-
Inverted (p-i-n) perovskite solar cells (PSCs) are receiving increasing attention due to their high conversion efficiency and good stability. The main factor restricting the efficiency improvement of inverted perovskite cells is the interface defect between the perovskite layer and the charge transport layers. Therefore, the dual modification strategy of 1, 3-diaminopropane dihydroiodide (PDADI) passivates the interface defects between perovskite films and charge transport layers, improves the quality of perovskite film formation, suppresses non radiative recombination between perovskite films and charge transport layers as well as improved charge carrier transport, and results in a conversion efficiency of 23.19%. Furthermore, the unencapsulated PSCs with PDADI dual modification also exhibit good storage stability, with efficiency remaining at 96% of initial efficiency after 600 hours of storage at a temperature of 25 ℃ and humidity below 20%. Therefore, PDADI dual modification provides an effective strategy for fabricating high-efficiency and stable inverted perovskite solar cells.
-
Keywords:
- inverted /
- perovskite solar cells /
- defects passivation /
- 1, 3-diaminopropane dihydroiodide
[1] Zhou Q S, Liu X X, Liu Z H, Zhu Y Q, Lu J F, Chen Z M, Li C J, Wang J, Xue Q F, He F F, Liang J, Li H Y, Wang S H, Tai Q D, Zhang Y Q, Liu J H, Zuo C T, Ding L M, Xiong Z H, Zheng R H, Zhang H M, Zhao P J, Jin X, Wu P F, Zhang F, Jiang Y, Zhou H P, Hu J S, Wang Y, Song Y L, Mai Y H, Xu B M, Liu S Z, Han L Y, Chen W 2024 Mater. Futures 3 022102Google Scholar
[2] Luo X H, Lin X S, Gao F, Zhao Y, Li X D, Zhan L Q, Qiu Z X, Wang J, Chen C, Meng L, Gao X F, Zhang Y, Huang Z J, Fan R D, Liu H F, Chen Y R, Ren X X, Tang J H, Chen C H, Yang D, Tu Y G, Liu X, Liu D X, Zhao Q, You J B, Fang J F, Wu Y Z, Han H W, Zhang X D, Zhao D W, Huang F Z, Zhou H P, Yuan Y B, Chen Q, Wang Z K, Liu S Z, Zhu R, Nakazaki J, Li Y F, Han L Y 2022 Sci. China Chem. 65 2369Google Scholar
[3] Fei C B, Li N X, Wang M R, Wang X M, Gu H Y, Chen B, Zhang Z, Ni Z Y, Jiao H Y, Xu W Z, Shi Z F, Yan Y F, Huang J S 2023 Science 380 823Google Scholar
[4] Tan Q, Li Z N, Luo G F, Zhang X S, Che B, Chen G C, Gao H, He D, Ma G Q, Wang J F, Xiu J W, Yi H Q, Chen T, He Z B 2023 Nature 620 545Google Scholar
[5] Jiang Q, Tong J H, Xian Y M, Kerner R A, Dunfield S P, Xiao C X, Scheidt R A, Kuciauskas D, Wang X M, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y F, Zhu K 2022 Nature 611 278Google Scholar
[6] Li Z, Li B, Wu X, Sheppard S A, Zhang S F, Gao D P, Long N J, Zhu Z L 2022 Science 376 416Google Scholar
