of electrics, photics and thermotics and the results of which show that the current density corresponding to the peak radiation flux of 80 μm micro-LED is 1869.2 A/cm2, which is 57.1% higher than that of 100 μm micro-LED, indicating that the current density corresponding to the peak radiation flux of micro-LED increases as the size decreases; compared with the ordinary blue LED, the micro-LED has a large k factor, and with the size decreases, the value of the k factor increases, indicating that the micro-LED series resistance is larger, and the thermal stability is not so good as the traditional blue LED. Finally, the field programmable gate array (FPGA) can achieve a good drive for the micro-LED passive array. The driving principle is passive scanning driving, which is carried out in a row-by-row lighting mode. The FPGA clock is 50 MHz, and 320 ns is required for the circuit to scan all rows.
Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells
Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang
2020, 69 (17): 178101. doi: 10.7498/aps.69.20200555
Abstract +
ZnO is a promising electron transport material. It has not only similar energy level position and physical properties to traditional TiO2, but also excellent light transmittance, conductivity, stability, low cost and low temperature preparation. Studies have shown that the one-dimensional nanostructured electron transport layer has a higher electron transport rate, provides a direct electron transport channel and avoids its being recombined at the grain boundaries, thereby improving carrier collection efficiency. It has also been reported that the electron transport rate of ZnO nanorods is significantly better than that of TiO2, showing their great potential applications. In perovskite solar cells, the verticality of ZnO nanorods is a key factor affecting device efficiency. The AZO (ZnO∶Al) glass, as an inexpensive transparent conductive substrate, is expected to obtain the best verticality because it has no lattice mismatch with ZnO nanorods. And in the field of perovskite solar cells, the light absorbing layer is usually prepared in a glove box and it has obviously not been industralized. However, there are few reports about perovskite solar cells prepared in atmospheric environment with AZO as substrate and ZnO nanorods as electron transport layer. And it is still much less efficient than the current perovskite solar cells with TiO2 as the electronic transport layer. It can be seen that further improving the efficiency of the structural battery prepared in the atmospheric environment is an urgent problem to be solved. In this paper, ZnO nanorods are prepared as an electron transport layer by the hydrothermal method. The effects of hydrothermal temperature, the number of seed layer, the precursor concentration, the substrate type, the hydrothermal time, and the other process parameters on the morphology and crystalline properties of ZnO nanorods are systematically studied, and the growth mechanism is analyzed. The results show that the length of the nanorods is mainly controlled by the hydrothermal time and hydrothermal temperature, and that the radial size is mainly determined by the number of seed layers and the concentration of the precursor solution. And the results also indicate that the verticality of ZnO nanorods’ growth is closely related to the substrate, and that the ZnO nanorods on the AZO substrate have the best growth verticality. On this basis, the perovskite solar cell is prepared in the atmospheric environment, and the optimal efficiency of the photovoltaic device prepared with AZO substrate increases from 7.0% reported in the literature to 9.63%. This is of great significance for enriching the design ideas of perovskite solar cells and further reducing costs.