Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Drift wave in strong collisional dusty magnetoplasma

Yang Jian-Rong Mao Jie-Jian Wu Qi-Cheng Liu Ping Huang Li

Citation:

Drift wave in strong collisional dusty magnetoplasma

Yang Jian-Rong, Mao Jie-Jian, Wu Qi-Cheng, Liu Ping, Huang Li
PDF
HTML
Get Citation
  • The study about the wave mechanism of magnetized dusty plasmas has important value to related experiment, industrial processing and exploring celestial space. The linear and nonlinear fluctuation characteristics of the nonuniform magnetized dust plasma system are researched in this paper. For the homogeneous external magnetic field and the nonuniform environment with density and temperature gradients, a two-dimensional nonlinear dynamic magnetoplasma equation is derived considering the strong impact between dust and neutral particles. The linear dispersion relation is obtained by the linearized method. There are both the damping wave causing by strong collision and the harmonic wave by particle drift. Employing the typical numerical parameters for analysis, the results display that the quantum parameter modifies the system lengths; the real wave frequency is proportion to the drift frequency; the imaginary wave frequency has complex relationship with the collision frequency between dust and neutrals, and the collision of particles causes the dissipation effects to the system. Besides, the analytical solutions of drift shock wave and explosive wave are solved by function change method. The variation about the electrostatic potential with the main physical parameters is discussed in detail. It is shown that the strength of the electrostatic shock wave and the width of the explosive wave increase with increasing the dust density and magnetic field intensity, decrease with increasing the collision frequency, change with the drift velocity. When the space-time phase is small, the electrostatic potential changes quickly; once big enough, the potential tends to be stable value and reaches stable state eventually. Finally, the stability of the system is discussed. It is found that the dusty charge, quantum parameter, drift velocity all appear in the disturbed solution. All these results in the paper show that the strong collision effect, quantum effect, particle drift and magnetic field all play important role to the generation, evolution and stability of drift waves.
      Corresponding author: Yang Jian-Rong, sryangjr@163.com ; Mao Jie-Jian, maojj2006@163.com
    [1]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353Google Scholar

    [2]

    马锦秀 2006 物理 35 244

    Ma J X 2006 Physics 35 244

    [3]

    Merlino R L, Goree J 2004 Phys. Today 57 32

    [4]

    Shukla P K, Mamun A A 2002 Introduction to Dusty Physics Plasmas (Bristol: Institute of Physics) pp29−35

    [5]

    Verheest F 2000 Waves in Dusty Space Plasmas (Dordrecht: Kluwer Academic Publishers, The Netherlands) pp11−56

    [6]

    Shukla P K 2002 Dust Plasma Interaction in Space (New York: Nova Science) pp156−159

    [7]

    Liang Z F, Tang X Y 2013 Commun. Nonlinear Sci. Numer. Simul. 18 3014Google Scholar

    [8]

    Barkan A, Merlino R L, Angelo N D 1995 Phys. Plasmas 2 3563Google Scholar

    [9]

    Merlino R L 2014 J. Plasma Phys. 80 773Google Scholar

    [10]

    Rao N N, Shukla P K, Yu M Y 1990 Planet. Space Sci. 18 543

    [11]

    Shukla P K, Rahman H U 1996 Phys. Plasmas 3 430Google Scholar

    [12]

    Haas F 2005 Phys. Plasmas 12 062117Google Scholar

    [13]

    Haque Q, Mahmood S 2008 Phys. Plasmas 15 034501Google Scholar

    [14]

    Masood W 2009 Phys. Lett. A 373 1455Google Scholar

    [15]

    Masood W, Karim S, Shah H A, Siddiq M 2009 Phys. Plasmas 16 042108Google Scholar

    [16]

    Yang J R, Lv K, Xu L, Mao J J, Liu X Z, Liu P 2017 Chin. Phys. B 26 065200

    [17]

    Yang J R, Wu B, Mao J J, Liu P, Wang J Y 2014 Commun. Theor. Phys 62 871

    [18]

