Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent advances in flexible fiber-shaped supercapacitors

Zhang Xin Chen Xing Bai Tian You Xing-Yan Zhao Xin Liu Xiang-Yang Ye Mei-Dan

Citation:

Recent advances in flexible fiber-shaped supercapacitors

Zhang Xin, Chen Xing, Bai Tian, You Xing-Yan, Zhao Xin, Liu Xiang-Yang, Ye Mei-Dan
PDF
HTML
Get Citation
  • With the continuous development of today's flexible electronic products, fiber-shaped supercapacitors (fiber-shaped supercapacitors, FSCs) have attracted continuous attention. That’s due to their advantages such as light weight, controllable volume, good bending and tensile properties, and weavable. Fiber-shaped supercapacitors, with their unique one-dimensional fiber structure, can be combined with various other electrical or power generation devices into multifunctional integrated fiber-shaped electronic devices, which have huge application prospects in the field of wearable electronic textiles. This article describes the latest developments in fiber-shaped supercapacitor devices. Firstly, different fiber substrates are introduced and their advantages and disadvantages are analyzed as well. It also summarizes the electrode materials such as carbon materials, metal oxides and sulfides, conductive polymers, and hybrid nanocomposites of fiber-shaped supercapacitors. By analyzing the differences and characteristics of different electrode materials, it is shown that different electrode materials are suitable for different uses in fiber-shaped supercapacitors. Then we also summarize the application of fiber-shaped supercapacitors in cooperation with other devices to form integrated devices, including integration with general power devices, sensors, other photoelectric conversion devices and other power generation devices into hybrid devices and applied to practice. Finally, by summarizing the recent development results of fiber-shaped supercapacitors and the current challenges in the field, some current bottlenecks and problems of fiber-shaped supercapacitors are proposed, and some suggestions and ideas for the future development direction are put forward.
      Corresponding author: Ye Mei-Dan, mdye@xmu.edu.cn
    • Funds: the Natural Science Foundation of Fujian Province of China (Grant No. 2017J01026) and the Fundamental Research Funds for the Central Universities of China (Grant No. 20720180012)
    [1]

    Zhang Y, Shuai Y, Lou G, Shen Y, Hao C, Shen Z, Zhao S, Zhang J, Chai S, Zou Q 2017 J. Mater. Sci. 52 11201Google Scholar

    [2]

    Li Y, Xiao H, Yi T, He Y, Li X 2018 J. Energy Chem. 31 54

    [3]

    Liu W, Song M S, Kong B, Cui Y 2016 Adv. Mater. 29 1603436

    [4]

    Heo J S, Eom J, Kim Y H, Park S K 2018 Small 14 1703034Google Scholar

    [5]

    Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G 2014 Adv. Mater 26 4763Google Scholar

    [6]

    Yao B, Zhang J, Kou T, Song Y, Li Y 2017 Adv. Sci. 4 1700107Google Scholar

    [7]

    Cai J, Chao L, Watanabe A 2016 Nano Energy 30 790Google Scholar

    [8]

    El-Kady M F, Kaner R B 2013 Nat. Commun. 4 1475Google Scholar

    [9]

    Wu M F, Yeh S J, Chen C T, Murayama H, Tsuboi T, Li W S, Chao I, Liu S W, Wang J K 2007 Adv. Funct. Mater. 17 1887Google Scholar

    [10]

    Wu H, Lou Z, Yang H, Shen G 2015 Nanoscale 7 1921Google Scholar

    [11]

    Wu Z S, Parvez K, Feng X, Müllen K 2013 Nat. Commun. 4 2487Google Scholar

    [12]

    Xu J, Wang Q, Wang X, Xiang Q, Shen G 2013 Acs Nano 7 5453Google Scholar

    [13]

    Wu Y H, Zhen R M, Liu H Z, Liu S Q, Deng Z F, Wang P P, Chen S, Liu L 2017 J. Mater. Chem. C 5 12483

    [14]

    Jung S, Kim J H, Kim J, Choi S, Lee J, Park I, Hyeon T, Kim D H 2014 Adv. Mater. 26 4825Google Scholar

    [15]

    Wang Z, Cheng J, Guan Q, Huang H, Li Y, Zhou J, Ni W, Wang B, He S, Peng H 2018 Nano Energy 45 210Google Scholar

    [16]

    Zhang S W, Yin B S, Liu C, Wang Z B, Gu D M 2017 J. Mater. Chem. A 5 15144Google Scholar

    [17]

    Meng F, Zheng L, Luo S, Li D, Wang G, Jin H, Li Q, Zhang Y, Liao K, Cantwell W J 2017 J. Mater. Chem. A 5 4397Google Scholar

    [18]

    Zhao J, Li H, Li C, et al. 2018 Nano Energy 45 420Google Scholar

    [19]

    Theerthagiri J, Karuppasamy K, Durai G, et al. 2018 Nanomaterials 8 256Google Scholar

    [20]

    Borenstein A, Hanna O, Ran A, Luski S, Brousse T, Aurbach D 2017 J. Mater. Chem. A 5 12653Google Scholar

    [21]

    Ke Q, Wang J 2016 J. Mater. 2 37Google Scholar

    [22]

    Chuang C M, Huang C W, Teng H S, Ting J M 2012 Compos. Sci. Technol. 72 1524Google Scholar

    [23]

    Li Q, Wang Z L, Li G R, Guo R, Ding L X, Tong Y X 2012 Nano Lett. 12 3803Google Scholar

    [24]

    Huang K J, Wang L, Liu Y J, Wang H B, Liu Y M, Wang L L 2013 Electrochimica Acta 109 587Google Scholar

    [25]

    Tang Y F, Chen T, Yu S X 2015 Chem. Commun. 51 9018Google Scholar

    [26]

    He Y B, Li G R, Wang Z L, Su C Y, Tong Y X 2011 Energ. Environ. Sci. 4 1288Google Scholar

    [27]

    Meher S K, Rao G R 2011 J. Phys. Chem. C 115 15646Google Scholar

    [28]

    Liu Q, Hong X D, Zhang X, Wang W, Guo W X, Liu X Y, Ye M D 2018 Chem. Eng. J. 356 985

    [29]

