Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer

Wang Pei-Pei Zhang Chen-Xi Hu Li-Na Li Shi-Qi Ren Wei-Hua Hao Yu-Ying

Citation:

Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer

Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying
PDF
HTML
Get Citation
  • In recent years, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted wide attention due to their high photoelectric conversion efficiency and simple preparation process. Hole transport layer (HTL) is one of the most critical components in PSCs. As a kind of inorganic HTL material, nickel oxide (NiOx) has been widely used in perovskite solar cells because of its excellent advantages, such as outstanding chemical stability, high carrier mobility, simple methods for its preparation, etc. In this paper, the applications of NiOx HTL in planar PSCs are systematically summarized from the aspects of the improvment of its structure and photoelectric properties by doping and interface modification. The reasons for affecting the device performances, i.e. fill factor, open-circuit voltage, short-circuit current, photoelectric conversion efficiency, and stability are emphatically analyzed from several aspects, such as energy level matching, hole mobility and crystallinity. In addition, the future development directions of the planar PSCs are prospected.
      Corresponding author: Zhang Chen-Xi, zhangchenxi@tyut.edu.cn ; Hao Yu-Ying, haoyuying@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62074108), the Joint Foundation of National Natural Science Foundation of China and Shanxi Coal-Based Low-Carbon Nurturing Project (Grant No. U1710115), the Major Special Projects of Shanxi Province in Science and Technology, China (Grant No. 20201101012), the Platform and Base Special Project of Shanxi, China (Grant No. 201805D131012-3), and the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D211114)
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 60Google Scholar

    [2]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643Google Scholar

    [3]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar

    [4]

    Best Research-Cell Effciency Chart from NREL https://www.nrel.gov/pv/cell-efficiency.html

    [5]

    Kim Y, Jung E H, Kim G, Kim D, Kim B J, Seo J 2018 Adv. Energy Mater. 8 1801668Google Scholar

    [6]

    Wang M, Wang H, Li W, Hu X, Sun K, Zang Z 2019 J. Mater. Chem. A 7 26421Google Scholar

    [7]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107Google Scholar

    [8]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642Google Scholar

    [9]

    Lyu M, Chen J, Park N G 2019 J. Solid State Chem. 269 367Google Scholar

    [10]

    Chowdhury T H, Akhtaruzzaman M, Kayesh M E, Kaneko R, Noda T, Lee J J, Islam A 2018 Sol. Energy 171 652Google Scholar

    [11]

    Sepalage G A, Meyer S, Pascoe A, Scully A D, Huang F, Bach U, Cheng Y B, Spiccia L 2015 Adv. Funct. Mater. 25 5650Google Scholar

    [12]

    Chen W, Deng L, Dai S, Wang X, Tian C, Zhan X, Xie S, Huang R, Zheng L 2015 J. Mater. Chem. A 3 19353Google Scholar

    [13]

    Zuo C, Ding L 2015 Small 11 5528Google Scholar

    [14]

    Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar

    [15]

    Yang Y, Chen H, Zheng X, Meng X, Zhang T, Hu C, Bai Y, Xiao S, Yang S 2017 Nano Energy 42 322Google Scholar

    [16]

    Islam M B, Yanagida M, Shirai Y, Nabetani Y, Miyano K 2017 ACS Omega 2 2291Google Scholar

    [17]

    Ru P, Bi E, Zhang Y, Wang Y, Kong W, Sha Y, Tang W, Zhang P, Wu Y, Chen W, Yang X, Chen H, Han L 2020 Adv. Energy Mater. 10 1903487Google Scholar

    [18]

    Yin X, Guo Y, Xie H, Que W, Kong L B 2019 Solar RRL 3 1900001Google Scholar

    [19]

    Zheng X, Song Z, Chen Z, Bista S S, Gui P, Shrestha N, Chen C, Li C, Yin X, Awni R A, Lei H, Tao C, Ellingson R J, Yan Y, Fang G 2020 J. Mater. Chem. C 8 1972Google Scholar

    [20]

    Xu L, Chen X, Jin J, Liu W, Dong B, Bai X, Song H, Reiss P 2019 Nano Energy 63 103860Google Scholar

    [21]

    Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar

    [22]

    Yin X, Que M, Xing Y, Que W 2015 J. Mater. Chem. A 3 24495Google Scholar

    [23]

    Wang Y, Mahmoudi T, Rho W Y, Yang H Y, Seo S, Bhat K S, Ahmad R, Hahn Y B 2017 Nano Energy 40 408Google Scholar

    [24]

