Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells

Zhang Chen Zhang Hai-Yu Hao Hui-Ying Dong Jing-Jing Xing Jie Liu Hao Shi Lei Zhong Ting-Ting Tang Kun-Peng Xu Xiang

Citation:

Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells

Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang
PDF
HTML
Get Citation
  • ZnO is a promising electron transport material. It has not only similar energy level position and physical properties to traditional TiO2, but also excellent light transmittance, conductivity, stability, low cost and low temperature preparation. Studies have shown that the one-dimensional nanostructured electron transport layer has a higher electron transport rate, provides a direct electron transport channel and avoids its being recombined at the grain boundaries, thereby improving carrier collection efficiency. It has also been reported that the electron transport rate of ZnO nanorods is significantly better than that of TiO2, showing their great potential applications. In perovskite solar cells, the verticality of ZnO nanorods is a key factor affecting device efficiency. The AZO (ZnO∶Al) glass, as an inexpensive transparent conductive substrate, is expected to obtain the best verticality because it has no lattice mismatch with ZnO nanorods. And in the field of perovskite solar cells, the light absorbing layer is usually prepared in a glove box and it has obviously not been industralized. However, there are few reports about perovskite solar cells prepared in atmospheric environment with AZO as substrate and ZnO nanorods as electron transport layer. And it is still much less efficient than the current perovskite solar cells with TiO2 as the electronic transport layer. It can be seen that further improving the efficiency of the structural battery prepared in the atmospheric environment is an urgent problem to be solved. In this paper, ZnO nanorods are prepared as an electron transport layer by the hydrothermal method. The effects of hydrothermal temperature, the number of seed layer, the precursor concentration, the substrate type, the hydrothermal time, and the other process parameters on the morphology and crystalline properties of ZnO nanorods are systematically studied, and the growth mechanism is analyzed. The results show that the length of the nanorods is mainly controlled by the hydrothermal time and hydrothermal temperature, and that the radial size is mainly determined by the number of seed layers and the concentration of the precursor solution. And the results also indicate that the verticality of ZnO nanorods’ growth is closely related to the substrate, and that the ZnO nanorods on the AZO substrate have the best growth verticality. On this basis, the perovskite solar cell is prepared in the atmospheric environment, and the optimal efficiency of the photovoltaic device prepared with AZO substrate increases from 7.0% reported in the literature to 9.63%. This is of great significance for enriching the design ideas of perovskite solar cells and further reducing costs.
      Corresponding author: Hao Hui-Ying, huiyinghaoL@cugb.edu.cn
    [1]

    Zhao Y Q, Ma Q, Liu B, Yu Z L, Yang J, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [2]

    Yu Z L, Zhao Y Q, He P B, Liu B, Cai M 2019 J. Phys. Condens. Matter. 32

    [3]

    Zhang J Y, Su J, Lin Z H, Liu M Y, Chang J J 2019 Appl. Phys. Lett. 114 181902Google Scholar

    [4]

    Ding Y F, Zhao Q Q, Yu Z L, Zhao Y Q, Liu B, He P B 2019 J. Mater. Chem. C 7 7433Google Scholar

    [5]

    Green M A, Ho-baillie A, Snaith H J 2014 Nat. Photonics. 8 506Google Scholar

    [6]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L 2015 Science 347 967Google Scholar

    [7]

    Kojima A, Teshima K, Shirai Y 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [8]

    Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G 2016 J. Am. Chem. Soc. 138 14750Google Scholar

    [9]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Hayase S 2014 J. Phys. Chem. Lett. 6 1004

    [10]

    Jung H S, Park N G 2015 Small 16 1613

    [11]

    Zhang P, Wu J, Zhang T, Wang Y, Liu D, Chen H 2018 Adv. Mater. 30 3

    [12]

    Tseng Z L, Chiang C H, Chang S H, Wu C G 2016 Nano. Energy. 28 2211

    [13]

    Zhang Q, Dandeneau C S, Zhou X, Cao G 2009 Adv. Mater. 21 4087Google Scholar

    [14]

    Wang Z L 2004 J. Phys. Condens. Matter. 16 R829Google Scholar

    [15]

    Liu H, Huang Z, Wei S, Zheng L, Gong Q 2016 Nanoscale 8 6209Google Scholar

    [16]

    Law M, Greene L E, Johnson J C 2005 Nat. Mater. 4 455Google Scholar

    [17]

    Kumar M H, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix P P 2013 Chem. Commun. 49 11089Google Scholar

    [18]

    Wang H, Yan L, Liu J, Li J 2016 J. Mater. SCI-Mater. EL 27 6872Google Scholar

    [19]