    Moslem W M, Shukla P K, Ali S, Schlickeiser R 2007 Phys. Plasmas 14 042107Google Scholar

    [19]

    Sadiq M, Ali S, Sabry R 2009 Phys. Plasmas 16 013706Google Scholar

    [20]

    Sharma P, Patidar A, Jain S, Vyas B 2018 Phys. Plasmas 25 083714Google Scholar

    [21]

    Jorge R, Ricci P, Loureiro N F 2018 Phys. Rev. Lett. 121 165001Google Scholar

    [22]

    Kumar A, Das A, Kaw P 2019 Phys. Plasmas 26 8

    [23]

    Mehdipoor M 2020 The Eur. Phys. J. Plus 135 299Google Scholar

    [24]

    Masood W, Karim S, Shah H A 2010 Phys. Scr. 82 045503Google Scholar

    [25]

    Kato S 1968 Astrophys. Space Sci. 2 37Google Scholar

    [26]

    Dev A N, Deka M K, Sarma J, Adhikary N C 2015 J. Korean Phys. Soc. 67 339Google Scholar

    [27]

    Khan S A, Mushtaq A, Masood W 2008 Phys. Plasmas 15 013701Google Scholar

    [28]

    Smith B A, Soderblom L, Beebe R, et al. 1981 Science 212 163Google Scholar

    [29]

    Smith B A, Soderblom L, Batson R, et al. 1982 Science 215 504Google Scholar

    [30]

    Humes D H 1980 J. Geophys. Res. 85 5841Google Scholar

    [31]

    Yang J R, Xu T, Mao J J, Liu P, Liu X Z 2017 Chin. Phys. B 26 015202Google Scholar

  • 图 1  (14) 式实色散频率随着波数k和漂移速度v的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式

    Figure 1.  Variation of the real dispersion frequency with the wave number k and drift velocity v determined by Eq. (14) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).

    图 2  (14)式实色散频率随着波数k和倾斜角$ \theta $的变化, 对应的参量见(11)式

    Figure 2.  Variation of the real dispersion frequency with the wave number k and obliqueness angle $ \theta $ determined by Eq. (14), and the parameters given in Eq. (11).

    图 3  (14)式实色散频率随着波数k和尘埃密度$n_{\rm d}$的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式

    Figure 3.  Variation of the real dispersion frequency with the wave number k and the dust density $n_{\rm d}$ determined by Eq. (14) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).

    图 4  (14)式实色散频率随着波数k和磁场强度$ B_0 $的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式

    Figure 4.  Variation of the real dispersion frequency with the wave number k and magnetic field $ B_0 $ determined by Eq. (14) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).

    图 5  (15)式虚色散频率随着波数k和碰撞频率$ \nu_{\rm {dn}} $的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式

    Figure 5.  Variation of the imaginary dispersion frequency with the wave number k and the collision frequency $ \nu_{\rm {dn}} $ determined by Eq. (15) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).

    图 6  (18)式冲击波$ \varPhi_1 $随着尘埃密度$ n_{\rm d} $的变化. 对应的参量为$ k_{2} = 10 $, $ k_{3} = 1 $, 其他参量见(11)式

    Figure 6.  Variation of the shock wave $ \varPhi_1 $ with the dust density $ n_{\rm d} $ by Eq.(18) for $ k_{2} = 10 $, $ k_{3} = 1 $. Other parameters are given in Eq. (11).

    图 7  (18)式冲击波$ \varPhi_1 $随着碰撞频率$ \nu_{\rm {dn}} $的变化. 对应的参量为$ k_{2} = 10 $, $ k_{3} = 2 $, 其他参量见(11)式

    Figure 7.  Variation of the shock wave $ \varPhi_1 $ with the collision frequency $ \nu_{\rm {dn}} $ by Eq.(18) for $ k_{2} = 10 $, $ k_{3} = 2 $. Other parameters are given in Eq. (11).

