Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancing crystallization and photovoltaic performance of CsPbIBr2 perovskite through p-aminobenzoic acid

MENG Fanning WANG Fang CHENG Long SUN Zhiyan WANG Guiqiang

Citation:

Enhancing crystallization and photovoltaic performance of CsPbIBr2 perovskite through p-aminobenzoic acid

MENG Fanning, WANG Fang, CHENG Long, SUN Zhiyan, WANG Guiqiang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Inorganic CsPbIBr2 perovskite features high phase stability and light absorption coefficient, making it suitable for the development of perovskite tandem cells or semi-transparent cells. High-quality CsPbIBr2 perovskite films are of crucial importance for fabricating efficient solar cells. However, compared with CsPbI2 and CsPbI2Br, the CsPbIBr2 precursor has poor crystallinity and low film coverage, which is prone to generating pinholes and defects. Therefore, serious charge recombination often occurs inside the devices. To solve this problem, p-aminobenzoic acid (PABA) is added to the CsPbIBr2 precursor to regulate its crystallization dynamics in this work. Electrostatic potential distribution of PABA shows that the electron-rich regions (negative charge regions) are mainly located near the C=O. Fourier transform infrared spectrum indicates the existence of coordination interaction between C=O and Pb²+ and the formation of hydrogen bonds between —NH2 and halide anions. Ultraviolet-visible absorption (UV-Vis) spectrum and X-ray diffraction (XRD) spectrum demonstrate that a new intermediate phase, PABA·Pb···Br(I), is formed between PABA molecules and the components of CsPbIBr2 precursor. The formation of this intermediate phase slows down the crystallization rate of the perovskite, regulates the grain growth, and enables the preparation of dense perovskite films. XRD, UV-Vis, space charge limited current, and linear sweep voltammetry are used to characterize the film quality. After the addition of PABA, the film quality of CsPbIBr2 perovskite is improved. Thus, the light absorption is enhanced. The defect density is reduced. And the conductivity is increased. The efficiency of the champion cell increases to 10.65% compared with that of the control cell (8.76%). Further, dark current-voltage curves, Mott-Schottky curves, electrochemical impedance spectra, and photoluminescence spectra are utilized to analyze the reasons for the improved photovoltaic performance. After the addition of PABA, the CsPbIBr2 device exhibits reduced leakage current, enhanced built-in electric field, suppressed charge recombination, and improved charge extraction at the interface. In addition to the enhancement in photovoltaic efficiency, the PABA-regulated perovskite cells also exhibit high stability. After being stored in air for 1500 h, the average efficiency of the unencapsulated cells remains 80% of the initial value.
  • 图 1  (a) PABA分子的结构和静电势; (b) CsPbIBr2, PABA和添加PABA后CsPbIBr2样品的FTIR谱图; (c) CsPbIBr2和添加PABA后CsPbIBr2前驱体的UV-Vis谱图; (d) PbBr2和添加PABA后PbBr2的XRD谱图

    Figure 1.  (a) Molecular structure and electrostatic potential of PABA; (b) FTIR spectra of CsPbIBr2, PABA and CsPbIBr2 with PABA; (c) UV-Vis spectra of the precursor of CsPbIBr2 and CsPbIBr2 with PABA; (d) XRD patterns of PbBr2 and PbBr2 with PABA.

    图 2  (a)—(c) CsPbIBr2钙钛矿和添加PABA后CsPbIBr2钙钛矿结晶过程的颜色演变和XRD谱图; (d) PABA调控CsPbIBr2钙钛矿结晶的示意图

    Figure 2.  (a)–(c) Color evolution and XRD patterns of the perovskite of CsPbIBr2 and CsPbIBr2 with PABA; (d) schematic of the crystallization of CsPbIBr2 perovskite regulated by PABA.

    图 3  (a) PABA的热失重曲线; (b) 添加PABA后CsPbIBr2钙钛矿的EDS图像; (c), (d) CsPbIBr2和添加PABA后CsPbIBr2钙钛矿薄膜的SEM图像

    Figure 3.  (a) Thermogravimetric analysis of PABA; (b) EDS mapping of CsPbIBr2 with PABA; (c), (d) SEM images of CsPbIBr2 and CsPbIBr2 with PABA perovskite.

    图 4  CsPbIBr2和添加PABA后CsPbIBr2钙钛矿薄膜的性能分析 (a) XRD; (b) UV-Vis;

    Figure 4.  Properties analysis of the perovskite films of CsPbIBr2 and CsPbIBr2 with PABA: (a) XRD; (b) UV-Vis; (c) dark current-voltage curves of the electron-only devices; (d) linear sweep voltammetry curves.

