Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancing crystallization and photovoltaic performance of CsPbIBr2 perovskite through p-aminobenzoic acid

MENG Fan-Ning WANG Fang CHENG Long SUN Zhi-Yan WANG Gui-Qiang

Citation:

Enhancing crystallization and photovoltaic performance of CsPbIBr2 perovskite through p-aminobenzoic acid

MENG Fan-Ning, WANG Fang, CHENG Long, SUN Zhi-Yan, WANG Gui-Qiang
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Inorganic CsPbIBr2 perovskite features high phase stability and light absorption coefficient, making it suitable for the development of perovskite tandem cells or semi-transparent cells. High-quality CsPbIBr2 perovskite films are of crucial importance for fabricating efficient solar cells. However, in comparison with CsPbI3 and CsPbI2Br, the CsPbIBr2 precursor has poor crystallinity and low film coverage, which is prone to generating pinholes and defects. Therefore, serious charge recombination often occurs inside the devices. To address this problem, p-aminobenzoic acid (PABA) is added to the CsPbIBr2 precursor to regulate its crystallization dynamics in this work. Electrostatic potential distribution of PABA shows that the electron-rich regions (negative charge regions) are mainly located near the C=O. Fourier transform infrared spectroscopy indicates the existence of coordination interaction between C=O and Pb2+ and the formation of hydrogen bonds between -NH2 and halide anions. Ultraviolet-visible absorption (UV-Vis) spectroscopy and X-ray diffraction (XRD) spectra demonstrate that a new intermediate phase, PABA·Pb…Br(I), is formed between PABA molecules and the components of CsPbIBr2 precursor. The formation of this intermediate phase slows down the crystallization rate of the perovskite, regulates the grain growth, and enables the preparation of dense perovskite films. XRD, UV-Vis, space charge limited current, and linear sweep voltammetry are employed to characterize the film quality. After the addition of PABA, the film quality of CsPbIBr2 perovskite is improved. Thus, the light absorption is enhanced. The defect density is reduced. And the conductivity is increased. The efficiency of the champion cell increases to 10.65% compared to that of the control cell (8.76%). Further, dark current-voltage curves, Mott-Schottky curves, electrochemical impedance spectra, and photoluminescence spectra are utilized to analyze the reasons for the improved photovoltaic performance. After the addition of PABA, the CsPbIBr2 device exhibits reduced leakage current, enhanced built-in electric field, suppressed charge recombination, and improved charge extraction at the interface. In addition to the enhancement in photovoltaic efficiency, the PABA-regulated perovskite cells also exhibit high stability. After being stored in air for 1500 h, the average efficiency of the unencapsulated cells remains 80% of the initial value.
  • [1]

    Zhu P, Chen C, Dai J, Zhang Y, Mao R, Chen S, Huang J, Zhu J 2024 Adv. Mater. 36 2307357

    [2]

    Deng F, Song X, Li Y, Zhang W, Tao X 2024 Chem. Eng. J. 489 151228

    [3]

    Almutairi B S, Khan M I, Mujtaba A, Subhani W S, Yousef E S, Alotaibi N, Hussain S, Almaral-Sánchez J L 2024 Opt. Mater. 152 115415

    [4]

    Khan M I, Mujtaba A, Khan S A, Laref A, Amami M 2024 J. Sol-Gel Sci. Technol. 111 754

    [5]

    You Y, Tian W, Wang M, Cao F, Sun H, Li L 2020 Adv. Mater. Inter. 7 2000537

    [6]

    Chang Q, An Y, Cao H, Pan Y, Zhao L, Chen Y, We Y, Tsang S W, Yip H L, Sun L, Yu Z 2024 J. Energy Chem. 90 16

    [7]

    He J, Su J, Di J, Lin Z, Zhang S, Ma J, Zhang J, Liu S, Chang J, Hao Y 2022 Nano Energy 94 106960

    [8]

    Pan J, Zhang X, Zheng Y, Xiang W 2021 Sol. Energy Mater. Sol. Cells 221 110878

    [9]

    Guo Y, Yin X, Liu J, Wen S, Wu Y, Que W 2019 Sol. RRL 3 1900135

    [10]