    图 8  (18)式冲击波$ \varPhi_1 $随着漂移速度v的变化. 对应的参量为$ k_{2} = 5 $, $ k_{3} = 2 $, 其他参量见(11)式

    Figure 8.  Variation of the shock wave $ \varPhi_1 $ with the drift velocity v by Eq.(18) for $ k_{2} = 5 $, $ k_{3} = 2 $. Other parameters are given in Eq. (11).

    图 9  (18)式冲击波$ \varPhi_1 $随着磁场强度$ B_0 $的变化. 对应的参量为$ k_{2} = 10 $, $ k_{3} = 1 $, 其他参量见(11)式

    Figure 9.  Variation of the shock wave $ \varPhi_1 $ with the magnetic field $ B_0 $ by Eq.(18) for $ k_{2} = 10 $, $ k_{3} = 1 $. Other parameters are given in Eq. (11).

    图 10  (19)式爆炸波$ \varPhi_2 $随着尘埃密度$ n_{\rm d} $的变化. 对应的参量为$ k_{2} = 2 $, $ k_{3} = 1 $, $ n_{\rm d} = 1.2\times10^{18}{\ \rm{cm}^{-3}} $ (实线), $ n_{\rm d} = 1.4\times10^{18}{\ \rm{cm}^{-3}} $(虚线), 其他参量见(11)式

    Figure 10.  Profile of the explosive wave $ \varPhi_2 $ by Eq. (19) with $ k_{2} = 2 $, $ k_{3} = 1 $, $ n_{\rm d} = 1.2\times10^{18}{\ \rm{cm}^{-3}} $ (solid line), and $ n_{\rm d} = 1.4\times10^{18}{\ \rm{cm}^{-3}} $ (dash line). Other parameters are given in Eq. (11).

    图 11  (19)式爆炸波$ \varPhi_2 $随着碰撞频率$ \nu_{\rm {dn}} $的变化. 对应的参量为$ k_{2} = 2 $, $ k_{3} = 1 $, $ \nu_{\rm {dn}} = 10^{6}\ \rm{Hz} $(实线), $ \nu_{\rm {dn}} = 3\times 10^{6}\ \rm{Hz} $(虚线), 其他参量见(11)式

    Figure 11.  Profile of the explosive wave $ \varPhi_2 $ given by Eq. (19) with $ k_{2} = 2 $, $ k_{3} = 1 $, $ \nu_{\rm {dn}} = 10^{6}\ \rm{Hz} $ (solid line), and $ \nu_{\rm {dn}} = 3\times10^{6}\ \rm{Hz} $ (dash line). Other parameters are given in Eq. (11).

    图 12  (19)式爆炸波$ \varPhi_2 $随着漂移速度v的变化. 对应的参量为$ k_{2} = 2 $, $ k_{3} = 1 $, $ v = 10^{3}\ \rm{cm/s} $ (实线), $ v = 10^{4}\ \rm{cm/s} $(虚线), 其他参量见(11)式

    Figure 12.  Profile of the explosive wave $ \varPhi_2 $ given by Eq. (19) with $ k_{2} = 2 $, $ k_{3} = 1 $, $ v = 10^{3}\ \rm{cm/s} $ (solid line), and $ v = 10^{4}\ \rm{cm/s} $ (dash line). Other parameters are given in Eq. (11).

    图 13  (19)式爆炸波$ \varPhi_2 $随着磁场强度$ B_0 $的变化. 对应的参量为$ k_{2} = 2 $, $ k_{3} = 1 $, $ B_0 = 10^{8}\ \rm{G} $(实线), 和$ B_0 = 3\times 10^{8}\ \rm{G} $(虚线), 其他参量见(11)式

    Figure 13.  Profile of the explosive wave $ \varPhi_2 $ given by Eq. (19) with $ k_{2} = 2 $, $ k_{3} = 1 $, $ B_0 = 10^{8}\ \rm{G} $ (solid line), and $ B_0 = 3\times10^{8}\ \rm{G} $ (dash line). Other parameters are given in Eq. (11).