[7] Zhang S, Ye F Y, Wang X Y, Chen R, Zhang H D, Zhan L Q, Jiang X Y, Li Y W, Ji X Y, Liu S J, Yu M J, Yu F R, Zhang Y L, Wu R H, Liu Z H, Ning Z J, Neher D, Han L Y, Lin Y Z, Tian H, Chen W, Stolterfoht M, Zhang L J, Zhu W H, Wu Y Z 2023 Science 380 404Google Scholar
[8] Li F Z, Deng X, Shi Z S, Wu S F, Zeng Z X, Wang D, Li Y, Qi F, Zhang Z M, Yang Z B, Jang S H, Lin F R, Tsang S W, Chen X K, Jen A K Y 2023 Nat. Photonics 17 478Google Scholar
[9] Wang H F, Su S J, ChenY T, Ren M, Wang S W, Wang Y, Zhu C, Miao Y F, Ouyang C Y, Zhao Y X 2024 Nature 634 1091Google Scholar
[10] Li Z, Sun X L, Zheng X P, Li B, Gao D P, Zhang S F, Wu X, Li S, Gong J Q, Luther J M, Li Z A, Zhu Z L 2023 Science 382 284Google Scholar
[11] Liu C, Yang Y, Chen H, Xu J, Liu A, Bati A S R, Zhu H H, Grater L, Hadke S S, Huang C Y, Sangwan V K, Cai T, Shin D, Chen L X, Hersam M C, Mirkin C A, Chen B, Kanatzidis M G, Sargent E H 2023 Science 382 810Google Scholar
[12] Degani M, An Q Z, Albaladejo-Siguan M, Hofstetter Y J, Cho C, Paulus F, Grancini G, Vaynzol Y 2021 Sci. Adv. 7 7930Google Scholar
[13] Zhang X, Qiu W M, Apergi S, Singh S, Marchezi P, Song W Y, Sternemann C, Elkhouly K, Zhang D, Aguirre A, Merckx T, Krishna A, Shi Y Y, Bracesco A, Helvoirt C V, Bens F, Zardetto V, D’Haen J, Yu A R, Brocks G, Aernouts T, Moons E, Tao S X, Zhan Y Q, Kuang Y H, Poortmans J 2023 ACS Energy Lett. 8 2532Google Scholar
[14] Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q L, Bati A S R, Wan H Y, Wang Z W, Zeng L W, Wang J K, Serles P, Liu Y, Teale S, Liu Y J, Saidaminov M I, Li M Z, Rolston N, Hoogland S, Filleter T, Kanatzidis M G, Chen B, Ning Z J, Sargent E H 2024 Science 384 189Google Scholar
[15] Li Y, Wang Y H, Xu Z C, Peng B, Li X F 2024 ACS Nano 18 10688Google Scholar
[16] Zhang J, Zheng X X, Cui Q Y, Yao Y Y, Su H, She Y T, Zhu Y J, Li D, Liu S Z 2024 Adv. Funct. Mater. 34 2404816Google Scholar
[17] Zhao C X, Zhang Q, Lyu Y, Liu J, Shen F, Liu H J, Kong H, Han H F, Krishna A, Xu J, Zhang H, Yao J X 2024 Adv. Funct. Mater. 34 2404099Google Scholar
[18] Cao Y, Yan N, Wang M Z, Qi D Y, Zhang J F, Chen X, Qin R, Xiao F W, Zhao G T, Liu Y C, Cai X D, Zhao K, Liu S Z, Feng J S 2024 Angew. Chem. Int. Ed. 63 202404401Google Scholar
[19] Uddin M A, Rana P J S, Ni Z Y, Yang G, Li M Z, Wang M R, Gu H Y, Zhang H K, Dou B D, Huang J S 2024 Nat. Commun. 15 1355Google Scholar
[20] Liu S W, Guan X Y, Xiao W S, Chen R, Zhou J, Ren F M, Wang J N, Chen W T, Li S B, Qiu L B, Zhao Y, Liu Z H, Chen W 2022 Adv. Funct. Mater. 32 2205009Google Scholar
[21] Zhang F, Lu H P, Larson B W, Xiao C X, Dunfield S P, Obadiah G, Reid O G, Chen X H, Yang M J, Berry J J, Beard M C, Zhu K 2021 Chem 7 774Google Scholar