    Wu Z, Zhu Y, Ji X 2014 J. Mate. Chem. A 2 14759Google Scholar

    [30]

    Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H 2016 Adv. Mater. 28 3646Google Scholar

    [31]

    Chen T, Hao R, Peng H S, Dai L M 2015 Angew. Chem. Int Edit. 54 618

    [32]

    Huang Q, Wang D, Zheng Z 2016 Adv. Energy Mater. 6 1600783Google Scholar

    [33]

    Wang Q, Wang X, Jing X, Xia O, Hou X, Di C, Wang R, Shen G 2014 Nano Energy 8 44Google Scholar

    [34]

    Guo Z, Yang Z, Ding Y, Dong X, Long C, Cao J, Wang C, Xia Y, Peng H, Wang Y 2017 Chem 3 348Google Scholar

    [35]

    Wang X, Kai J, Shen G 2015 Mater. Today 18 265Google Scholar

    [36]

    Lin R, Zhu Z, Yu X, et al. 2017 J. Mater. Chem. A 5 814Google Scholar

    [37]

    Sun H, Xie S, Li Y, et al. 2016 Adv. Mater. 28 8431Google Scholar

    [38]

    Ai Y, Zheng L, Li L, Shuai C, Park H S, Wang Z M, Shen G 2016 Adv. Mater. Technol. 1 1600142Google Scholar

    [39]

    Kwon Y H, Woo S W, Jung H R, Yu H K, Kim K, Oh B H, Ahn S, Lee S Y, Song S W, Cho J 2012 Adv. Mater. 24 5145Google Scholar

    [40]

    Zhang Q, Wang X, Pan Z, et al. 2017 Nano Lett. 17 2719Google Scholar

    [41]

    Zhang Q, Sun J, Pan Z, et al. 2017 Nano Energy 39 219Google Scholar

    [42]

    Sun J, Zhang Q, Wang X, Zhao J, Guo J, Zhou Z, Zhang J, Man P, Sun J, Li Q, Yao Y 2017 J. Mater. Chem. A 5 21153Google Scholar

    [43]

    Cai S, Huang T, Chen H, Salman M, Gopalsamy K, Gao C 2017 J. Mater. Chem. A 5 22489Google Scholar

    [44]

    Ye H, Wang K, Zhou J, Song L, Gu L, Cao X 2018 J. Mater. Chem. A 6 1109Google Scholar

    [45]

    Guo K, Wang X, Hu L, Zhai T, Li H, Yu N 2018 ACS Appl. Mater. Inter. 10 19820Google Scholar

    [46]

    Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G 2018 Adv. Mater. 30 1800124Google Scholar

    [47]

    Hu M, Li Z, Li G, Hu T, Zhang C, Wang X 2017 Adv. Mater. Technol. 2 1700143Google Scholar

    [48]

    Liu W, Feng K, Zhang Y, Yu T, Han L, Lui G, Li M, Chiu G, Fung P, Yu A 2017 Nano Energy 34 491Google Scholar

    [49]

    Choi C, Sim H J, Spinks G M, Lepró X, Baughman R H, Kim S J 2016 Adv. Energy Mater. 6 1502119Google Scholar

    [50]

    Ma W, Chen S, Yang S, Zhu M 2016 RSC Adv. 6 50112Google Scholar

    [51]

    Zeng Y, Meng Y, Lai Z, Zhang X, Yu M, Fang P, Wu M, Tong Y, Lu X 2017 Adv. Mater. 29 1702698Google Scholar

    [52]

    Chen Q, Meng Y, Hu C, Yang Z, Qu L 2014 J. Power Sources 247 32Google Scholar

    [53]

    Ding X, Zhao Y, Hu C, Hu Y, Dong Z, Chen N, Zhang Z, Qu L 2014 J. Mater. Chem. A 2 12355Google Scholar

    [54]

    Zhao Y, Ding Y, Li Y, Peng L, Byon H R, Goodenough J B, Yu G 2015 Chem. Soc. Rev. 44 7968Google Scholar

    [55]

    Wang Y, Shi Y, Pan L, Ding Y, Zhao Y, Li Y, Shi Y, Yu G 2015 Nano Lett. 15 7736Google Scholar

    [56]

    Shi Y, Yu G 2016 Chem. Mater. 28 2466Google Scholar

    [57]

    Shi Y, Ha H, Al-Sudani A, Ellison C J, Yu G 2016 Adv. Mater. 28 7921Google Scholar

    [58]

    Pramanick B, Cadenas L B, Kim D M, et al. 2016 Carbon 107 872Google Scholar

    [59]

    Di J T, Zhang X H, Yong Z Z, Zhang Y Y, Li D, Li R, Li Q W 2016 Adv. Mater. 28 10529Google Scholar

    [60]

    IzadiNajafabadi A, Yasuda S, Kobashi K, et al. 2010 Adv. Mater. 22 E235Google Scholar

    [61]

    Zou M, Zhao W, Wu H, Zhang H, Xu W, Yang L, Wu S, Wang Y, Chen Y, Xu L, Cao A 2018 Adv. Mater. 30 1704419Google Scholar

    [62]

    Zheng X, Zhang K, Yao L, Qiu Y, Wang S 2018 J. Mater. Chem. A 6 896Google Scholar

    [63]

    Bae J, Song M K, Park Y J, Kim J M, Liu M, Wang Z L 2011 Angew. Chem. Int. Ed. Engl. 50 1683Google Scholar

    [64]

    Yue L, Jia D, Tang J, Zhang A, Liu F, Chen T, Barrow C, Yang W, Liu J 2020 J. Colloid Interf. Sci. 560 237Google Scholar

    [65]

    Tian J H, Lin B P, Sun Y, Zhang X Q, Yang H 2017 Mater. Letter. 206 91Google Scholar

    [66]

    Yin Z C, Bu Y Y, Ren J, Chen S, Zhao D M, Zou Y H, Shen S H, Yang D J 2018 Chem. Eng. J. 345 165Google Scholar

    [67]

    Pal B, Vijayan B L, Krishnan S G, Harilal M, Basirun W J, Lowe A, Yusoff M M, Jose R 2018 J. Alloy. Compd. 740 703Google Scholar

    [68]