    Ferrara V L, Maria A D, Rametta G, Noce M D, Veneri P D 2017 Mater. Res. Express. 4 355

    [20]

    郎集会, 李雪, 刘晓艳, 杨景海 2009 吉林师范大学学报(自然科学版) 30 35

    Lang J H, Li X, Liu X Y, Yang J H 2009 J. Jilin. Normal. Univ (Natural Science Edition) 30 35

  • 图 1  (a) 应用ZnO纳米棒作为ETL的钙钛矿型太阳能电池的结构示意图; (b) ZnO和TiO2电性能的比较; (c) ZnO, TiO2与其他材料在PSCs中的能级

    Figure 1.  (a) Structural schematic diagram of perovskite solar cells using ZnO nanorods as ETL; (b) comparison of the electrical proper-ties of ZnO, TiO2; (c) the energy level of ZnO, TiO2, and other usually used materials in PSCs.

    图 2  不同水热温度下生长的氧化锌纳米棒表征 (a) XRD图谱; (b)稳态PL谱

    Figure 2.  Characterization of (a) XRD spectrum and (b) steady-state PE spectrum of ZnO nanorods growing at different water thermal temperatures.

    图 3  不同籽晶层旋涂层数所制备的氧化锌纳米棒的正面SEM形貌图 (a) 3 层; (b) 5 层; (c) 7 层

    Figure 3.  Positive SEM morphology of ZnO nanorods prepared from different seed crystal layers: (a) 3 layers; (b) 5 layers; (c) 7 layers

    图 4  在ITO衬底上利用不同浓度前驱液制备的ZnO纳米棒的SEM照片 (a) 0.01 mol/L; (b) 0.02 mol/L; (c) 0.03 mol/L; (d) PL谱

    Figure 4.  SEM photograph of ZnO nanorods prepared on the ITO substrate using different concentrations of precursor fluids: (a) 0.01 mol/L; (b) 0.02 mol/L; (c) 0.03 mol/L; (d) PL spectrum.

    图 5  在不同衬底上所制备的氧化锌纳米棒SEM形貌图 (a) ITO衬底; (b) AZO衬底; (c) FTO衬底

    Figure 5.  ZnO nanorods SEM morphology prepared on different substrates. (a) ITO; (b) AZO; (c) FTO.

    图 6  氧化锌纳米棒长度和直径随水热时间的变化SEM与折线图 (a) 1.5 h; (b) 2.5 h; (c) 3.5 h; (d) 5.0 h; (e) 6.0 h; (f) 7.0 h; (g) 8.0 h; (h) 9.0 h; (i) 10.0 h; (j) 折线图

    Figure 6.  Changes of the length and diameter SEM of ZnO nanorods with water heat time: (a) 1.5 h; (b) 2.5 h; (c) 3.5 h; (d) 5.0 h; (e) 6.0 h; (f) 7.0 h; (g) 8.0 h; (h) 9.0 h; (i) 10.0 h; (j) line chart.

    图 7  (a)不同水热时间制备ZnO纳米棒作为ETL电池的J-V曲线; 不同水热时间的氧化锌纳米棒上钙钛矿的(b)稳态PL谱, (c)吸收谱

    Figure 7.  (a) J-V curve of batteries with ZnO nanorods as ETL prepared at different hydrothermal times; (b) steady state PL spectrum and (c) absorption spectrum of perovskite on ZnO nanorods with different water heat time.

    图 8  不同水热时间的氧化锌纳米棒上生长的钙钛矿薄膜的表面形貌SEM图 (a) 2.5 h; (b) 5.0 h; (c) 8.0 h

    Figure 8.  Surface morphology of perovskite thin films growing on ZnO nanorods at different hydrothermal times SEM diagram: (a) 2.5 h; (b) 5.0 h; (c) 8.0 h.

    表 1  不同水热温度条件下制备的氧化锌纳米棒的平均长度和直径

    Table 1.  Average length and diameter of ZnO nanobars prepared under different water temperature conditions.

    条件温度/℃平均直径/nm平均长度/nm
    1502847
    26033245
    37030550
    48031740
    59034948
    610032871
    DownLoad: CSV

    表 2  不同水热时间条件下所制备的氧化锌纳米棒的平均长度和直径

    Table 2.  Average length and diameter of zinc oxide nanorods prepared under different water heat time.