[22] Chen H, Maxwell A, Li C W, Teale S, Chen B, Zhu T, Ugur E, Harrison G, Grater L, Wang J K, Wang Z W, Zeng L W, Park S M, Chen L, Serles P, Awni R A, Subedi B, Zheng X P, Xiao C X, Podraza N J, Filleter T, Liu C, Yang Y, Luther J M, Wolf S D, Kanatzidis M G, Yan Y F, Sargent E H 2023 Nature 613 676Google Scholar
[23] Lan Z R, Wang Y D, Shao J Y, Ma D X, Liu Z H, Li D M, Hou Y, Yao J N, Zhong Y W 2024 Adv. Funct. Mater. 34 2312426Google Scholar
[24] Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar
[25] Wang Y T, Lin J Y, He Y L, Yi Zhang Y, Qiong L Q, Liu F Z, Zhou Z W, Chan C C S, Gang Li G, Feng S P, Ng A M C, Wong K S, Popovi´c J, Djuriši´ A B 2022 Sol. RRL 6 2200224Google Scholar
[26] Fu Y, Liu X C, Zhao S S 2022 Chem. Nano. Mat. 8 202200091Google Scholar
[27] Han Q F, Bae S H, Sun P Y, Hsieh Y H, Yang Y, Rim Y S, Zhao H X, Chen Q, Shi W Z, Li G, Yang Y 2016 Adv. Mater. 28 2253Google Scholar
-
图 1 钙钛矿薄膜的SEM图 (a)未修饰的钙钛矿薄膜; (b) PDADI修饰NiOx的钙钛矿薄膜; (c) PDADI修饰NiOx和钙钛矿薄膜的形貌图; (d)钙钛矿薄膜晶粒尺寸数量分布柱状图
Figure 1. SEM images of (a) control perovskite film, (b) perovskite film with PDADI single-modification, (c) perovskite film with PDADI dual-modification; (d) the column chart of corresponding sizes counted by the SEM images.
图 3 NiOx及钙钛矿表面的水接触角图 (a)未修饰的NiOx; (b) PDADI修饰的NiOx; (c)未修饰的钙钛矿薄膜; (d) PDADI修饰NiOx的钙钛矿薄膜; (e) PDADI修饰NiOx和钙钛矿的薄膜
Figure 3. Water contact angle images of NiOx and perovskite surfaces: (a) Control NiOx film; (b) NiOx film with PDADI modified; (c) control perovskite film; (d) perovskite film with PDADI single-modification; (e) perovskite film with PDADI dual-modification.
图 4 钙钛矿薄膜的XRD图, 其中黑色方点线为未修饰的钙钛矿薄膜, 红色圆点线为PDADI修饰NiOx的钙钛矿薄膜, 蓝色三角点线为PDADI修饰NiOx和钙钛矿的薄膜
Figure 4. XRD patterns of control perovskite film (black square dotted line), perovskite film with PDADI single-modification (red dotted line), perovskite film with PDADI dual-modification (blue triangle dotted line).
图 5 钙钛矿薄膜的(a) PL图谱和(b) TRPL图谱, 其中黑色方点曲线为未修饰的钙钛矿薄膜, 红色圆点曲线为PDADI修饰NiOx的钙钛矿薄膜, 蓝色三角点曲线为PDADI修饰NiOx和钙钛矿的薄膜
Figure 5. (a) PL and (b) TRPL spectra for control perovskite film (black square dotted line), perovskite film with PDADI single-modification (red dotted line), perovskite film with PDADI dual-modification (blue triangle dotted line).
图 6 钙钛矿薄膜的SCLC曲线, 其中黑色方点曲线为未修饰的钙钛矿薄膜, 红色圆点曲线为PDADI修饰NiOx的钙钛矿薄膜, 蓝色三角点曲线为PDADI修饰NiOx和钙钛矿的薄膜
Figure 6. SCLC results for control perovskite film (black square dotted line), perovskite film with PDADI single-modification (red dotted line), perovskite film with PDADI dual-modification (blue triangle dotted line).