    Sajid S, Elseman A M, Huang H, Ji J, Dou S, Jiang H, Liu X, Wei D, Cui P, Li M 2018 Nano Energy 51 408Google Scholar

    [25]

    Yan X, Zheng J, Zheng L, Lin G, Lin H, Chen G, Du B, Zhang F 2018 Mater. Res. Bull. 103 150Google Scholar

    [26]

    Corani A, Li M H, Shen P S, Chen P, Guo T F, El Nahhas A, Zheng K, Yartsev A, Sundstrom V, Jr Ponseca C S 2016 J. Phys. Chem. Lett. 7 1096Google Scholar

    [27]

    Scheideler W J, Rolston N, Zhao O, Zhang J, Dauskardt R H 2019 Adv. Energy Mater. 9 1803600Google Scholar

    [28]

    Seo Y H, Cho I H, Na S I 2019 J. Alloys Compd. 797 1018Google Scholar

    [29]

    Kaneko R, Kanda H, Sugawa K, Otsuki J, Islam A, Nazeeruddin M K 2019 Solar RRL 3 1900172Google Scholar

    [30]

    Park I J, Kang G, Park M A, Kim J S, Seo S W, Kim D H, Zhu K, Park T, Kim J Y 2017 Chem. Sus. Chem. 10 2660Google Scholar

    [31]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K 2015 Adv. Mater. 27 695Google Scholar

    [32]

    Jung J W, Chueh C C, Jen A K 2015 Adv. Mater. 27 7874Google Scholar

    [33]

    Huang A, Lei L, Chen Y, Yu Y, Zhou Y, Liu Y, Yang S, Bao S, Li R, Jin P 2018 Sol. Energy Mater. Sol. Cells 182 128Google Scholar

    [34]

    Wei Y, Yao K, Wang X, Jiang Y, Liu X, Zhou N, Li F 2018 Appl. Surf. Sci. 427 782Google Scholar

    [35]

    Lee P H, Li B T, Lee C F, Huang Z H, Huang Y C, Su W F 2020 Sol. Energy Mater. Sol. Cells 208 110352Google Scholar

    [36]

    Qiu Z, Gong H, Zheng G, Yuan S, Zhang H, Zhu X, Zhou H, Cao B 2017 J. Mater. Chem. C 5 7084Google Scholar

    [37]

    Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar

    [38]

    Ge B, Qiao H, Lin Z, Zhou Z, Chen A, Yang S, Hou Y, Yang H 2019 Sol. RRL 3 1900192Google Scholar

    [39]

    Hu Z, Chen D, Yang P, Yang L, Qin L, Huang Y, Zhao X 2018 Appl. Surf. Sci. 441 258Google Scholar

    [40]

    Wang S, Zhang B, Feng D, Lin Z, Zhang J, Hao Y, Fan X, Chang J 2019 J. Mater. Chem. C 7 9270Google Scholar

    [41]

    Chen W, Zhou Y, Wang L, Wu Y, Tu B, Yu B, Liu F, Tam H W, Wang G, Djurisic A B, Huang L, He Z 2018 Adv. Mater. 30 1800515Google Scholar

    [42]

    Chen W, Wu Y, Fan J, Djurišić A-B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D, He Z 2018 Adv. Energy Mater. 8 1870091Google Scholar

    [43]

    Wang Z, Rong X, Wang L, Wang W, Lin H, Li X 2020 ACS Appl. Mater. & Interfaces 12 8342Google Scholar

    [44]

    Li G, Jiang Y, Deng S, Tam A, Xu P, Wong M, Kwok H S 2017 Adv. Sci. 4 1700463Google Scholar

    [45]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Michael G, Han L 2015 Science 350 944Google Scholar

    [46]

    Niu Q L, Deng Y, Cui D, Lv H, Duan X, Li Z, Liu Z, Zeng W, Xia R, Tan W, Min Y 2019 J. Mater. Sci. 54 14134Google Scholar

    [47]

    He J, Xiang Y, Zhang F, Lian J, Hu R, Zeng P, Song J, Qu J 2018 Nano Energy 45 471Google Scholar

    [48]

    Zhang J, Luo H, Xie W, Lin X, Hou X, Zhou J, Huang S, Ou-Yang W, Sun Z, Chen X 2018 Nanoscale 10 5617Google Scholar

    [49]

    Li Z, Jo B H, Hwang S J, Kim T H, Somasundaram S, Kamaraj E, Bang J, Ahn T K, Park S, Park H J 2019 Adv. Sci. 6 1802163Google Scholar

    [50]