    Wu X, Yao S 2017 Nano Energy 42 143Google Scholar

    [69]

    Zhang Q, Xu W, Sun J, et al. 2017 Nano Lett. 17 7552Google Scholar

    [70]

    Rahman M, Davey K, Qiao S Z 2017 Adv. Funct. Mater. 27 1606129Google Scholar

    [71]

    Chen G F, Ma T Y, Liu Z Q, Li N, Su Y Z, Davey K, Qiao S Z 2016 Adv. Funct. Mater. 26 3314Google Scholar

    [72]

    Shen L F, Yu L, Wu H B, Yu X Y, Zhang X G, Lou X W 2015 Nat. Commun. 6 6694Google Scholar

    [73]

    Zhang P, Guan B Y, Yu L, Lou X W 2017 Angew. Chem. Int. Edit. 56 7141Google Scholar

    [74]

    Liu Y, Wang Z B, Zhong Y J, Tade M, Zhou W, Shao Z P 2017 Adv. Funct. Mater. 27 10Google Scholar

    [75]

    Sivanantham A, Ganesan P, Shanmugam S 2016 Adv. Funct. Mater. 26 4661Google Scholar

    [76]

    Yu X Y, Yu L, Shen L F, Song X H, Chen H Y, Lou X W 2014 Adv. Funct. Mater. 24 7440Google Scholar

    [77]

    Wang X, Zhang Q, Sun J, Zhou Z, Li Q, He B, Zhao J, Lu W, Wong C, Yao Y 2018 J Mater. Chem. A 6 8030Google Scholar

    [78]

    Snook G A, Kao P, Best A S 2011 J. Power Sources 196 1Google Scholar

    [79]

    Zhang Q F, Uchaker E, Candelaria S L, Cao G Z 2013 Chem. Soc. Rev. 42 3127Google Scholar

    [80]

    Candelaria S L, Shao Y Y, Zhou W, Li X L, Xiao J, Zhang J G, Wang Y, Liu J, Li J H, Cao G Z 2012 Nano Energy 1 195Google Scholar

    [81]

    Wang G P, Zhang L, Zhang J J 2012 Chem. Soc. Rev. 41 797Google Scholar

    [82]

    Liu S, Sun S H, You X Z 2014 Nanoscale 6 2037Google Scholar

    [83]

    Yang S, Sun L, An X, Qian X 2020 Carbohyd. Polym. 229 115455Google Scholar

    [84]

    Nagaraju G, Sekhar S C, Yu J S 2018 Adv. Energy Mater. 8 1702201Google Scholar

    [85]

    Le T S, Truong T K, Huynh V N, Bae J, Suh D 2020 Nano Energy 67 104198Google Scholar

    [86]

    Liu S, Gao D, Li J, Hui K S, Yin Y, Hui K N, Chan Jun S 2019 J. Mater. Chem. A 7 26618Google Scholar

    [87]

    Zhai T, Wan L M, Sun S, Chen Q, Sun J, Xia Q Y, Xia H 2017 Adv. Mater. 29 1604167Google Scholar

    [88]

    Liu S, Xu C, Yang H, Qian G, Hua S, Liu J, Zheng X, Lu X 2020 Small e1905778

    [89]

    Li X, Liu D, Yin X, Zhang C, Cheng P, Guo H, Song W, Wang J 2019 J. Power Sources 440 227143Google Scholar

    [90]

    Wang X, Liu B, Liu R, Wang Q, Hou X, Chen D, Wang R, Shen G 2014 Angew. Chem. Int. Ed. Engl. 53 1849Google Scholar

    [91]

    Guo W X, Xue X Y, Wang S H, Lin C J, Wang Z L 2012 Nano Lett. 12 2520Google Scholar

    [92]

    Hsu C Y, Chen H W, Lee K M, Hu C W, Ho K C 2010 J. Power Sources 195 6232Google Scholar

    [93]

    Chen T, Qiu L, Yang Z, Cai Z, Ren J, Li H, Lin H, Sun X, Peng H 2012 Angew. Chem. Int. Ed. Engl. 51 11977Google Scholar

  • 图 1  近10年来SCs文章数量

    Figure 1.  Numbers of articles on supercapacitors in the past decade.

    图 2  SCs储能工作机理示意图

    Figure 2.  Schematic diagrams of the working mechanism of supercapacitors.

    图 3  SCs类型分类示意图

    Figure 3.  Schematic diagrams of different types of supercapacitors.

    图 4  (a) CVD工艺的示意图, 其中在碳纤维基板上生长了多孔CNT海绵层; (b) 单一的碳纤维和在CVD之后生长的直径为7.2 mm的CNT@碳纤维的照片; (c) 三种直径分别为0.51, 1.20和3.64 mm的CNT@碳纤维的照片; (d) CNT@碳纤维的圆形横截面和留在横截面或纤维表面的水滴的照片; (e) 乙醇渗透和蒸发后, CNT@碳纤维收缩的照片, 以及打结的收缩纤维[61]

    Figure 4.  (a) Schematic diagram of the CVD process in CNT fiber: (b) photographs of a single CF before CVD and CNTs@CF fiber after CVD with diameter of 7.2 mm; (c) photographs of CNTs@CF fibers with diameters of 0.51, 1.20, and 3.64 mm; (d) photos of the cross sectional view and water droplets on cross section and surface of CNTs @CF fiber; (e) photos of a CNTs@CF fiber shrinking after ethanol infiltration and evaporation, and a knotted shrunk fiber[61].

    图 5  (a) 制备SG-CPF@GF电极和组装的FSCs示意图[62]; (b) FSCs示意图; (c) 塑料线上纳米线阵列的扫描电子显微镜(SEM)图像[63]

    Figure 5.  (a) Schematic diagrams of the fabricating process for SG-CPF@GF electrodes and FSCs[62]; (b) schematic of the fiber-based supercapacitor; (c) SEM image of the NWs in a plastic wire[63].

