Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The theoretical study of terahertz-streaking photoionization for ultrafast imaging of density matrix in rubidium atom

Ling Zhong-Huo Wang Shuai Zhang Jin-Cang Zhang Yi-Zhu Yan Tian-Min Jiang Yu-Hai

Citation:

The theoretical study of terahertz-streaking photoionization for ultrafast imaging of density matrix in rubidium atom

Ling Zhong-Huo, Wang Shuai, Zhang Jin-Cang, Zhang Yi-Zhu, Yan Tian-Min, Jiang Yu-Hai
PDF
HTML
Get Citation
  • Terahertz-streaking photoionization can be exploited to resolve ultrafast quantum beating and reconstruct the ultrafast evolution of density matrix. Here, we propose an experimental strategy to implement the method merely with the tabletop femtosecond system and magneto-optical trap reaction microscopy. The probe pulse consists of an ultraviolet pulse with pulse duration of about 30 fs and a strong terahertz pulse with strength of about 2.6 fs in rubidium-atom superposition. The population and coherence terms of the density matrix can be projected into different positions of the photoelectron momentum distribution. The reconstruction algorithm was designed to acquire the ultrafast evolution of density matrix from the time-dependent photoelectron spectrum. The experimental conception can demonstrate the newly proposed transient spectral method only with the commercial femtosecond laser system and magneto-optical trap reaction microscopy, thus preventing the complex laser system, such as extreme ultraviolet free electron lasers and attosecond higher harmonics, allowing a new metrology to explore the coherence dynamics of quantum systems.
      Corresponding author: Zhang Yi-Zhu, zhangyz@sari.ac.cn ; Yan Tian-Min, yantm@sari.ac.cn ; Jiang Yu-Hai, jiangyh@sari.ac.cn
    [1]

    Pabst S, Greenman L, Ho P J, Mazziotti D A, Santra R 2011 Phys. Rev. Lett. 106 053003Google Scholar

    [2]

    Arnold C, Vendrell O, Santra R 2017 Phys. Rev. A 95 033425Google Scholar

    [3]

    Willenberg B, Maurer J, Mayer B W, Keller U 2019 Nat. Commun. 10 5548Google Scholar

    [4]

    Hartung A, Eckart S, Brennecke S, Rist J, Trabert D, Fehre K, Richter M, Sann H, Zeller S, Henrichs K, Kastirke G, Hoehl J, Kalinin A, Schöffler M S, Jahnke T, Schmidt L P H, Lein M, Kunitski M, Dörner R 2019 Nat. Phys. 15 1222Google Scholar

    [5]

    Collini E, Scholes G D 2009 Science 323 369Google Scholar

    [6]

    Collini E, Wong C Y, Wilk K E, Curmi P M G, Brumer P, Scholes G D 2010 Nature 463 644Google Scholar

    [7]

    Engel G S, Calhoun T R, Read E L, Ahn T K, Mančal T, Cheng Y C, Blankenship R E, Fleming G R 2007 Nature 446 782Google Scholar

    [8]

    Brixner T, Stenger J, Vaswani H M, Cho M, Blankenship R E, Fleming G R 2005 Nature 434 625Google Scholar

    [9]

    Meng Q X, Zhang Y Z, Yan T M, Jiang Y H 2017 Opt. Express 25 6644Google Scholar

    [10]

    Zhang Y Z, Yan T M, Jiang Y H 2016 Opt. Lett. 41 4134Google Scholar

    [11]

    Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R 2019 Science 365 79Google Scholar

    [12]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [13]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374Google Scholar

    [14]

    Ott C, Aufleger L, Ding T, Rebholz M, Magunia A, Hartmann M, Stooß V, Wachs D, Birk P, Borisova G D, Meyer K, Rupprecht P, da Costa Castanheira C, Moshammer R, Attar A R, Gaumnitz T, Loh Z H, Düsterer S, Treusch R, Ullrich J, Jiang Y H, Meyer M, Lambropoulos P, Pfeifer T 2019 Phys. Rev. Lett. 123 163201Google Scholar

    [15]