    Wang S, Zhu Y, Wang C, Ma R 2020 Org. Electron. 78 105627Google Scholar

    [51]

    Chen W, Zhou Y, Chen G, Wu Y, Tu B, Liu F Z, Huang L, Ng A M C, Djurišić A B, He Z 2019 Adv. Energy Mater. 9 1970068Google Scholar

    [52]

    Wang T, Cheng Z, Zhou Y, Liu H, Shen W 2019 J. Mater. Chem. A 7 21730Google Scholar

    [53]

    Zhao J, Tavakoli R, Tavakoli M-M 2019 Chem. Commun 55 9196Google Scholar

    [54]

    Wang T, Xie M, Abbasi S, Cheng Z, Liu H, Shen W 2020 J. Power Sources 448 227584Google Scholar

    [55]

    Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K 2017 Chem. Sus. Chem. 10 3794Google Scholar

    [56]

    Du Y, Xin C, Huang W, Shi B, Ding Y, Wei C, Zhao Y, Li Y, Zhang X 2018 ACS Sustain. Chem. Eng. 6 16806Google Scholar

    [57]

    Zhai Z, Huang X, Xu M, Yuan J, Peng J, Ma W 2013 Adv. Energy Mater. 3 1614Google Scholar

    [58]

    Sun Y, Chen W, Wu Y, He Z, Zhang S, Chen S 2019 Nanoscale 11 1021Google Scholar

    [59]

    Wang T, Ding D, Zheng H, Wang X, Wang J, Liu H, Shen W 2019 Solar RRL 3 1900045Google Scholar

  • 图 1  钙钛矿太阳电池结构示意图

    Figure 1.  Schematic diagram of PSCs.

    图 2  NiO的立方晶体结构

    Figure 2.  NiO cubic crystal structure

    图 3  (a) NiOx和Cu:NiOx薄膜的紫外光电子能谱[33]; (b) 基于NiOx或Cs: NiOx单空穴器件的J-V曲线, 器件结构为FTO/ NiOx 或 Cs:NiOx/MoO3/Ag[37]; (c) 不同HTLs的PSCs能级图; (d) 倒置平面PSCs的结构[38]; (e) F6TCNNQ掺杂分子的化学结构及其与NiOx的能级排列[41]; (f) NiOx与TCNQ, F2TCNQ, F4TCNQ和F2HCNQ的电荷转移和能级分布示意图[17]

    Figure 3.  (a) Ultraviolet photoelectron spectra of NiOx and Cu:NiOx films[33]; (b) J-V curves of hole only devices with NiOx or Cs:NiOx hole extraction layers, the device structure is FTO/ NiOx or Cs:NiOx/MoO3/Ag[37]; (c) energy-level diagram of the various layers in the PSCs exhibiting the transfer of photoinduced holes; (d) structural illustration of the inverted planar PSCs[38]; (e) band alignment of NiOx and molecular dopants of F6TCNNQ and the chemical structure[41]; (f) schematic of charge transfer and energy level distribution of NiOx, TCNQ, F2TCNQ, F4TCNQ, and F2HCNQ[17].

    图 4  (a) 钙钛矿前驱体在NiOx薄膜以及甘油处理后NiOx膜上的接触角[46]; (b) 三种氨基酸的三维分子模型[47]; (c) NiOx和NiOx/FDA 薄膜上钙钛矿层的SEM图像; (d) NiOx和NiOx/FDA 薄膜上钙钛矿层的X射线衍射图[48]; (e) 基于TPV实验计算的具有不同HTLs器件的载流子复合寿命与光强度关系图[49]; (f) 在10 kHz下KCl修饰前后NiOx基PSCs的Mott-Schottky图, 以及基于TPV实验计算的KCl修饰前后NiOx基PSCs的陷阱态密度谱[51]

    Figure 4.  (a) Contact angles of the solvents of perovskite precursor solution on NiOx: pristine film and with glycerol treatment[46]; (b) molecular 3D models and formula of three amino acids[47]; (c) SEM images of the perovskite layer on NiOx and NiOx/FDA films; (d) XRD patterns of the perovskite layer on NiOx and NiOx/FDA films[48]; (e) recombination lifetime versus light intensity plots of complete cells having various HTLs, calculated by TPV experiments[49]; (f) Mott–Schottky plots for the CsFAMA perovskite PSCs with pristine and KCl-modified NiOx HTLs at 10 kHz and trap density of states (DOS) spectra for CsFAMA perovskite PSCs with pristine and KCl-modified NiOx HTLs[51]

    表 1  基于掺杂NiOx薄膜的PSCs的性能

    Table 1.  Performances of the PSCs based on doped NiOx films.