  • [1]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353Google Scholar

    [2]

    马锦秀 2006 物理 35 244

    Ma J X 2006 Physics 35 244

    [3]

    Merlino R L, Goree J 2004 Phys. Today 57 32

    [4]

    Shukla P K, Mamun A A 2002 Introduction to Dusty Physics Plasmas (Bristol: Institute of Physics) pp29−35

    [5]

    Verheest F 2000 Waves in Dusty Space Plasmas (Dordrecht: Kluwer Academic Publishers, The Netherlands) pp11−56

    [6]

    Shukla P K 2002 Dust Plasma Interaction in Space (New York: Nova Science) pp156−159

    [7]

    Liang Z F, Tang X Y 2013 Commun. Nonlinear Sci. Numer. Simul. 18 3014Google Scholar

    [8]

    Barkan A, Merlino R L, Angelo N D 1995 Phys. Plasmas 2 3563Google Scholar

    [9]

    Merlino R L 2014 J. Plasma Phys. 80 773Google Scholar

    [10]

    Rao N N, Shukla P K, Yu M Y 1990 Planet. Space Sci. 18 543

    [11]

    Shukla P K, Rahman H U 1996 Phys. Plasmas 3 430Google Scholar

    [12]

    Haas F 2005 Phys. Plasmas 12 062117Google Scholar

    [13]

    Haque Q, Mahmood S 2008 Phys. Plasmas 15 034501Google Scholar

    [14]

    Masood W 2009 Phys. Lett. A 373 1455Google Scholar

    [15]

    Masood W, Karim S, Shah H A, Siddiq M 2009 Phys. Plasmas 16 042108Google Scholar

    [16]

    Yang J R, Lv K, Xu L, Mao J J, Liu X Z, Liu P 2017 Chin. Phys. B 26 065200

    [17]

    Yang J R, Wu B, Mao J J, Liu P, Wang J Y 2014 Commun. Theor. Phys 62 871

    [18]

    Moslem W M, Shukla P K, Ali S, Schlickeiser R 2007 Phys. Plasmas 14 042107Google Scholar

    [19]

    Sadiq M, Ali S, Sabry R 2009 Phys. Plasmas 16 013706Google Scholar

    [20]

    Sharma P, Patidar A, Jain S, Vyas B 2018 Phys. Plasmas 25 083714Google Scholar

    [21]

    Jorge R, Ricci P, Loureiro N F 2018 Phys. Rev. Lett. 121 165001Google Scholar

    [22]

    Kumar A, Das A, Kaw P 2019 Phys. Plasmas 26 8

    [23]

    Mehdipoor M 2020 The Eur. Phys. J. Plus 135 299Google Scholar

    [24]

    Masood W, Karim S, Shah H A 2010 Phys. Scr. 82 045503Google Scholar

    [25]

    Kato S 1968 Astrophys. Space Sci. 2 37Google Scholar

    [26]

    Dev A N, Deka M K, Sarma J, Adhikary N C 2015 J. Korean Phys. Soc. 67 339Google Scholar

    [27]

    Khan S A, Mushtaq A, Masood W 2008 Phys. Plasmas 15 013701Google Scholar

    [28]

    Smith B A, Soderblom L, Beebe R, et al. 1981 Science 212 163Google Scholar

    [29]

    Smith B A, Soderblom L, Batson R, et al. 1982 Science 215 504Google Scholar

    [30]

    Humes D H 1980 J. Geophys. Res. 85 5841Google Scholar

    [31]

    Yang J R, Xu T, Mao J J, Liu P, Liu X Z 2017 Chin. Phys. B 26 015202Google Scholar