    Kowalewski M, Bennett K, Rouxel J R, Mukamel S 2016 Phys. Rev. Lett. 117 043201Google Scholar

    [16]

    Zhang Y Z, Yan T M, Jiang Y H 2018 Phys. Rev. Lett. 121 113201Google Scholar

    [17]

    Deutsch C, Ramirez-Martinez F, Lacroute C, Reinhard F, Schneider T, Fuchs J N, Piéchon F, Laloe F, Reichel J, Rosenbusch P 2010 Phys. Rev. Lett. 105 020401Google Scholar

    [18]

    Mudrich M, Stienkemeier F, Droppelmann G, Claas P, Schulz C 2008 Phys. Rev. Lett. 100 023401Google Scholar

    [19]

    Li R Y, Yuan J Y, Wang X C, Hou X Y, Zhang S, Zhu Z Y, Ma Y X, Gao Q, Wang Z Y, Yan T M, Qin C C, Li S, Zhang Y Z, Weidemüller M, Jiang Y H 2019 J. Instrum. 14 P02022Google Scholar

    [20]

    Yuan J Y, Ma Y X, Li R Y, Ma H Y, Yan T M, Zhang Y Z, Ye D F, Shen Z J, Wang X C, Weidemuller M, Jiang Y H 2020 Chin. Phys. Lett. 37 053201Google Scholar

    [21]

    马祎璇, 李任远, 袁俊阳, 孟秋香, 马欢玉, 阮舒舒, 张逸竹, 阎天民, 沈镇捷, 王新成, 江玉海 2020 中国激光 47 0601011Google Scholar

    Ma Y X, Li R Y, Yuan J Y, Meng Q X, Ma H Y, Ruan S S, Zhang Y Z, Yan T M, Shen Z J, Wang X C, Jiang Y H 2020 Chineses J. Lasers 47 0601011Google Scholar

    [22]

    Hirori H, Doi A, Blanchard F, Tanaka K 2011 Appl. Phys. Lett. 98 091106Google Scholar

    [23]

    Ravi K, Huang W R, Carbajo S, Wu X J, Kärtner F 2014 Opt. Express 22 20239Google Scholar

    [24]

    Wu X J, Carbajo S, Ravi K, Ahr F, Cirmi G, Zhou Y, Mücke O D, Kärtner F X 2014 Opt. Lett. 39 5403Google Scholar

    [25]

    黄文逍, 张逸竹, 阎天民, 江玉海 2016 物理学报 65 223204Google Scholar

    Huang W X, Zhang Y Z, Yan T M, Jiang Y H 2016 Acta Phys. Sin. 65 223204Google Scholar

    [26]

    Huang Y, Qin C C, Zhang Y Z, Wang X C, Yan T M, Jiang Y H 2019 Chin. Phys. B 28 93202Google Scholar

  • 图 1  太赫兹辅助下的铷原子5s和5p能级光电离实验原理图 (a) 探测光含紫外飞秒激光脉冲和太赫兹脉冲, 紫外飞秒脉冲锁定于太赫兹矢势零点处, 将用于探测由红外光制备的铷原子叠加态的相干动力学过程; (b) 太赫兹辅助光电离过程示意图. 第一步, 紫外飞秒激光电离铷原子叠加态电子, 在光电子能谱上形成两条特征谱线; 第二步, 不同末动量的连续电子波函数在太赫兹的驱动下, 能谱展宽并发生干涉现象

    Figure 1.  Schematic diagram of terahertz-streaking photoioniza-tion experiments. (a) The probe pulses consist of a ultraviolet pulse and a terahertz pulse. The ultraviolet pulse is locked at the zero point of terahertz vector potential. The superposition state of rubidium atoms is excited by an infrared pulse. (b) Schematic diagram in energy representation. First, the electrons in the superposition state of rubidium atoms are ionized by a UV femtosecond pulse to form two characteristic spectral lines in the photoelectron energy spectrum. Second, the continuous electron with different final momenta is driven by the terahertz pulse. The spectral lines are broadened and the interference occurs.