    器件结构电压
    Voc/V
    电流
    Jsc/(mA·cm–2)
    填充因子FF光电转换效率PCE/%掺杂/方法文献
    ITO/F2HCNQ:NiOx/PMMA/CsMAFA/PCBM/BCP/Ag1.1423.440.8322.13F2HCNQ:NiOx spin-coating[17]
    ITO/F6TCNNQ:NiOx/CsFAMA/
    PCBM/ZrAcac/Ag
    1.1223.180.8020.86F6TCNNQ/Spin coating[41]
    ITO/Cu:NiOx/CH3NH3PbI3/C60/BCP/Ag1.1222.280.8120.26Cu:NiOx NPs/Spin coating[42]
    ITO/Li:Co NiOx/MA1yFAyPbI3xClx/
    PCBM/BCP/Ag
    1.0923.800.7820.10Li:Co/Spin-coating[40]
    ITO/Sr:NiOx/CH3NH3PbI3/C60/BCP/Ag1.1422.660.7619.49Sr:NiO/Spin-coating[38]
    ITO/NiOx:AGQDs/CsFAMA/PCBM/BCP/Ag1.0522.300.8319.40NiOx:AGQDs/Spin-coating[43]
    FTO/Cs:NiOx/MAPbI3/PCBM/ZrAcac/Ag1.1221.770.7919.35Cs/Spin coating sol[37]
    ITO/NiMgO/CH3NH3PbI3/PCBM/ZnMgO/Al1.0821.300.8018.50Mg/Sputtering[44]
    FTO/NIR-Co:NiOx/MAPbI3/PC61BM/PEI/Ag1.0920.460.8017.77Co/Spin-coating[35]
    FTO/NiMgLiO/MAPbI3/PCBM/Ti(Nb)Ox/Ag1.0720.210.7516.20Li-Mg/Spray pyrolysis[45]
    DownLoad: CSV

    表 2  基于改性NiOx薄膜的PSCs的性能

    Table 2.  Performances of the PSCs based on modified NiOx films

    器件结构电压
    Voc/V
    电流
    Jsc/(mA·cm–2)
    填充因子FF光电转换效率PCE/%改性/方法文献
    ITO/NiOx/KCl/CsFAMA/PCBM/ZrAcac/Ag1.1522.890.8020.96KCl or NaCl/
    Spin-coating
    [51]
    ITO/NiOx/PFN-P2/CsFAMA/C60/BCP/Ag 1.1323.330.7820.50PFN-P2[53]
    FTO/NiOx/SDBS/CH3NH3PbI3/
    PCBM/BCP/Ag
    1.1222.940.7820.15SDBS/Spin-coating[54]
    ITO/NiOx/NH4F/CH3NH3PbI3/C60/BCP/Ag1.0922.450.7718.94NH4F/Spin-coating[50]
    ITO/NiOx/TPI-6MEO/MAPbI3/
    PCBM/BCP/Ag
    0.9823.310.8118.42TPI-6MEO/
    Spin-coating
    [49]
    ITO/NiOx/SAM/Perovskite/
    PCBM/Bis-C60/Ag
    1.1121.700.7618.40Benzoic acid modification[55]
    ITO/NiOx/FDA/CH3NH3PbI3/PCBM/AgAl1.0422.550.7617.87FDA modification[48]
    FTO/NiOx/PTAA/FA1–xMAxPb
    (I3–yBry)/PCBM/Au
    1.0621.540.7517.10PTAA/Sol–gel[56]
    DownLoad: CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 60Google Scholar

    [2]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643Google Scholar

    [3]

    Zhou H, Chen Q, Li G, Luo S, Song T, Duan H, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar

    [4]

    Best Research-Cell Effciency Chart from NREL https://www.nrel.gov/pv/cell-efficiency.html

    [5]

    Kim Y, Jung E H, Kim G, Kim D, Kim B J, Seo J 2018 Adv. Energy Mater. 8 1801668Google Scholar

    [6]

    Wang M, Wang H, Li W, Hu X, Sun K, Zang Z 2019 J. Mater. Chem. A 7 26421Google Scholar

    [7]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107Google Scholar

    [8]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642Google Scholar

    [9]

    Lyu M, Chen J, Park N G 2019 J. Solid State Chem. 269 367Google Scholar

    [10]

    Chowdhury T H, Akhtaruzzaman M, Kayesh M E, Kaneko R, Noda T, Lee J J, Islam A 2018 Sol. Energy 171 652Google Scholar