图 7 NiOx及钙钛矿薄膜的UPS谱图, 其中(a)未修饰的NiOx (黑色方点线)、PDADI修饰的NiOx (红色圆点线); (b)未修饰的钙钛矿(黑色方点线)薄膜、PDADI修饰NiOx的钙钛矿(红色圆点线)薄膜、PDADI修饰NiOx和钙钛矿的薄膜(蓝色三角点线); (c)不同薄膜样品能级图
Figure 7. (a) UPS spectra of NiOx film (black square dotted line), NiOx film with PDADI modified (red dotted line); (b) UPS spectra of control perovskite film (black square dotted line), perovskite film with PDADI single-modification (red dotted line), perovskite film with PDADI dual-modification (blue triangle dotted line); (c) energy band structure of various films.
图 8 钙钛矿电池的(a)正向和反向扫描的J-V曲线; (b) Jsc箱线图; (c) Voc箱线图; (d) FF箱线图; (e) PCE箱线图; (f) Voc随光强变化曲线图; (g) EQE曲线图; (h)未封装的器件在温度为25 ℃、湿度小于20%的稳定性测试, 其中黑色曲线为未修饰的钙钛矿电池, 红色曲线为PDADI修饰NiOx的钙钛矿电池, 蓝色曲线为PDADI修饰NiOx和钙钛矿的钙钛矿电池
Figure 8. (a) Forward and reverse scan J-V curves; (b) Jsc boxplot diagram; (c) Voc boxplot diagram; (d) FF boxplot diagram; (e) PCE boxplot diagram; (f) Voc versus light intensity curve; (g) EQE curve; (h) stability testing of unencapsulated devices at a temperature of 25 ℃ and humidity <20%. The black curve represents control perovskite cells; the red curve represents perovskite cells with PDADI single-modification; the blue curve represents perovskite cells with PDADI dual-modification.
图 9 钙钛矿电池的莫特-肖特基曲线, 其中黑色方点曲线为未修饰的钙钛矿薄膜, 红色圆点曲线为PDADI修饰NiOx的钙钛矿薄膜, 蓝色三角点曲线为PDADI修饰NiOx和钙钛矿的薄膜
Figure 9. Mott-Schottky curves for control perovskite film (black square dotted line), perovskite film with PDADI single-modification (red dotted line), perovskite film with PDADI dual-modification (blue triangle dotted line).
表 1 未修饰的钙钛矿薄膜(Control)、PDADI修饰NiOx的钙钛矿薄膜(Single-modification)、PDADI修饰NiOx和钙钛矿的薄膜(Dual-modification) 的TRPL光谱拟合参数
Table 1. Fitted parameters of control perovskite film, perovskite film with PDADI single-modification, perovskite film with PDADI dual-modification from TRPL spectra.
T1/ns A1 T2/ns A2 Taverage/ns Control 149.17 23.40 2089.05 1.16 311.27 Single-modification 228.55 14.99 1528.54 0.82 295.77 Dual-modification 183.4 28.71 991.57 1.37 220.21 表 2 未修饰的钙钛矿薄膜、PDADI修饰NiOx的钙钛矿薄膜、PDADI修饰NiOx和钙钛矿的薄膜的正反扫J-V曲线的具体参数
Table 2. Specific parameters of forward and reverse scanning J-V curves of control perovskite film, perovskite film with PDADI single-modification, perovskite film with PDADI dual-modification.