  • [1] Wei Guang-Yu, Chen Ning-Fei, Qiu Zhi-Yong. Nonlinear interaction of EGAM with DW turbulence in the Dimits shift region. Acta Physica Sinica, 2022, 71(1): 015201. doi: 10.7498/aps.71.20211430
    [2] Su Rui-Xia, Huang Xia, Zheng Zhi-Gang. Lattice wave solution and its dispersion relation of two coupled Frenkel-Kontorova chains. Acta Physica Sinica, 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [3] Nonlinear interaction of EGAM with DW turbulence in the Dimits shift region. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211430
    [4] Li Wen-Qiu, Zhao Bin, Wang Gang, Xiang Dong. Parametric analysis of mode coupling and liner energy deposition properties of helicon and Trivelpiece-Gould waves in helicon plasma. Acta Physica Sinica, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062
    [5] Li Wen-Qiu, Zhao Bin, Wang Gang. Effects of electron temperature on energy deposition properties of electromagnetic modes propagating in helicon plasma. Acta Physica Sinica, 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [6] Sun Jun-Chao, Zhang Zong-Guo, Dong Huan-He, Yang Hong-Wei. Fractional order model and Lump solution in dusty plasma. Acta Physica Sinica, 2019, 68(21): 210201. doi: 10.7498/aps.68.20191045
    [7] Yang Xue, Ding Da-Jun, Hu Zhan, Zhao Guo-Ming. Theoretical study on the structure and stability of neutral and cationic butanone clusters. Acta Physica Sinica, 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [8] Xu Bin, Li Hui, Wang Zhan-Ge, Xu Zheng-Wen, Wu Jian. Study on incoherent scatter theory of high density dusty plasma. Acta Physica Sinica, 2017, 66(4): 049401. doi: 10.7498/aps.66.049401
    [9] Chen Hai-Jun, Zhang Yao-Wen. Stabilization of matter-wave solitons in Bessel optical lattice by spatial modulation of the nonlinearity. Acta Physica Sinica, 2014, 63(22): 220303. doi: 10.7498/aps.63.220303
    [10] Chen Hai-Jun, Li Xiang-Fu. The stability of matter-wave solitons in 2D linear and nonlinear optical lattices. Acta Physica Sinica, 2013, 62(7): 070302. doi: 10.7498/aps.62.070302
    [11] Zhang Juan, Zhou Zhi-Gang, Shi Yu-Ren, Yang Hong-Juan, Duan Wen-Shan. The stability of solitay wave solution to a modified Kadomtsev-Petviashvili equation. Acta Physica Sinica, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [12] Liu San-Qiu, Guo Hong-Mei. Transverse dispersion laws in ultra-relativistic plasma with fast electron distribution. Acta Physica Sinica, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [13] Liu Bing-Can, Lu Zhi-Xin, Yu Li. The dispersion relation for surface plasmon at a metal-Kerr nonlinear medium interface. Acta Physica Sinica, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [14] Zhong Sheng-Ren. Instability and interaction of the nonlinear solitary waves in two-temperature-ion dusty plasma. Acta Physica Sinica, 2010, 59(4): 2178-2181. doi: 10.7498/aps.59.2178
    [15] Ji Pei-Yong, Lu Nan, Zhu Jun. Dispersion relation and Landau damping of linear waves in quantum plasma. Acta Physica Sinica, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [16] Zhao Guo-Wei, Xu Yue-Min, Chen Cheng. Calculation of dispersion relation and radiation pattern of plasma antenna. Acta Physica Sinica, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [17] Yang Jian-Song, Li Bao-Xing. Study of the stability of gallium-arsenic ion clusters. Acta Physica Sinica, 2006, 55(12): 6562-6569. doi: 10.7498/aps.55.6562
    [18] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [19] Zhou Guo-Cheng, Cao Jin-Bin, Wang De-Ju, Cai Chun-Lin. Low-frequency waves in collisionless plasma current sheet. Acta Physica Sinica, 2004, 53(8): 2644-2653. doi: 10.7498/aps.53.2644
    [20] Hong Xue-Ren, Duan Wen-Shan, Sun Jian-An, Shi Yu-Ren, Lü Ke-Pu. The propagation of solitons in an inhomogeneous dusty plasma. Acta Physica Sinica, 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
Metrics
  • Abstract views:  6054
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2020
  • Accepted Date:  08 May 2020
  • Available Online:  26 May 2020
  • Published Online:  05 September 2020

/

返回文章
返回