    图 2  光电子动量谱随抽运-探测时间的演化 (a) 仅紫外脉冲电离铷原子情况下光电子的动量谱; (b)太赫兹电场辅助光电离下光电子的动量谱

    Figure 2.  The evolution of photoelectron momentum spectra as a function of time delay: (a) Photoelectron momentum spectra without a terahertz field; (b) photoelectron momentum spectra with a terahertz field.

    图 3  量子相干信息的时域分辨以及计算与理论的拟合 (a) 重构体系的相干动力学过程, 实线为理论相干项$ \mathrm{R}\mathrm{e}\left[{\rho }_{\mathrm{e}\mathrm{g}}\left(\tau \right)\right] $, 虚线为图2(b)中蓝线提取的相干相位信息; (b)黄线为在太赫兹电场驱动下$\tau =4000\mathrm{ }\;\mathrm{a}.\mathrm{u}.$时的光电子动量分布, 红线代表布居项贡献, 绿线代表着相干项的贡献

    Figure 3.  Time-domain resolution of quantum coherence and the reconstruction of density matrix: (a) Coherent dynamics of the quantum system. The solid line is the theoretical prediction of the coherence term$ \mathrm{R}\mathrm{e}\left[{\rho }_{eg}\left(\tau \right)\right] $. The dotted line is the cross section along the blue line in Fig. 2 (b) to extract the phase information. (b) Yellow line is the photoelectron momentum distribution driven by THz electric field at $\tau =4000\mathrm{ }\;\mathrm{a}.\mathrm{u}.$. The red line represents the population contribution; and the green line represents the coherence contribution.

  • [1]

    Pabst S, Greenman L, Ho P J, Mazziotti D A, Santra R 2011 Phys. Rev. Lett. 106 053003Google Scholar

    [2]

    Arnold C, Vendrell O, Santra R 2017 Phys. Rev. A 95 033425Google Scholar

    [3]

    Willenberg B, Maurer J, Mayer B W, Keller U 2019 Nat. Commun. 10 5548Google Scholar

    [4]

    Hartung A, Eckart S, Brennecke S, Rist J, Trabert D, Fehre K, Richter M, Sann H, Zeller S, Henrichs K, Kastirke G, Hoehl J, Kalinin A, Schöffler M S, Jahnke T, Schmidt L P H, Lein M, Kunitski M, Dörner R 2019 Nat. Phys. 15 1222Google Scholar

    [5]

    Collini E, Scholes G D 2009 Science 323 369Google Scholar

    [6]

    Collini E, Wong C Y, Wilk K E, Curmi P M G, Brumer P, Scholes G D 2010 Nature 463 644Google Scholar

    [7]

    Engel G S, Calhoun T R, Read E L, Ahn T K, Mančal T, Cheng Y C, Blankenship R E, Fleming G R 2007 Nature 446 782Google Scholar

    [8]

    Brixner T, Stenger J, Vaswani H M, Cho M, Blankenship R E, Fleming G R 2005 Nature 434 625Google Scholar

    [9]

    Meng Q X, Zhang Y Z, Yan T M, Jiang Y H 2017 Opt. Express 25 6644Google Scholar

    [10]

    Zhang Y Z, Yan T M, Jiang Y H 2016 Opt. Lett. 41 4134Google Scholar

    [11]

    Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R 2019 Science 365 79Google Scholar

    [12]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [13]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374Google Scholar

    [14]

    Ott C, Aufleger L, Ding T, Rebholz M, Magunia A, Hartmann M, Stooß V, Wachs D, Birk P, Borisova G D, Meyer K, Rupprecht P, da Costa Castanheira C, Moshammer R, Attar A R, Gaumnitz T, Loh Z H, Düsterer S, Treusch R, Ullrich J, Jiang Y H, Meyer M, Lambropoulos P, Pfeifer T 2019 Phys. Rev. Lett. 123 163201Google Scholar

    [15]

    Kowalewski M, Bennett K, Rouxel J R, Mukamel S 2016 Phys. Rev. Lett. 117 043201Google Scholar

    [16]