    图 6  (a) OCNTF的制造过程示意图; (b) 原始CNTF的SEM图像; (c) OCNTF的SEM图像; (d) PEDOT:PSS@OCNTF的SEM图像; (e) FASC的制备示意图; (f) 伸缩式FASC的结构示意图; (g) 可拉伸FASC的横截面结构; (h) 将CNT纤维包裹在弹性纤维周围[41]

    Figure 6.  (a) Schematic of the fabrication process of the OCNTF; (b) SEM images of pristine CNTF; (c) SEM images of OCNTF; (d) SEM image of PEDOT:PSS@OCNTF; (e) schematic of the fabrication process of the FASC; (f) the structure of the stretchable FASC; (g) schematic of the stretchable FASC; (h) wrapping the CNT fibers around an elastic fiber[41].

    图 7  (a) 在CNTF上制备ZNCO@Ni(OH)2NWA的示意图; (b), (c) ZNCO NWAs/CNTF在不同放大倍数下的SEM图像; (d) ZNCO@Ni(OH)2NWAs/CNTF的SEM图像; (e) CFASC的横截面结构; (f) 将VN@C NWA / CNTS包裹在ZNCO@Ni(OH)2NWAs/CNTF/KOH-PVA的周围; (g) 以25 mV/s的恒定扫描速率在不同的工作电压下测量的组装CFASC的循环伏安(CV)曲线; (h) 以9 mA/cm2的电流密度在0.4—1.6 V电压下的CFASC的恒电流充放电(GCD)曲线; (i) 根据在9 mA/cm2下获得的GCD曲线计算的面积比电容和能量密度[69]

    Figure 7.  (a) Schematic of the ZNCO@Ni(OH)2NWAs on a CNTF; (b), (c) SEM images of ZNCO NWAs/CNTF at different magnifications; (d) SEM image of ZNCO@Ni(OH)2NWAs/CNTF; (e) cross-sectional structure of the CFASCs; (f) wrapping VN@C NWAs/CNTS to the ZNCO@Ni(OH)2NWAs/CNTF/KOH-PVA; (g) CV curves of CFASCs at a scan rate of 25 mV/s with different operating voltages; (h) GCD curves of the CFASCs at a current density of 9 mA/cm2 at voltages from 0.4 to 1.6 V; (i) areal specific capacitance and energy density calculated based on the GCD curves obtained at 9 mA/cm2[69].

    图 8  (a), (b) 在碳纳米管上不同放大倍数下的蒲公英样MNCO NWAs的SEM图像; (c) FASC器件制备过程的详细示意图[42]

    Figure 8.  (a), (b) SEM images of dandelion-like MNCO NWAs on CNTF at different magnifications; (c) schematic of the fabrication process of FASC[42].

    图 9  (a)−(c) 在CNTF上生长的MNCS NTAs的不同放大倍数SEM图像; (d) 在CNTF上生长的MNCS三脚架结构纳米管阵列的示意图; (e) FASC设备的示意图; (f) 在30 mV/s的恒定扫描速率下, FASC器件在不同工作电压下的CV曲线; (g) 在2 mA/cm2的电流密度下, 在0.4—1.6 V的不同电压下收集的FASC装置的GCD曲线; (h) 根据2 mA/cm2下获得的充放电曲线计算出的比电容和能量密度[77]

    Figure 9.  (a)−(c) SEM images of MNCS NTAs on CNTFs at different magnifications; (d) schematic of MNCS multi-tripod NTAs grown on CNTFs; (e) schematic of the FASC device; (f) CV curves of the FASC device at a scan rate of 30 mV/s with different operating voltages; (g) GCD curves of the FASC at a current density of 2 mA/cm2 from 0.4 to 1.6 V; (h) areal specific capacitance and energy density calculated based on GCD curves obtained at 2 mA/cm2[77].

    图 10  (a) PEDOT-S:PSS纤维经硫酸处理后的结构重排机理示意图; (b) 基于PEDOT-S: PSS制备组装串联FSCs (T-SFSS)的示意图; (c) T-SFSS点亮USB灯的照片, 插图是显示USB灯通过两根扭曲的PEDOT-S: PSS纤维与T-SFSS连接的照片; (d) 由三个串联的SFSS组成的T-SFSS的照片, 以五个发光二极管(LED)点亮标志缩写; (e), (f) 由三个相连的T-SFSS织成的织物供电的电子手表的照片, 每个都由三个基于PEDOT-S: PSS纤维串联的T-SFSS组成; (g) 由两个SFSS串联组成的T-SFSS的照片, 在0%—400%的应变增加的情况下点亮绿色LED[15]

    Figure 10.  (a) Schematic of the structural re-arrangement mechanism of PEDOT-S:PSS fiber by the treatment of the sulfuric acid; (b) schematic of the fabrication of PEDOT-S:PSS based T-SFSSs in series; (c) photo of T-SFSSs to lighten up a commercial USB light, the inset photo showing the USB light connected with the T-SFSSs by two twisted PEDOT-S:PSS fibers; (d) photo of T-SFSS consisting of three SFSS in series, with five LEDs lighting up the logo abbreviation (LEDs); (e), (f) photos of a commercial digital watch powered by three connected T-SFSS woven into fabric, each consists of three tandem T-SFSS based on PEDOT-S: PSS fiber; (g) photos of T-SFSS, which includes two SFSS in series to light up the green LED when the strain increases from 0% to 400%[15].

    图 11  (a) 三元同轴纤维的制备过程和微观结构的示意图; (b)−(d) GCP@CMC的SEM图像; (e) GCP@CMC在电流密度为3.0 mA/cm2的情况下经过5000次循环后的循环稳定性; (f) 弯曲稳定性测试, 插图显示了不同的弯曲状态; (g) 与选择的FSCs的比较图; (h) 三个GCP@CMC串联组装FSCs弯曲的照片; (i) 由GCP@CMC串联组装的三个FSC点亮的LED[43]

    Figure 11.  (a) Schematic of the fabrication process and microscopic structure of the ternary coaxial fibers; (b)−(d) SEM images of GCP@CMC; (e) cycling stability of GCP@CMC at 3.0 mA/cm2 after 5000 cycles; (f) bending stability test, illustration showing different bending states; (g) plots compared with selected fiber supercapacitor; (h) photograph of three bending FSCs assembled by GCP@CMC in series; (i) LED lit by three FSCs assembled GCP@CMC in series[43].