    图 5  CsPbIBr2和添加PABA的CsPbIBr2两种钙钛矿所组装电池的光伏性能 (a) J-V特性曲线; (b) 不同波长的单色光照射下两种电池的光子-电子转化效率和积分电流密度曲线; (c) 最大功率点的稳定功率输出曲线; (d) 30块电池的PCE分布

    Figure 5.  Photovoltaic performance of the devices fabricated by CsPbIBr2 and CsPbIBr2 with PABA perovskite: (a) J-V curves; (b) the incident photon to current conversion efficiency and integrated current density curves; (c) stable power output curves at maximum power points; (d) PCE distribution of 30 cells

    图 6  CsPbIBr2和添加PABA的CsPbIBr2两种钙钛矿电池的电化学测试和光谱分析 (a) 暗电流-电压曲线; (b) Mott-Schottky曲线; (c) Nyquist图; (d) 玻璃/CsPbIBr2/碳电极和玻璃/添加PABA的CsPbIBr2/碳电极两种半电池的PL光谱

    Figure 6.  Electrochemical tests and spectral analysis of the devices fabricated by CsPbIBr2 and CsPbIBr2 with PABA perovskite: (a) Dark current-voltage curves; (b) Mott-Schottky curves; (c) Nyquist plots; (d) PL spectra of half-cells fabricated by glass/CsPbIBr2/carbon electrode and glass/CsPbIBr2 with PABA /carbon electrode.

    图 7  (a) 20—25 ℃, 20%—30% RH、空气环境中两种钙钛矿薄膜的颜色随时间变化的图像; (b)相同条件下未封装的电池PCE随时间的变化; (c) 在85 ℃、干燥的N2手套箱中未封装的电池PCE随时间的变化; (d) 85% RH、空气条件下未封装的电池PCE随时间的变化

    Figure 7.  (a) Images of the color evolution of different perovskite films at 20–25 ℃, 20%–30% RH, and air atmosphere; (b) curves of the PCE evolution of unencapsulated cells at the same condition; (c) curves of the PCE evolution of unencapsulated cells at 85 ℃ and dry N2 atmosphere; (d) curves of the PCE evolution of unencapsulated cells at 85% RH and air atmosphere.

    表 1  已报道的碳基CsPbIBr2 PSCs的光伏参数

    Table 1.  Photovoltaic parameters of carbon-based CsPbIBr2 PSCs reported previously.

    电池结构 Jsc/(mA·cm–2) Voc/V FF/% PCE/% Ref.
    ITO/TiO2/CsPbIBr2/Carbon 11.87 1.312 68.4 10.65 本研究
    FTO/SnO2/CsPbIBr2/Carbon 9.23 1.08 0.60 5.95 [32]
    ITO/TiO2/CsPbIBr2/CuSCN/Carbon 10.01 1.19 0.60 7.17 [33]
    ITO/TiO2/CsPbIBr2/Ti3C2Clx/Carbon 11.56 1.29 69.93 10.43 [34]
    FTO/TiO2/CsPbIBr2/GQDs/Carbon 11.93 1.25 65.4 9.8 [35]
    ITO/TiO2/CsPbIBr2/Carbon 11.64 1.31 67 10.23 [36]
    ITO/TiO2/CsPbIBr2/Carbon 11.69 1.29 66.97 10.10 [37]
    FTO/TiO2/CsPbIBr2/Carbon 11.25 1.32 71.9 10.68 [38]
    FTO/TiO2/CsPbIBr2/DES/Carbon 9.2 1.24 61.5 7.04 [39]
    FTO/TiO2/m-TiO2/CsPbIBr2/Carbon 11.67 1.24 70 10.13 [40]
    FTO/TiO2/ET/CsPbIBr2/Carbon 11.63 1.325 72.23 11.13 [41]
    FTO/TiO2/PPC-CsPbIBr2/Carbon 10.25 1.25 57.5 7.36 [42]
    ITO/TiO2/ODTC-CsPbIBr2/Carbon 11.48 1.30 68 10.15 [13]
    FTO/TiO2/m-TiO2/PTU-CsPbIBr2/Carbon 11.28 1.26 71 10.09 [43]
    FTO/Li: TiO2/CsPbIBr2/Carbon 10.01 1.26 64 8.09 [44]
    FTO/TiO2/CsPbIBr2-SAM/Carbon 11.81 1.317 71.1 11.06 [45]
    FTO/TiO2/Cd- CsPbIBr2/carbon 11.53 1.324 69.63 10.63 [46]
    FTO/TiO2/PMMA/CsPbIBr2/carbon 11.36 1.307 62 9.21 [47]
    FTO/TiO2/MAAc/CsPbIBr2/carbon 10.86 1.26 64.56 8.85 [48]
    FTO/TiO2/CsPbIBr2/P3 HT:PC61BM/Carbon 11.79 1.31 74.47 11.54 [49]
    FTO/TiO2/CsPbIBr2/Carbon 10.88 1.08 64 7.52 [50]
    DownLoad: CSV
  • [1]