Voc/V Jsc/(mA·cm–2) Fill factor/% Efficiency/% Control Forward 1.02 25.04 73.02 18.80 Reverse 1.04 25.16 81.19 21.34 Single-modification Forward 1.05 25.19 77.99 20.81 Reverse 1.06 25.24 82.89 22.27 Dual-modification Forward 1.09 25.34 82.25 22.55 Reverse 1.09 25.36 84.15 23.19 -
[1] Zhou Q S, Liu X X, Liu Z H, Zhu Y Q, Lu J F, Chen Z M, Li C J, Wang J, Xue Q F, He F F, Liang J, Li H Y, Wang S H, Tai Q D, Zhang Y Q, Liu J H, Zuo C T, Ding L M, Xiong Z H, Zheng R H, Zhang H M, Zhao P J, Jin X, Wu P F, Zhang F, Jiang Y, Zhou H P, Hu J S, Wang Y, Song Y L, Mai Y H, Xu B M, Liu S Z, Han L Y, Chen W 2024 Mater. Futures 3 022102Google Scholar
[2] Luo X H, Lin X S, Gao F, Zhao Y, Li X D, Zhan L Q, Qiu Z X, Wang J, Chen C, Meng L, Gao X F, Zhang Y, Huang Z J, Fan R D, Liu H F, Chen Y R, Ren X X, Tang J H, Chen C H, Yang D, Tu Y G, Liu X, Liu D X, Zhao Q, You J B, Fang J F, Wu Y Z, Han H W, Zhang X D, Zhao D W, Huang F Z, Zhou H P, Yuan Y B, Chen Q, Wang Z K, Liu S Z, Zhu R, Nakazaki J, Li Y F, Han L Y 2022 Sci. China Chem. 65 2369Google Scholar
[3] Fei C B, Li N X, Wang M R, Wang X M, Gu H Y, Chen B, Zhang Z, Ni Z Y, Jiao H Y, Xu W Z, Shi Z F, Yan Y F, Huang J S 2023 Science 380 823Google Scholar
[4] Tan Q, Li Z N, Luo G F, Zhang X S, Che B, Chen G C, Gao H, He D, Ma G Q, Wang J F, Xiu J W, Yi H Q, Chen T, He Z B 2023 Nature 620 545Google Scholar
[5] Jiang Q, Tong J H, Xian Y M, Kerner R A, Dunfield S P, Xiao C X, Scheidt R A, Kuciauskas D, Wang X M, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y F, Zhu K 2022 Nature 611 278Google Scholar
[6] Li Z, Li B, Wu X, Sheppard S A, Zhang S F, Gao D P, Long N J, Zhu Z L 2022 Science 376 416Google Scholar
[7] Zhang S, Ye F Y, Wang X Y, Chen R, Zhang H D, Zhan L Q, Jiang X Y, Li Y W, Ji X Y, Liu S J, Yu M J, Yu F R, Zhang Y L, Wu R H, Liu Z H, Ning Z J, Neher D, Han L Y, Lin Y Z, Tian H, Chen W, Stolterfoht M, Zhang L J, Zhu W H, Wu Y Z 2023 Science 380 404Google Scholar
[8] Li F Z, Deng X, Shi Z S, Wu S F, Zeng Z X, Wang D, Li Y, Qi F, Zhang Z M, Yang Z B, Jang S H, Lin F R, Tsang S W, Chen X K, Jen A K Y 2023 Nat. Photonics 17 478Google Scholar
[9] Wang H F, Su S J, ChenY T, Ren M, Wang S W, Wang Y, Zhu C, Miao Y F, Ouyang C Y, Zhao Y X 2024 Nature 634 1091Google Scholar
[10] Li Z, Sun X L, Zheng X P, Li B, Gao D P, Zhang S F, Wu X, Li S, Gong J Q, Luther J M, Li Z A, Zhu Z L 2023 Science 382 284Google Scholar
[11] Liu C, Yang Y, Chen H, Xu J, Liu A, Bati A S R, Zhu H H, Grater L, Hadke S S, Huang C Y, Sangwan V K, Cai T, Shin D, Chen L X, Hersam M C, Mirkin C A, Chen B, Kanatzidis M G, Sargent E H 2023 Science 382 810Google Scholar