    Zhang Y Z, Yan T M, Jiang Y H 2018 Phys. Rev. Lett. 121 113201Google Scholar

    [17]

    Deutsch C, Ramirez-Martinez F, Lacroute C, Reinhard F, Schneider T, Fuchs J N, Piéchon F, Laloe F, Reichel J, Rosenbusch P 2010 Phys. Rev. Lett. 105 020401Google Scholar

    [18]

    Mudrich M, Stienkemeier F, Droppelmann G, Claas P, Schulz C 2008 Phys. Rev. Lett. 100 023401Google Scholar

    [19]

    Li R Y, Yuan J Y, Wang X C, Hou X Y, Zhang S, Zhu Z Y, Ma Y X, Gao Q, Wang Z Y, Yan T M, Qin C C, Li S, Zhang Y Z, Weidemüller M, Jiang Y H 2019 J. Instrum. 14 P02022Google Scholar

    [20]

    Yuan J Y, Ma Y X, Li R Y, Ma H Y, Yan T M, Zhang Y Z, Ye D F, Shen Z J, Wang X C, Weidemuller M, Jiang Y H 2020 Chin. Phys. Lett. 37 053201Google Scholar

    [21]

    马祎璇, 李任远, 袁俊阳, 孟秋香, 马欢玉, 阮舒舒, 张逸竹, 阎天民, 沈镇捷, 王新成, 江玉海 2020 中国激光 47 0601011Google Scholar

    Ma Y X, Li R Y, Yuan J Y, Meng Q X, Ma H Y, Ruan S S, Zhang Y Z, Yan T M, Shen Z J, Wang X C, Jiang Y H 2020 Chineses J. Lasers 47 0601011Google Scholar

    [22]

    Hirori H, Doi A, Blanchard F, Tanaka K 2011 Appl. Phys. Lett. 98 091106Google Scholar

    [23]

    Ravi K, Huang W R, Carbajo S, Wu X J, Kärtner F 2014 Opt. Express 22 20239Google Scholar

    [24]

    Wu X J, Carbajo S, Ravi K, Ahr F, Cirmi G, Zhou Y, Mücke O D, Kärtner F X 2014 Opt. Lett. 39 5403Google Scholar

    [25]

    黄文逍, 张逸竹, 阎天民, 江玉海 2016 物理学报 65 223204Google Scholar

    Huang W X, Zhang Y Z, Yan T M, Jiang Y H 2016 Acta Phys. Sin. 65 223204Google Scholar

    [26]

    Huang Y, Qin C C, Zhang Y Z, Wang X C, Yan T M, Jiang Y H 2019 Chin. Phys. B 28 93202Google Scholar