    图 12  (a) NPN电极中离子和电荷转移的示意图; (b)制备CMF的示意图; (c)−(e)低放大倍率和高放大倍率的CMF的SEM图像[16]

    Figure 12.  (a) Schematic of ion and charge transfer in the NPN electrode; (b) schematic of the preparation of the CMF; (c)−(e) SEM images of the CMF at different magnifications[16].

    图 13  使用废电缆线制备森林状的NiO NSs@CNTs@CuO NWAs/Cu纤维过程的示意图[84]

    Figure 13.  Schematic of the fabrication process of forest-like NiO NSs@CNTs@CuO NWAs/Cu fibers by waste cable wires[84].

    图 14  (a) CoS2系统; (b) P-CoS2系统; (c), (d) CoS2和 P-CoS2的局部电荷密度分布; (e), (f) CoS2和 P-CoS2的(100)平面中钴的位置的晶体结构的侧视图, 其中钴以蓝色显示, 硫为粉红色, 磷为绿色, 氧为红色, 氢为黄色[86]

    Figure 14.  (a) CoS2 system; (b) P-CoS2 system; (c), (d) local charge density distributions of CoS2 and P-CoS2; (e), (f) CoS2 and Co-location of cobalt in (100) plane of P-CoS2. A side view of the crystalline structure of which cobalt is shown in blue, sulfur is pink, phosphorus is green, oxygen is red, and hydrogen is yellow[86].

    图 15  (a)−(c) FSCs在不断增加的弯曲角度下的图像; (d) NPCM-FSC漂浮在水上; (e)−(h) 红色LED被NPCM-FSC点亮的照片; (i), (j) 组装后的NPCM-FSC的应用; (k) 制备过程[16]

    Figure 15.  (a)−(c) photographs of the fiber-shaped supercapacitors at increasing bending angles; (d) the NPCM-FSC floats on water; (e)−(h) photos of the red LED lighted by NPCM-FSC; (i), (j) the application of the as-assembled NPCM-FSC; (k) schematic of the fabrication process of FSC[16].

    图 16  (a) FSC器件制备过程的示意图; (b) FTENG的示意图; (c) FTENG的工作机理; (d) 自充电电源系统和负载的电路图; (e) FTENG为制备好的FSCs充电的充电/放电曲线[18]

    Figure 16.  (a) Schematic of the fabrication process of the FSC device; (b) schematic diagram of the FTENG; (c) basic working mecha-nism of the FTENG; (d) circuit diagram of the self-charging power system and load; (e) charging/discharging curves of the as-prepared FSCs charged by the FTENG[18].

    图 17  (a) 基于纤维的非对称SCs的照片; (b) CV曲线; (c) GCD曲线; (d) 非对称SCs的体积电容随电势窗口的增加而增加的曲线; (e) 器件的示意图, 反映出由柔性非对称FSCs供电的光电探测器的电流响应; (f) 在不同的入射光强度下被照亮; (g) 在40 mW/cm2的光强度下处于不同的弯曲状态[90]

    Figure 17.  (a) Photo of the fiber asymmetric supercapacitor; (b) CV curves; (c) GCD curves; (d) the volume capacitance increases with the potential window of the asymmetric supercapacitor; (e) schematic of the device, current response of a photodetector powered by a FASC; (f) illuminated at different incident light intensities; (g) different bending states under a light intensity of 40 mW/cm2[90].

    图 18  (a) 用于光电转换(PC)和能量存储(ES)的集成线形设备的示意图; (b), (c) 分别在低倍率和高倍率下通过电化学阳极氧化2 h在钛丝上生长的取向二氧化钛纳米管的SEM图像; (d), (e) 分别在低倍率和高倍率下的CNT纤维的SEM图像; (f) 工作机制示意图, CB = 导带, VB = 价带; (g) 在AM 1.5的光照下的典型电流密度/电压曲线; (h), (i) 分别在充电和放电过程中的电路连接示意图; (j) 纤维的充放电曲线, 放电电流为0.1 mA[93]

    Figure 18.  (a) Schematic of integrated linear device for photoelectric conversion (PC) and energy storage (ES); (b), (c) SEM images of oriented titanium dioxide nanotubes grown on Ti wires by electrochemical anodization for 2 h at low and high magnifications, respectively; (d), (e) SEM images of CNT fibers at low and high magnifications, respectively; (f) schematic of working mechanism, CB = conduction band, VB = valence band; (g) typical current density/voltage curve under AM 1.5 light; (h), (i) schematic diagram of circuit connection during charging and discharging respectively; (j) typical energy wire light discharge curve. Discharge current is 0.1 mA[93].

    表 1  不同类型纤维基底的优缺点

    Table 1.  Advantages and disadvantages of different fiber substrates.

    基底优点缺点
    碳基纤维功率密度高、充放电速率快、循环寿命长延展性差、成本高、制备工艺复杂
    聚合物纤维延展性和拉伸性能优异电容低、循环性差
    金属纤维成本低廉、制备简单、机械强度高、电导率高柔韧性、拉伸性能较差
    水凝胶纤维良好的拉伸形变能力空气中易脱水、电容较低
    尼龙纤维等来源广泛易制备、部分纤维有拉伸性能电容和循环性较差
    DownLoad: CSV
  • [1]

    Zhang Y, Shuai Y, Lou G, Shen Y, Hao C, Shen Z, Zhao S, Zhang J, Chai S, Zou Q 2017 J. Mater. Sci. 52 11201Google Scholar

    [2]

    Li Y, Xiao H, Yi T, He Y, Li X 2018 J. Energy Chem. 31 54

    [3]

    Liu W, Song M S, Kong B, Cui Y 2016 Adv. Mater. 29 1603436

    [4]

    Heo J S, Eom J, Kim Y H, Park S K 2018 Small 14 1703034Google Scholar

    [5]

    Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G 2014 Adv. Mater 26 4763Google Scholar

    [6]

    Yao B, Zhang J, Kou T, Song Y, Li Y 2017 Adv. Sci. 4 1700107Google Scholar

    [7]

    Cai J, Chao L, Watanabe A 2016 Nano Energy 30 790Google Scholar

    [8]

    El-Kady M F, Kaner R B 2013 Nat. Commun. 4 1475Google Scholar

    [9]