    Wang G Q, Wang D S, Bi J Y, Chang J R, Meng F N 2023 Acta Phys. Sin. 72 158801(王桂强, 王东升,毕佳宇,常嘉润,孟凡宁 2023 物理学报 72 158801)

    [11]

    Wang G Q, Chang J R, Wang D S, Bi J Y, Meng F N 2024 CrystEng. Comm. 26 4376

    [12]

    He W, Duan X, Tang Q, Dou J, Duan J 2024 Chem. Commun. 60 4954

    [13]

    Liu X, Jing Y, Wang C, Wang X, Li R, Xu Y, Yan Z, Zhang H, Wu J, Lan Z 2023 Adv. Mater. Inter. 10 2202159

    [14]

    Zhang J, Duan J, Zhang Q, Guo Q, Yan F, Yang X, Duan Y, Tang Q 2022 Chem. Eng. J. 431 134230

    [15]

    Wang G Q, Bi J Y, Liu J Q, Lei M, Zhang W 2022 Acta Phys. Sin. 71 018802(王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟 2022 物理学报 71 018802)

    [16]

    Wang G, Chang J, Bi J, Zhang W, Meng F 2022 Sol. RRL 6 2200656

    [17]

    Zhuang R, Wang L, Qiu J, Xie L, Miao X, Zhang X, Hua Y 2023 Chem. Eng. J. 463 142449

    [18]

    Chen S, Wang J, Yu C, Jiang N, Wang Z, Zhou Y, He C, Fang K, Liu B, Zhang J, Li Y, Li C, Chen P, Duan Y 2022 Sol. RRL 6 2200405

    [19]

    Sun Q, Wang T, Zhou C, Zhang C, Shao Y, Liu X, Wang Y, Lin J, Chen X 2023 J. Alloys Compd. 960 170629

    [20]

    Cao K, Huang Y, Ge M, Huang F, Shi W, Wu Y, Cheng Y, Qian J, Liu L, Chen S 2021 ACS Appl. Mater. Interfaces 13 26013

    [21]

    An Z, Chen S, Lu T, Zhao P, Yang X, Li Y, Hou J 2023 J. Mater. Chem. C 11 12750

    [22]

    Chiu P H, Hu C T, Chia S K, Su L Y, Chen P T, Liu Z Y, Lin C Y, Hsieh C C, Dai C A, Wang L 2024 Sol. RRL 8 2300902

    [23]

    Miao Y, Ren M, Chen Y, Wang H, Chen H, Liu X, Wang T, Zhao Y 2023 Nat. Sustain. 6 1465

    [24]

    Worsley C, Raptis D, Meroni S, Doolin A, Garcia-Rodriguez R, Davies M, Watson T 2021 Energy Technol-ger 9 2100312

    [25]

    Cao X, Hao L, Liu Z, Su G, He X, Zeng Q, Wei J 2022 Chem. Eng. J. 437 135458

    [26]

    Du Y, Tian Q, Chang X, Fang J, Gu X, He X, Ren X, Zhao K, Liu S 2022 Adv. Mater. 34 2106750

    [27]

    Huang X, Deng G, Zhan S, Cao F, Cheng F, Yin J, Li J, Wu B, Zheng N 2022 ACS Cent. Sci. 8 1008

    [28]

    Cheng X, Gan X, Jin G, Chen Z, Li N ChemSusChem 18 202401366

    [29]

    Wu S, Yun T, Zheng C, Luo X, Qiu P, Yu H, Wang Q, Gao J, Lu X, Gao X, Shui L, Wu S, Liu J M 2024 ACS Appl. Mater. Interfaces 16 7297

    [30]

    Bi J, Wang D, Chang J, Li J, Meng F, Wang G 2023 J. Alloys Compd. 965 171441

    [31]

    Wang S, Wang P, Shi B, Sun C, Sun H, Qi S, Huang Q, Xu S, Zhao Y, Zhang X 2023 Adv. Mater. 35 2300581

    [32]

    Du T, Jin L 2025 J. Sol-Gel Sci. Technol. 113 942

    [33]

    Du Z, Li R, Lu Y, Deng C, Lin J, Wu J, Lan Z 2024 ACS Appl. Nano Mater. 7 5454

    [34]