    Zhu P C, Chen C L, Dai J Q, Zhang Y Z, Mao R Q, Chen S S, Huang J S, Zhu J 2024 Adv. Mater. 36 2307357Google Scholar

    [2]

    Deng F, Song X F, Li Y, Zhang W Q, Tao X 2024 Chem. Eng. J. 489 151228Google Scholar

    [3]

    Almutairi B S, Khan M I, Mujtaba A, Subhani W S, Yousef E S, Alotaibi N, Hussain S, Almaral-Sánchez J L 2024 Opt. Mater. 152 115415Google Scholar

    [4]

    Khan M I, Mujtaba A, Khan S A, Laref A, Amami M 2024 J. Sol-Gel Sci. Technol. 111 754Google Scholar

    [5]

    You Y B, Tian W, Wang M, Cao F R, Sun H X, Li L 2020 Adv. Mater. Interface 7 2000537Google Scholar

    [6]

    Chang Q, An Y, Cao H, Pan Y, Zhao L, Chen Y, We Y, Tsang S W, Yip H L, Sun L, Yu Z 2024 J. Energy Chem. 90 16Google Scholar

    [7]

    He J, Su J, Di J, Lin Z, Zhang S, Ma J, Zhang J, Liu S, Chang J, Hao Y 2022 Nano Energy 94 106960Google Scholar

    [8]

    Pan J Y, Zhang X, Zheng Y, Xiang W C 2021 Sol. Energy Mater. Sol. Cells 221 110878Google Scholar

    [9]

    Guo Y X, Yin X T, Liu J, Wen S, Wu Y T, Que W X 2019 Sol. RRL 3 1900135Google Scholar

    [10]

    王桂强, 王东升, 毕佳宇, 常嘉润, 孟凡宁 2023 物理学报 72 158801Google Scholar

    Wang G Q, Wang D S, Bi J Y, Chang J R, Meng F N 2023 Acta Phys. Sin. 72 158801Google Scholar

    [11]

    Wang G Q, Chang J R, Wang D S, Bi J Y, Meng F N 2024 CrystEngComm 26 4376Google Scholar

    [12]

    He W, Duan X X, Tang Q W, Dou J, Duan J L 2024 Chem. Commun. 60 4954Google Scholar

    [13]

    Liu X, Jing Y, Wang C Y, Wang X, Li R S, Xu Y, Yan Z L, Zhang H Y, Wu J H, Lan Z 2023 Adv. Mater. Interface 10 2202159Google Scholar

    [14]

    Zhang J S, Duan J L, Zhang Q Y, Guo Q Y, Yan F R, Yang X Y, Duan Y Y, Tang Q W 2022 Chem. Eng. J. 431 134230Google Scholar

    [15]

    王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟 2022 物理学报 71 018802Google Scholar

    Wang G Q, Bi J Y, Liu J Q, Lei M, Zhang W 2022 Acta Phys. Sin. 71 018802Google Scholar

    [16]

    Wang G Q, Chang J R, Bi J Y, Zhang W, Meng F N 2022 Sol. RRL 6 2200656Google Scholar

    [17]

    Zhuang R S, Wang L Q, Qiu J M, Xie L, Miao X H, Zhang X L, Hua Y 2023 Chem. Eng. J. 463 142449Google Scholar

    [18]

    Chen S M, Wang J T, Yu C, Jiang N, Wang Z Y, Zhou Y B, He C Y, Fang K, Liu B, Zhang J, Li Y, Li C N, Chen P, Duan Y 2022 Sol. RRL 6 2200405Google Scholar

    [19]

    Sun Q, Wang T, Zhou C C, Zhang C, Shao Y, Liu X L, Wang Y N, Lin J, Chen X F 2023 J. Alloys Compd. 960 170629Google Scholar

    [20]

    Cao K, Huang Y, Ge M R, Huang F, Shi W J, Wu Y P, Cheng Y F, Qian J, Liu LH, Chen S F 2021 ACS Appl. Mater. Interfaces 13 26013Google Scholar

    [21]