  • [1] Wen Yong-Li, Zhang Shan-Chao, Yan Hui, Zhu Shi-Liang. Scheme of directly measuring quantum density matrix by δ-quench method. Acta Physica Sinica, 2021, 70(11): 110301. doi: 10.7498/aps.70.20210269
    [2] Li Jin-Feng, Wan Ting, Wang Teng-Fei, Zhou Wen-Hui, Xin Jie, Chen Chang-Shui. Electrons leakage from upper laser level to high energy levels in active regions of terahertz quantum cascade lasers. Acta Physica Sinica, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [3] Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng. Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb. Acta Physica Sinica, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [4] Wei Xiang-Fei, He Rui, Zhang Gang, Liu Xiang-Yuan. Terahertz photoconductivity in InAs/GaSb based quantum well system. Acta Physica Sinica, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [5] Zhu Yong-Hao, Li Hua, Wan Wen-Jian, Zhou Tao, Cao Jun-Cheng. Far-field analysis of third-order distributed feedback terahertz quantum cascade lasers. Acta Physica Sinica, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [6] Han Yuan-Chun, Bao Tmurbagan. Investigation of ultrafast relaxation dynamic process of water-soluble TGA-CdTe quantum dots. Acta Physica Sinica, 2015, 64(11): 113201. doi: 10.7498/aps.64.113201
    [7] Xu Tian-Hong, Yao Chen, Wan Wen-Jian, Zhu Yong-Hao, Cao Jun-Cheng. Analyses of the output power and beam quality of the tapered terahertz quantum cascade lasers. Acta Physica Sinica, 2015, 64(22): 224212. doi: 10.7498/aps.64.224212
    [8] Fan Hong-Yi, He Rui. Quantum dissipation of the density matrix of mesoscopic RLC circuit. Acta Physica Sinica, 2014, 63(11): 110301. doi: 10.7498/aps.63.110301
    [9] Li Xia, Feng Dong-Hai, Pan Xian-Qun, Jia Tian-Qing, Shan Lu-Fan, Deng Li, Sun Zhen-Rong. Room-temperature ultrafast spin dynamics in colloidal CdSe quantum dots. Acta Physica Sinica, 2012, 61(20): 207202. doi: 10.7498/aps.61.207202
    [10] Li Xia, Feng Dong-Hai, He Hong-Yan, Jia Tian-Qing, Shan Lu-Fan, Sun Zhen-Rong, Xu Zhi-Zhan. Ultrafast carrier dynamics in CdTe/CdS Core/Shell quantum dots. Acta Physica Sinica, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [11] Tan Zhi-Yong, Chen Zhen, Han Ying-Jun, Zhang Rong, Li Hua, Guo Xu-Guang, Cao Jun-Cheng. Experimental realization of wireless transmission based on terahertz quantumcascade laser. Acta Physica Sinica, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [12] Zhang Cun-Xi, Wang Rui, Kong Ling-Min. Photon-mediated electron transport through a quantum well in an intense terahertz field with spin-orbit coupling. Acta Physica Sinica, 2010, 59(7): 4980-4984. doi: 10.7498/aps.59.4980
    [13] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [14] Tan Zhi-Yong, Guo Xu-Guang, Cao Jun-Cheng, Li Hua, Han Ying-Jun. Emission spectra of terahertz quantum-cascade lasers based on the terahertz quantum-well photodetectors. Acta Physica Sinica, 2010, 59(4): 2391-2395. doi: 10.7498/aps.59.2391
    [15] Chang Jun, Li Hua, Han Ying-Jun, Tan Zhi-Yong, Cao Jun-Cheng. Material growth and characterization of terahertz quantum-cascade lasers. Acta Physica Sinica, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [16] Qi Chun-Chao, Zuo Du-Luo, Meng Fan-Qi, Lu Yan-Zhao, Jiu Zhi-Xian, Cheng Zu-Hai. Long-pulse optical pumping THz laser based on optical amplification. Acta Physica Sinica, 2009, 58(7): 4641-4646. doi: 10.7498/aps.58.4641
    [17] Du Xiu-Mei, Man Zhong-Xiao, Xia Yun-Jie. On the properties and controlling of thermal entanglement in a two-qubit Heisenberg XY model with external magnetic fields. Acta Physica Sinica, 2008, 57(12): 7457-7462. doi: 10.7498/aps.57.7457
    [18] He Zhi-Hong, Yao Jian-Quan, Shi Hua-Feng, Huang Xiao, Luo Xi-Zhang, Jiang Shao-Ji, Wang Peng. Semiclassical theory of optically pumped D2O gas tera-Hz laser. Acta Physica Sinica, 2007, 56(10): 5802-5807. doi: 10.7498/aps.56.5802
    [19] Deng Li, Shou Qian, Liu Ye-Xin, Zhang Hai-Chao, Lai Tian-Shu, Lin Wei-Zhu. Mechanism of optical polarization dephasing in bulk GaAs and multiple quantum wells. Acta Physica Sinica, 2004, 53(2): 640-645. doi: 10.7498/aps.53.640
    [20] FU PAN-MING, YE PEI-XIAN. QUANTUM BEAT IN TIME-RESOLVED DEGENERATE FOUR-WAVE MIXING. Acta Physica Sinica, 1984, 33(11): 1520-1528. doi: 10.7498/aps.33.1520
Metrics
  • Abstract views:  7084
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  13 February 2020
  • Accepted Date:  13 May 2020
  • Available Online:  26 May 2020
  • Published Online:  05 September 2020

/

返回文章
返回