    Wu M F, Yeh S J, Chen C T, Murayama H, Tsuboi T, Li W S, Chao I, Liu S W, Wang J K 2007 Adv. Funct. Mater. 17 1887Google Scholar

    [10]

    Wu H, Lou Z, Yang H, Shen G 2015 Nanoscale 7 1921Google Scholar

    [11]

    Wu Z S, Parvez K, Feng X, Müllen K 2013 Nat. Commun. 4 2487Google Scholar

    [12]

    Xu J, Wang Q, Wang X, Xiang Q, Shen G 2013 Acs Nano 7 5453Google Scholar

    [13]

    Wu Y H, Zhen R M, Liu H Z, Liu S Q, Deng Z F, Wang P P, Chen S, Liu L 2017 J. Mater. Chem. C 5 12483

    [14]

    Jung S, Kim J H, Kim J, Choi S, Lee J, Park I, Hyeon T, Kim D H 2014 Adv. Mater. 26 4825Google Scholar

    [15]

    Wang Z, Cheng J, Guan Q, Huang H, Li Y, Zhou J, Ni W, Wang B, He S, Peng H 2018 Nano Energy 45 210Google Scholar

    [16]

    Zhang S W, Yin B S, Liu C, Wang Z B, Gu D M 2017 J. Mater. Chem. A 5 15144Google Scholar

    [17]

    Meng F, Zheng L, Luo S, Li D, Wang G, Jin H, Li Q, Zhang Y, Liao K, Cantwell W J 2017 J. Mater. Chem. A 5 4397Google Scholar

    [18]

    Zhao J, Li H, Li C, et al. 2018 Nano Energy 45 420Google Scholar

    [19]

    Theerthagiri J, Karuppasamy K, Durai G, et al. 2018 Nanomaterials 8 256Google Scholar

    [20]

    Borenstein A, Hanna O, Ran A, Luski S, Brousse T, Aurbach D 2017 J. Mater. Chem. A 5 12653Google Scholar

    [21]

    Ke Q, Wang J 2016 J. Mater. 2 37Google Scholar

    [22]

    Chuang C M, Huang C W, Teng H S, Ting J M 2012 Compos. Sci. Technol. 72 1524Google Scholar

    [23]

    Li Q, Wang Z L, Li G R, Guo R, Ding L X, Tong Y X 2012 Nano Lett. 12 3803Google Scholar

    [24]

    Huang K J, Wang L, Liu Y J, Wang H B, Liu Y M, Wang L L 2013 Electrochimica Acta 109 587Google Scholar

    [25]

    Tang Y F, Chen T, Yu S X 2015 Chem. Commun. 51 9018Google Scholar

    [26]

    He Y B, Li G R, Wang Z L, Su C Y, Tong Y X 2011 Energ. Environ. Sci. 4 1288Google Scholar

    [27]

    Meher S K, Rao G R 2011 J. Phys. Chem. C 115 15646Google Scholar

    [28]

    Liu Q, Hong X D, Zhang X, Wang W, Guo W X, Liu X Y, Ye M D 2018 Chem. Eng. J. 356 985

    [29]

    Wu Z, Zhu Y, Ji X 2014 J. Mate. Chem. A 2 14759Google Scholar

    [30]

    Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H 2016 Adv. Mater. 28 3646Google Scholar

    [31]

    Chen T, Hao R, Peng H S, Dai L M 2015 Angew. Chem. Int Edit. 54 618

    [32]

    Huang Q, Wang D, Zheng Z 2016 Adv. Energy Mater. 6 1600783Google Scholar

    [33]

    Wang Q, Wang X, Jing X, Xia O, Hou X, Di C, Wang R, Shen G 2014 Nano Energy 8 44Google Scholar

    [34]

    Guo Z, Yang Z, Ding Y, Dong X, Long C, Cao J, Wang C, Xia Y, Peng H, Wang Y 2017 Chem 3 348Google Scholar

    [35]

    Wang X, Kai J, Shen G 2015 Mater. Today 18 265Google Scholar

    [36]

    Lin R, Zhu Z, Yu X, et al. 2017 J. Mater. Chem. A 5 814Google Scholar

    [37]

    Sun H, Xie S, Li Y, et al. 2016 Adv. Mater. 28 8431Google Scholar

    [38]

    Ai Y, Zheng L, Li L, Shuai C, Park H S, Wang Z M, Shen G 2016 Adv. Mater. Technol. 1 1600142Google Scholar

    [39]

    Kwon Y H, Woo S W, Jung H R, Yu H K, Kim K, Oh B H, Ahn S, Lee S Y, Song S W, Cho J 2012 Adv. Mater. 24 5145Google Scholar

    [40]

    Zhang Q, Wang X, Pan Z, et al. 2017 Nano Lett. 17 2719Google Scholar

    [41]

    Zhang Q, Sun J, Pan Z, et al. 2017 Nano Energy 39 219Google Scholar

    [42]

    Sun J, Zhang Q, Wang X, Zhao J, Guo J, Zhou Z, Zhang J, Man P, Sun J, Li Q, Yao Y 2017 J. Mater. Chem. A 5 21153Google Scholar

    [43]

    Cai S, Huang T, Chen H, Salman M, Gopalsamy K, Gao C 2017 J. Mater. Chem. A 5 22489Google Scholar

    [44]

    Ye H, Wang K, Zhou J, Song L, Gu L, Cao X 2018 J. Mater. Chem. A 6 1109Google Scholar

    [45]

    Guo K, Wang X, Hu L, Zhai T, Li H, Yu N 2018 ACS Appl. Mater. Inter. 10 19820Google Scholar

    [46]

    Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G 2018 Adv. Mater. 30 1800124Google Scholar

    [47]

    Hu M, Li Z, Li G, Hu T, Zhang C, Wang X 2017 Adv. Mater. Technol. 2 1700143Google Scholar

    [48]

    Liu W, Feng K, Zhang Y, Yu T, Han L, Lui G, Li M, Chiu G, Fung P, Yu A 2017 Nano Energy 34 491Google Scholar

    [49]

    Choi C, Sim H J, Spinks G M, Lepró X, Baughman R H, Kim S J 2016 Adv. Energy Mater. 6 1502119Google Scholar

    [50]