    An Z, Chen S, Lu T, Zhao P, Yang X, Li Y, Hou J 2023 J. Mater. Chem. C 11 12750Google Scholar

    [22]

    Chiu P H, Hu C T, Chia S K, Su L Y, Chen P T, Liu Z Y, Lin C Y, Hsieh C C, Dai C A, Wang L 2024 Sol. RRL 8 2300902Google Scholar

    [23]

    Miao Y F, Ren M, Chen Y T, Wang H F, Chen H R, Liu X M, Wang T F, Zhao Y X 2023 Nat. Sustain. 6 1465Google Scholar

    [24]

    Worsley C, Raptis D, Meroni S, Doolin A, Garcia-Rodriguez R, Davies M, Watson T 2021 Energy Technol. 9 2100312Google Scholar

    [25]

    Cao X B, Hao L, Liu Z J, Su G Y, He X, Zeng Q G, Wei J Q 2022 Chem. Eng. J. 437 135458Google Scholar

    [26]

    Du Y C, Tian Q W, Chang X M, Fang J J, Gu X J, He X J, Ren X L, Zhao K, Liu S Z 2022 Adv. Mater. 34 2106750Google Scholar

    [27]

    Huang X F, Deng G C, Zhan S Q, Cao F, Cheng F W, Yin J, Li J, Wu B H, Zheng N F 2022 ACS Cent. Sci. 8 1008Google Scholar

    [28]

    Cheng X, Gan X G, Jin G, Chen Z L, Li N 2024 ChemSusChem 18 202401366

    [29]

    Wu S C, Yun T, Zheng C Q, Luo X Y, Qiu P, Yu H Y, Wang Q W, Gao J W, Lu X B, Gao X S, Shui L L, Wu S J, Liu J M 2024 ACS Appl. Mater. Interfaces 16 7297Google Scholar

    [30]

    Bi J Y, Wang D S, Chang J R, Li J H, Meng F N, Wang G Q 2023 J. Alloys Compd. 965 171441Google Scholar

    [31]

    Wang S L, Wang P Y, Shi B, Sun C, Sun H R, Qi S S, Huang Q, Xu S Z, Zhao Y, Zhang X D 2023 Adv. Mater. 35 2300581Google Scholar

    [32]

    Du T, Jin L 2025 J. Sol-Gel Sci. Technol. 113 942Google Scholar

    [33]

    Du Z B, Li R S, Lu Y, Deng C Y, Lin J M, Wu J H, Lan Z 2024 ACS Appl. Nano Mater. 7 5454Google Scholar

    [34]

    Xu Y, Zhang H Y, Jing Y, Wang X, Gan J Q, Yan Z L, Liu X, Wu J H, Lan Z 2023 Appl. Surf. Sci. 619 156674Google Scholar

    [35]

    Zhou Q Z, Tang S Y, Yuan G H, Zhu W L, Huang Y Y, Li S J, Lin M J 2022 J. Alloys Compd. 895 162529Google Scholar

    [36]

    Xu Y, Zhang H Y, Liu F L, Li R S, Jing Y, Wang X, Wu J H, Zhang J Y, Lan Z 2024 Appl. Surf. Sci. 658 159831Google Scholar

    [37]

    Wang X, Xu Y, Zhang H Y, Yan Z L, Jing Y, Liu X, Wu J H, Lan Z 2022 Adv. Sustain. Syst. 6 2200074Google Scholar

    [38]

    He W, Duan X X, Tang Q W, Dou J, Duan J L 2024 Chem. Commun. 60 4954Google Scholar

    [39]

    Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Mater. Sci. Semicond. Process. 173 108134Google Scholar

    [40]

    Wang G Q, Chang J R, Bi J Y, Wang D S, Meng F N 2024 Cryst. Growth Des. 24 817Google Scholar

    [41]

    Qi Z T, Li J B, Zhang X Y, Dou J, Guo Q Y, Zhao Y Y, Yang P Z, Tang Q W, Duan J L 2024 ACS Appl. Mater. Interfaces 16 14974Google Scholar

    [42]

    Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Opt. Mater. 147 114672Google Scholar

    [43]

    Bi J Y, Chang J R, Lei M, Meng F N, Wang G Q 2023 Energy Technol. 11 2201459Google Scholar

    [44]

    Zhao F, Guo Y X, Yang P Z, Tao J H, Jiang J C, Chu J H 2023 J. Alloys Compd. 930 167377Google Scholar

    [45]

    Yao X, Duan J, Zhao Y, Zhang J, Guo Q, Zhang Q, Yang X, Duan Y, Yang P, Tang Q 2023 Carbon Energy 5 387Google Scholar