    Xu Y, Zhang H, Jing Y, Wang X, Gan J, Yan Z, Liu X, Wu J, Lan Z 2023 Appl. Surf. Sci. 619 156674

    [35]

    Zhou Q, Tang S, Yuan G, Zhu W, Huang Y, Li S, Lin M 2022 J. Alloys Compd. 895 162529

    [36]

    Xu Y, Zhang H, Liu F, Li R, Jing Y, Wang X, Wu J, Zhang J, Lan Z 2024 Appl. Surf. Sci. 658 159831

    [37]

    Wang X, Xu Y, Zhang H, Yan Z, Jing Y, Liu X, Wu J, Lan Z 2022 Adv. Sustain. Syst. 6 2200074

    [38]

    He W, Duan X, Tang Q, Dou J, Duan J 2024 Chem. Commun. 60 4954

    [39]

    Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Mater. Sci. Semicond. Process. 173 108134

    [40]

    Wang G, Chang J, Bi J, Wang D, Meng F 2024 Cryst. Growth Des. 24 817

    [41]

    Qi Z, Li J, Zhang X, Dou J, Guo Q, Zhao Y, Yang P, Tang Q, Duan J 2024 ACS Appl. Mater. Interfaces 16 14974

    [42]

    Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Opt. Mater. 147 114672

    [43]

    Bi J, Chang J, Lei M, Meng F, Wang G 2023 Energy Technol-ger 11 2201459

    [44]

    Zhao F, Guo Y, Yang P, Tao J, Jiang J, Chu J 2023 J. Alloys Compd. 930 167377

    [45]

    Yao X, Duan J, Zhao Y, Zhang J, Guo Q, Zhang Q, Yang X, Duan Y, Yang P, Tang Q 2023 Carbon Energy 5 387

    [46]

    Xu Y, Li G, Jing Y, Zhang H, Wang X, Lu Y, Wu J, Lan Z 2022 J. Colloid Interface Sci. 608 40

    [47]

    Chai W, Ma J, Zhu W, Chen D, Xi H, Zhang J, Zhang C, Hao Y 2021 ACS Appl. Mater. Interfaces 13 2868

    [48]

    Shi L, Yuan H, Sun X, Li X, Zhu W, Wang J, Duan L, Li Q, Zhou Z, Huang Z, Ban X, Zhang D 2021 ACS Appl. Energy Mater. 4 10584

    [49]

    Wang D, Li W, Li R, Sun W, Wu J, Lan Z 2021 Sol. RRL 5 2100375

    [50]

    Liu J, He Q, Bi J, Lei M, Zhang W, Wang G 2021 Chem. Eng. J. 424 130324

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, doi: 10.7498/aps.73.20231568
    [2] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, doi: 10.7498/aps.73.20241238
    [3] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, doi: 10.7498/aps.73.20231846
    [4] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, doi: 10.7498/aps.73.20231139
    [5] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, doi: 10.7498/aps.72.20230636
    [6] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.72.20230230
    [7] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, doi: 10.7498/aps.72.20221461
    [8] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.71.20220359
    [9] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, doi: 10.7498/aps.71.20220725
    [10] Ma Shu-Peng, Lin Fei-Yu, Luo Yuan, Zhu Liu, Guo Xue-Yi, Yang Ying. Formation mechanism of CsPbBr3 in multi-step spin-coating process. Acta Physica Sinica, doi: 10.7498/aps.71.20220171
    [11] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.71.20211930
    [12] Wang Gui-Qiang, Bi Jia-Yu, Liu Jie-Qiong, Lei Miao, Zhang Wei. Enhancing quality of CsPbIBr2 inorganic perovskite via cellulose acetate addition for high-performance perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.71.20211074
    [13] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, doi: 10.7498/aps.70.20201896
    [14] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, doi: 10.7498/aps.68.20190569
    [15] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, doi: 10.7498/aps.66.018401
    [16] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, doi: 10.7498/aps.65.188801
    [17] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.65.237902
    [18] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.64.033301
    [19] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.64.038802
    [20] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, doi: 10.7498/aps.64.038402
Metrics
  • Abstract views:  138
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  29 April 2025

/

返回文章
返回