    条件衬底保温时间/h平均长度/nm平均直径/nm
    1AZO1.513276
    2AZO2.524492
    3AZO3.5503139
    4AZO5.0620121
    5AZO6.0722189
    6AZO7.0701136
    7AZO8.0866204
    8AZO9.0470135
    9AZO10.025594
    DownLoad: CSV

    表 3  不同氧化锌纳米棒水热时间所制备PSCs平均性能参数及最佳PCE

    Table 3.  Average performance parameters and champion PCE of PSCs from different water heat time of ZnO nanorods.

    水热条件/hScan directionsVoc/VJsc/mA·cm–2FF平均PCE/%最佳PCE/%
    2.5Reverse0.7718.510.476.717.96
    5.0Reverse0.8420.990.488.479.63
    8.0Reverse0.5217.150.433.856.00
    DownLoad: CSV
  • [1]

    Zhao Y Q, Ma Q, Liu B, Yu Z L, Yang J, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [2]

    Yu Z L, Zhao Y Q, He P B, Liu B, Cai M 2019 J. Phys. Condens. Matter. 32

    [3]

    Zhang J Y, Su J, Lin Z H, Liu M Y, Chang J J 2019 Appl. Phys. Lett. 114 181902Google Scholar

    [4]

    Ding Y F, Zhao Q Q, Yu Z L, Zhao Y Q, Liu B, He P B 2019 J. Mater. Chem. C 7 7433Google Scholar

    [5]

    Green M A, Ho-baillie A, Snaith H J 2014 Nat. Photonics. 8 506Google Scholar

    [6]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L 2015 Science 347 967Google Scholar

    [7]

    Kojima A, Teshima K, Shirai Y 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [8]

    Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G 2016 J. Am. Chem. Soc. 138 14750Google Scholar

    [9]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Hayase S 2014 J. Phys. Chem. Lett. 6 1004

    [10]

    Jung H S, Park N G 2015 Small 16 1613

    [11]

    Zhang P, Wu J, Zhang T, Wang Y, Liu D, Chen H 2018 Adv. Mater. 30 3

    [12]

    Tseng Z L, Chiang C H, Chang S H, Wu C G 2016 Nano. Energy. 28 2211

    [13]

    Zhang Q, Dandeneau C S, Zhou X, Cao G 2009 Adv. Mater. 21 4087Google Scholar

    [14]

    Wang Z L 2004 J. Phys. Condens. Matter. 16 R829Google Scholar

    [15]

    Liu H, Huang Z, Wei S, Zheng L, Gong Q 2016 Nanoscale 8 6209Google Scholar

    [16]

    Law M, Greene L E, Johnson J C 2005 Nat. Mater. 4 455Google Scholar

    [17]

    Kumar M H, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix P P 2013 Chem. Commun. 49 11089Google Scholar

    [18]

    Wang H, Yan L, Liu J, Li J 2016 J. Mater. SCI-Mater. EL 27 6872Google Scholar

    [19]

    Ferrara V L, Maria A D, Rametta G, Noce M D, Veneri P D 2017 Mater. Res. Express. 4 355

    [20]

    郎集会, 李雪, 刘晓艳, 杨景海 2009 吉林师范大学学报(自然科学版) 30 35

    Lang J H, Li X, Liu X Y, Yang J H 2009 J. Jilin. Normal. Univ (Natural Science Edition) 30 35

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [3] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [5] Zhang Zi-Fa, Yuan Xiang, Lu Ying-Shen, He Dan-Min, Yan Quan-He, Cao Hao-Yu, Hong Feng, Jiang Zui-Min, Xu Run, Ma Zhong-Quan, Song Hong-Wei, Xu Fei. Improving crystallization and photoelectric performance of CsPbI2Br perovskite under ambient air via dynamic hot-air assisted recrystallization strategy. Acta Physica Sinica, 2024, 73(9): 098803. doi: 10.7498/aps.73.20240153
    [6] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [7] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [8] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [9] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [10] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [11] Liu Yu-Xue, Ming Yi-Dong, Wu Cong-Cong. Properties and improvements of chlorine-doped methylamine-based perovskites. Acta Physica Sinica, 2022, 71(20): 207303. doi: 10.7498/aps.71.20220966
    [12] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [13] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [14] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [15] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] Kang Xiao-Wei, Chen Long, Chen Jie, Sheng Zheng-Ming. Femtosecond laser ablation of an aluminum target in air. Acta Physica Sinica, 2016, 65(5): 055204. doi: 10.7498/aps.65.055204
    [18] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
Metrics
  • Abstract views:  9974
  • PDF Downloads:  147
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2020
  • Accepted Date:  12 May 2020
  • Available Online:  26 May 2020
  • Published Online:  05 September 2020

/

返回文章
返回