    [46]

    Xu Y, Li G, Jing Y, Zhang H Y, Wang X, Lu Y, Wu J H, Lan Z 2022 J. Colloid Interface Sci. 608 40Google Scholar

    [47]

    Chai W M, Ma J X, Zhu W D, Chen D Z, Xi H, Zhang J C, Zhang C F, Hao Y 2021 ACS Appl. Mater. Interfaces 13 2868Google Scholar

    [48]

    Shi L X, Yuan H Y, Sun X G, Li X Y, Zhu W B, Wang J, Duan L S, Li Q L, Zhou Z, Huang Z G, Ban X X, Zhang D G 2021 ACS Appl. Energy Mater. 4 10584Google Scholar

    [49]

    Wang D, Li W J, Li R S, Sun W H, Wu J H, Lan Z 2021 Sol. RRL 5 2100375Google Scholar

    [50]

    Liu J Q, He Q Q, Bi J Y, Lei M, Zhang W, Wang G Q 2021 Chem. Eng. J. 424 130324Google Scholar

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, doi: 10.7498/aps.73.20231568
    [2] Zhang Xiao-Chun, Wang Li-Kun, Shang Wen-Li, Wan Zheng-Hui, Yue Xin, Yang Hua-Yi, Li Ting, Wang Hui. Fabrication of high-performance inverted perovskite solar cells based on dual modification strategy. Acta Physica Sinica, doi: 10.7498/aps.73.20241238
    [3] Wang Hui, Zheng De-Xu, Jiang Xiao, Cao Yue-Xian, Du Min-Yong, Wang Kai, Liu Sheng-Zhong, Zhang Chun-Fu. Fabrication of high-performance flexible perovskite solar cells based on synergistic passivation strategy. Acta Physica Sinica, doi: 10.7498/aps.73.20231846
    [4] Jin Cheng-Cheng, Ding Ling-Ling, Song Zi-Xin, Tao Hai-Jun. Improvement of performance of perovskite solar cells through BaTiO3 doping regulated built-in electric field. Acta Physica Sinica, doi: 10.7498/aps.73.20231139
    [5] Yang Mei-Li, Zou Li, Cheng Jia-Jie, Wang Jia-Ming, Jiang Yu-Fan, Hao Hui-Ying, Xing Jie, Liu Hao, Fan Zhen-Jun, Dong Jing-Jing. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive. Acta Physica Sinica, doi: 10.7498/aps.72.20230636
    [6] Li Pei, Xu Jie, He Chao-Hui, Liu Jia-Xin. Experimental study on irradiation of perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.72.20230230
    [7] Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong. High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal. Acta Physica Sinica, doi: 10.7498/aps.72.20221461
    [8] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.71.20220359
    [9] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, doi: 10.7498/aps.71.20220725
    [10] Ma Shu-Peng, Lin Fei-Yu, Luo Yuan, Zhu Liu, Guo Xue-Yi, Yang Ying. Formation mechanism of CsPbBr3 in multi-step spin-coating process. Acta Physica Sinica, doi: 10.7498/aps.71.20220171
    [11] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.71.20211930
    [12] Wang Gui-Qiang, Bi Jia-Yu, Liu Jie-Qiong, Lei Miao, Zhang Wei. Enhancing quality of CsPbIBr2 inorganic perovskite via cellulose acetate addition for high-performance perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.71.20211074
    [13] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, doi: 10.7498/aps.70.20201896
    [14] Wang Yan-Bo, Cui Dan-Yu, Zhang Cai-Yi, Han Li-Yuan, Yang Xu-Dong. Recent advances in perovskite solar cells: Space potential and optoelectronic conversion mechanism. Acta Physica Sinica, doi: 10.7498/aps.68.20190569
    [15] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, doi: 10.7498/aps.66.018401
    [16] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, doi: 10.7498/aps.65.188801
    [17] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.65.237902
    [18] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.64.033301
    [19] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.64.038802
    [20] Shi Jiang-Jian, Wei Hui-Yun, Zhu Li-Feng, Xu Xin, Xu Yu-Zhuan, Lü Song-Tao, Wu Hui-Jue, Luo Yan-Hong, Li Dong-Mei, Meng Qing-Bo. S-shaped current-voltage characteristics in perovskite solar cell. Acta Physica Sinica, doi: 10.7498/aps.64.038402
Metrics
  • Abstract views:  243
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  15 February 2025
  • Accepted Date:  17 April 2025
  • Available Online:  29 April 2025

/

返回文章
返回