[12] Degani M, An Q Z, Albaladejo-Siguan M, Hofstetter Y J, Cho C, Paulus F, Grancini G, Vaynzol Y 2021 Sci. Adv. 7 7930Google Scholar
[13] Zhang X, Qiu W M, Apergi S, Singh S, Marchezi P, Song W Y, Sternemann C, Elkhouly K, Zhang D, Aguirre A, Merckx T, Krishna A, Shi Y Y, Bracesco A, Helvoirt C V, Bens F, Zardetto V, D’Haen J, Yu A R, Brocks G, Aernouts T, Moons E, Tao S X, Zhan Y Q, Kuang Y H, Poortmans J 2023 ACS Energy Lett. 8 2532Google Scholar
[14] Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q L, Bati A S R, Wan H Y, Wang Z W, Zeng L W, Wang J K, Serles P, Liu Y, Teale S, Liu Y J, Saidaminov M I, Li M Z, Rolston N, Hoogland S, Filleter T, Kanatzidis M G, Chen B, Ning Z J, Sargent E H 2024 Science 384 189Google Scholar
[15] Li Y, Wang Y H, Xu Z C, Peng B, Li X F 2024 ACS Nano 18 10688Google Scholar
[16] Zhang J, Zheng X X, Cui Q Y, Yao Y Y, Su H, She Y T, Zhu Y J, Li D, Liu S Z 2024 Adv. Funct. Mater. 34 2404816Google Scholar
[17] Zhao C X, Zhang Q, Lyu Y, Liu J, Shen F, Liu H J, Kong H, Han H F, Krishna A, Xu J, Zhang H, Yao J X 2024 Adv. Funct. Mater. 34 2404099Google Scholar
[18] Cao Y, Yan N, Wang M Z, Qi D Y, Zhang J F, Chen X, Qin R, Xiao F W, Zhao G T, Liu Y C, Cai X D, Zhao K, Liu S Z, Feng J S 2024 Angew. Chem. Int. Ed. 63 202404401Google Scholar
[19] Uddin M A, Rana P J S, Ni Z Y, Yang G, Li M Z, Wang M R, Gu H Y, Zhang H K, Dou B D, Huang J S 2024 Nat. Commun. 15 1355Google Scholar
[20] Liu S W, Guan X Y, Xiao W S, Chen R, Zhou J, Ren F M, Wang J N, Chen W T, Li S B, Qiu L B, Zhao Y, Liu Z H, Chen W 2022 Adv. Funct. Mater. 32 2205009Google Scholar
[21] Zhang F, Lu H P, Larson B W, Xiao C X, Dunfield S P, Obadiah G, Reid O G, Chen X H, Yang M J, Berry J J, Beard M C, Zhu K 2021 Chem 7 774Google Scholar
[22] Chen H, Maxwell A, Li C W, Teale S, Chen B, Zhu T, Ugur E, Harrison G, Grater L, Wang J K, Wang Z W, Zeng L W, Park S M, Chen L, Serles P, Awni R A, Subedi B, Zheng X P, Xiao C X, Podraza N J, Filleter T, Liu C, Yang Y, Luther J M, Wolf S D, Kanatzidis M G, Yan Y F, Sargent E H 2023 Nature 613 676Google Scholar
[23] Lan Z R, Wang Y D, Shao J Y, Ma D X, Liu Z H, Li D M, Hou Y, Yao J N, Zhong Y W 2024 Adv. Funct. Mater. 34 2312426Google Scholar
[24] Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar
[25] Wang Y T, Lin J Y, He Y L, Yi Zhang Y, Qiong L Q, Liu F Z, Zhou Z W, Chan C C S, Gang Li G, Feng S P, Ng A M C, Wong K S, Popovi´c J, Djuriši´ A B 2022 Sol. RRL 6 2200224Google Scholar
[26] Fu Y, Liu X C, Zhao S S 2022 Chem. Nano. Mat. 8 202200091Google Scholar
[27] Han Q F, Bae S H, Sun P Y, Hsieh Y H, Yang Y, Rim Y S, Zhao H X, Chen Q, Shi W Z, Li G, Yang Y 2016 Adv. Mater. 28 2253Google Scholar
Catalog
Metrics
- Abstract views: 718
- PDF Downloads: 31
- Cited By: 0