    Ma W, Chen S, Yang S, Zhu M 2016 RSC Adv. 6 50112Google Scholar

    [51]

    Zeng Y, Meng Y, Lai Z, Zhang X, Yu M, Fang P, Wu M, Tong Y, Lu X 2017 Adv. Mater. 29 1702698Google Scholar

    [52]

    Chen Q, Meng Y, Hu C, Yang Z, Qu L 2014 J. Power Sources 247 32Google Scholar

    [53]

    Ding X, Zhao Y, Hu C, Hu Y, Dong Z, Chen N, Zhang Z, Qu L 2014 J. Mater. Chem. A 2 12355Google Scholar

    [54]

    Zhao Y, Ding Y, Li Y, Peng L, Byon H R, Goodenough J B, Yu G 2015 Chem. Soc. Rev. 44 7968Google Scholar

    [55]

    Wang Y, Shi Y, Pan L, Ding Y, Zhao Y, Li Y, Shi Y, Yu G 2015 Nano Lett. 15 7736Google Scholar

    [56]

    Shi Y, Yu G 2016 Chem. Mater. 28 2466Google Scholar

    [57]

    Shi Y, Ha H, Al-Sudani A, Ellison C J, Yu G 2016 Adv. Mater. 28 7921Google Scholar

    [58]

    Pramanick B, Cadenas L B, Kim D M, et al. 2016 Carbon 107 872Google Scholar

    [59]

    Di J T, Zhang X H, Yong Z Z, Zhang Y Y, Li D, Li R, Li Q W 2016 Adv. Mater. 28 10529Google Scholar

    [60]

    IzadiNajafabadi A, Yasuda S, Kobashi K, et al. 2010 Adv. Mater. 22 E235Google Scholar

    [61]

    Zou M, Zhao W, Wu H, Zhang H, Xu W, Yang L, Wu S, Wang Y, Chen Y, Xu L, Cao A 2018 Adv. Mater. 30 1704419Google Scholar

    [62]

    Zheng X, Zhang K, Yao L, Qiu Y, Wang S 2018 J. Mater. Chem. A 6 896Google Scholar

    [63]

    Bae J, Song M K, Park Y J, Kim J M, Liu M, Wang Z L 2011 Angew. Chem. Int. Ed. Engl. 50 1683Google Scholar

    [64]

    Yue L, Jia D, Tang J, Zhang A, Liu F, Chen T, Barrow C, Yang W, Liu J 2020 J. Colloid Interf. Sci. 560 237Google Scholar

    [65]

    Tian J H, Lin B P, Sun Y, Zhang X Q, Yang H 2017 Mater. Letter. 206 91Google Scholar

    [66]

    Yin Z C, Bu Y Y, Ren J, Chen S, Zhao D M, Zou Y H, Shen S H, Yang D J 2018 Chem. Eng. J. 345 165Google Scholar

    [67]

    Pal B, Vijayan B L, Krishnan S G, Harilal M, Basirun W J, Lowe A, Yusoff M M, Jose R 2018 J. Alloy. Compd. 740 703Google Scholar

    [68]

    Wu X, Yao S 2017 Nano Energy 42 143Google Scholar

    [69]

    Zhang Q, Xu W, Sun J, et al. 2017 Nano Lett. 17 7552Google Scholar

    [70]

    Rahman M, Davey K, Qiao S Z 2017 Adv. Funct. Mater. 27 1606129Google Scholar

    [71]

    Chen G F, Ma T Y, Liu Z Q, Li N, Su Y Z, Davey K, Qiao S Z 2016 Adv. Funct. Mater. 26 3314Google Scholar

    [72]

    Shen L F, Yu L, Wu H B, Yu X Y, Zhang X G, Lou X W 2015 Nat. Commun. 6 6694Google Scholar

    [73]

    Zhang P, Guan B Y, Yu L, Lou X W 2017 Angew. Chem. Int. Edit. 56 7141Google Scholar

    [74]

    Liu Y, Wang Z B, Zhong Y J, Tade M, Zhou W, Shao Z P 2017 Adv. Funct. Mater. 27 10Google Scholar

    [75]

    Sivanantham A, Ganesan P, Shanmugam S 2016 Adv. Funct. Mater. 26 4661Google Scholar

    [76]

    Yu X Y, Yu L, Shen L F, Song X H, Chen H Y, Lou X W 2014 Adv. Funct. Mater. 24 7440Google Scholar

    [77]

    Wang X, Zhang Q, Sun J, Zhou Z, Li Q, He B, Zhao J, Lu W, Wong C, Yao Y 2018 J Mater. Chem. A 6 8030Google Scholar

    [78]

    Snook G A, Kao P, Best A S 2011 J. Power Sources 196 1Google Scholar

    [79]

    Zhang Q F, Uchaker E, Candelaria S L, Cao G Z 2013 Chem. Soc. Rev. 42 3127Google Scholar

    [80]

    Candelaria S L, Shao Y Y, Zhou W, Li X L, Xiao J, Zhang J G, Wang Y, Liu J, Li J H, Cao G Z 2012 Nano Energy 1 195Google Scholar

    [81]

    Wang G P, Zhang L, Zhang J J 2012 Chem. Soc. Rev. 41 797Google Scholar

    [82]

    Liu S, Sun S H, You X Z 2014 Nanoscale 6 2037Google Scholar

    [83]

    Yang S, Sun L, An X, Qian X 2020 Carbohyd. Polym. 229 115455Google Scholar

    [84]

    Nagaraju G, Sekhar S C, Yu J S 2018 Adv. Energy Mater. 8 1702201Google Scholar

    [85]

    Le T S, Truong T K, Huynh V N, Bae J, Suh D 2020 Nano Energy 67 104198Google Scholar

    [86]

    Liu S, Gao D, Li J, Hui K S, Yin Y, Hui K N, Chan Jun S 2019 J. Mater. Chem. A 7 26618Google Scholar

    [87]

    Zhai T, Wan L M, Sun S, Chen Q, Sun J, Xia Q Y, Xia H 2017 Adv. Mater. 29 1604167Google Scholar

    [88]

    Liu S, Xu C, Yang H, Qian G, Hua S, Liu J, Zheng X, Lu X 2020 Small e1905778

    [89]

    Li X, Liu D, Yin X, Zhang C, Cheng P, Guo H, Song W, Wang J 2019 J. Power Sources 440 227143Google Scholar

    [90]

    Wang X, Liu B, Liu R, Wang Q, Hou X, Chen D, Wang R, Shen G 2014 Angew. Chem. Int. Ed. Engl. 53 1849Google Scholar

    [91]

    Guo W X, Xue X Y, Wang S H, Lin C J, Wang Z L 2012 Nano Lett. 12 2520Google Scholar

    [92]

    Hsu C Y, Chen H W, Lee K M, Hu C W, Ho K C 2010 J. Power Sources 195 6232Google Scholar

    [93]

    Chen T, Qiu L, Yang Z, Cai Z, Ren J, Li H, Lin H, Sun X, Peng H 2012 Angew. Chem. Int. Ed. Engl. 51 11977Google Scholar

  • [1] Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing. Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST. Acta Physica Sinica, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] Zhang Tian-Fu, Si Yang-Yang, Li Yi-Jie, Chen Zu-Huang. Research status and prospect of lead zirconate-based antiferroelectric films. Acta Physica Sinica, 2023, 72(9): 097704. doi: 10.7498/aps.72.20230389
    [3] Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le. Influence of back electrode material, structure and thickness on performance of perovskite solar cells. Acta Physica Sinica, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [4] Ye An-Na, Zhang Xiao-Hua, Yang Zhao-Hui. Redox-enhanced solid-state supercapacitor based on hydroquinone-containing gel electrolyte/ carbon nanotube arrays. Acta Physica Sinica, 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [5] Shao Guang-Wei, Guo Shan-Shan, Yu Rui, Chen Nan-Liang, Ye Mei-Dan, Liu Xiang-Yang. Stretchable supercapacitors: Electrodes, electrolytes, and devices. Acta Physica Sinica, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [6] Wu Meng-Dan, Zhou Sheng-Lin, Ye An-Na, Wang Min, Zhang Xiao-Hua, Yang Zhao-Hui. High-voltage flexible solid state supercapacitor based on neutral hydrogel/carbon nanotube arrays. Acta Physica Sinica, 2019, 68(10): 108201. doi: 10.7498/aps.68.20182288
    [7] Li Jin-Hua, Zhang Si-Nan, Zhai Ying-Jiao, Ma Jian-Gang, Fang Wen-Hui, Zhang Yu. Development and application of MoS2 and its metal composite surface enhanced Raman scattering substrates. Acta Physica Sinica, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [8] Zhou Yu-Zhi. Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system. Acta Physica Sinica, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [9] Jin Chen-Dong, Song Cheng-Kun, Wang Jin-Shuai, Wang Jian-Bo, Liu Qing-Fang. Research progress of micromagnetic magnetic skyrmions and applications. Acta Physica Sinica, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [10] Zhu Qi, Yuan Xie-Tao, Zhu Yi-Hao, Zhang Xiao-Hua, Yang Zhao-Hui. Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays. Acta Physica Sinica, 2018, 67(2): 028201. doi: 10.7498/aps.67.20171855
    [11] Yang Xiu-Tao, Liang Zhong-Guan, Yuan Yu-Jia, Yang Jun-Liang, Xia Hui. Preparation and electrochemical performance of porous carbon nanosphere. Acta Physica Sinica, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [12] Zhang Cheng, Deng Ming-Sen, Cai Shao-Hong. Co3O4 mesoporous nanostructure supported by Ni foam as high-performance supercapacitor electrodes. Acta Physica Sinica, 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [13] Chen Cheng-Cheng, Liu Li-Ying, Wang Ru-Zhi, Song Xue-Mei, Wang Bo, Yan Hui. Preparation of nanostructured GaN films and their field emission enhancement for different substrates. Acta Physica Sinica, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [14] Liu Jian-Feng, Zhou Qing-Li, Shi Yu-Lei, Li Lei, Zhao Dong-Mei, Zhang Cun-Lin. The effect of substrate on terahertz transmission properties through metal subwavelength dual-ring structure. Acta Physica Sinica, 2012, 61(4): 048101. doi: 10.7498/aps.61.048101
    [15] Quan Jun, Liu Yi-Xing, Yu Ya-Bin. Dynamic response of the coherent parallel-plate capacitor to the external field. Acta Physica Sinica, 2010, 59(2): 1237-1242. doi: 10.7498/aps.59.1237
    [16] Chen Xue-Feng, Li Hua-Mei, Li Dong-Jie, Cao Fei, Dong Xian-Lin. Study on slim-loop ferroelectric ceramics for high-power pulse capacitors. Acta Physica Sinica, 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [17] Jiang Ben-Xue, Xu Jun, Li Hong-Jun, Wang Jing-Ya, Zhao Guang-Jun, Zhao Zhi-Wei. Core center distribution of Nd∶YAG crystal grown by Temperature gradient technique. Acta Physica Sinica, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [18] Gao Guo-Liang, Qian Chang-Ji, Li Hong, Gu Wen-Jing, Huang Xiao-Hong, Ye Gao-Xiang. Distribution of impurities on nonlattice substraes influence for fractal aggregates. Acta Physica Sinica, 2006, 55(7): 3349-3354. doi: 10.7498/aps.55.3349
    [19] Gao Guo-Liang, Qian Chang-Ji, Li Hong, Huang Xiao-Hong, Gu Wen-Jing, Ye Gao-Xiang. Computer simulation for ramified aggregates on nonlattice substrates with impurities. Acta Physica Sinica, 2005, 54(6): 2600-2605. doi: 10.7498/aps.54.2600
    [20] Zhang Zhong-hua. PERTURBATION METHOD FOR VARIABLE BOUNDARY PROBLEMS AND APPLICATION TO THE EVALUATION OF ERRORS IN PRECISE CAPACITORS. Acta Physica Sinica, 1979, 28(4): 563-570. doi: 10.7498/aps.28.563
Metrics
  • Abstract views:  18229
  • PDF Downloads:  621
  • Cited By: 0
Publishing process
  • Received Date:  24 January 2020
  • Accepted Date:  13 February 2020
  • Available Online:  08 April 2020
  • Published Online:  05 September 2020

/

返回文章
返回