    [11]

    Sepalage G A, Meyer S, Pascoe A, Scully A D, Huang F, Bach U, Cheng Y B, Spiccia L 2015 Adv. Funct. Mater. 25 5650Google Scholar

    [12]

    Chen W, Deng L, Dai S, Wang X, Tian C, Zhan X, Xie S, Huang R, Zheng L 2015 J. Mater. Chem. A 3 19353Google Scholar

    [13]

    Zuo C, Ding L 2015 Small 11 5528Google Scholar

    [14]

    Yu W, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L, Hedhili M N, Li Y, Wu K, Wang X, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar

    [15]

    Yang Y, Chen H, Zheng X, Meng X, Zhang T, Hu C, Bai Y, Xiao S, Yang S 2017 Nano Energy 42 322Google Scholar

    [16]

    Islam M B, Yanagida M, Shirai Y, Nabetani Y, Miyano K 2017 ACS Omega 2 2291Google Scholar

    [17]

    Ru P, Bi E, Zhang Y, Wang Y, Kong W, Sha Y, Tang W, Zhang P, Wu Y, Chen W, Yang X, Chen H, Han L 2020 Adv. Energy Mater. 10 1903487Google Scholar

    [18]

    Yin X, Guo Y, Xie H, Que W, Kong L B 2019 Solar RRL 3 1900001Google Scholar

    [19]

    Zheng X, Song Z, Chen Z, Bista S S, Gui P, Shrestha N, Chen C, Li C, Yin X, Awni R A, Lei H, Tao C, Ellingson R J, Yan Y, Fang G 2020 J. Mater. Chem. C 8 1972Google Scholar

    [20]

    Xu L, Chen X, Jin J, Liu W, Dong B, Bai X, Song H, Reiss P 2019 Nano Energy 63 103860Google Scholar

    [21]

    Kim H S, Jang I H, Ahn N, Choi M, Guerrero A, Bisquert J, Park N G 2015 J. Phys. Chem. Lett. 6 4633Google Scholar

    [22]

    Yin X, Que M, Xing Y, Que W 2015 J. Mater. Chem. A 3 24495Google Scholar

    [23]

    Wang Y, Mahmoudi T, Rho W Y, Yang H Y, Seo S, Bhat K S, Ahmad R, Hahn Y B 2017 Nano Energy 40 408Google Scholar

    [24]

    Sajid S, Elseman A M, Huang H, Ji J, Dou S, Jiang H, Liu X, Wei D, Cui P, Li M 2018 Nano Energy 51 408Google Scholar

    [25]

    Yan X, Zheng J, Zheng L, Lin G, Lin H, Chen G, Du B, Zhang F 2018 Mater. Res. Bull. 103 150Google Scholar

    [26]

    Corani A, Li M H, Shen P S, Chen P, Guo T F, El Nahhas A, Zheng K, Yartsev A, Sundstrom V, Jr Ponseca C S 2016 J. Phys. Chem. Lett. 7 1096Google Scholar

    [27]

    Scheideler W J, Rolston N, Zhao O, Zhang J, Dauskardt R H 2019 Adv. Energy Mater. 9 1803600Google Scholar

    [28]

    Seo Y H, Cho I H, Na S I 2019 J. Alloys Compd. 797 1018Google Scholar

    [29]

    Kaneko R, Kanda H, Sugawa K, Otsuki J, Islam A, Nazeeruddin M K 2019 Solar RRL 3 1900172Google Scholar

    [30]

    Park I J, Kang G, Park M A, Kim J S, Seo S W, Kim D H, Zhu K, Park T, Kim J Y 2017 Chem. Sus. Chem. 10 2660Google Scholar

    [31]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K 2015 Adv. Mater. 27 695Google Scholar

    [32]

    Jung J W, Chueh C C, Jen A K 2015 Adv. Mater. 27 7874Google Scholar

    [33]

    Huang A, Lei L, Chen Y, Yu Y, Zhou Y, Liu Y, Yang S, Bao S, Li R, Jin P 2018 Sol. Energy Mater. Sol. Cells 182 128Google Scholar

    [34]

    Wei Y, Yao K, Wang X, Jiang Y, Liu X, Zhou N, Li F 2018 Appl. Surf. Sci. 427 782Google Scholar

    [35]

    Lee P H, Li B T, Lee C F, Huang Z H, Huang Y C, Su W F 2020 Sol. Energy Mater. Sol. Cells 208 110352Google Scholar

    [36]

    Qiu Z, Gong H, Zheng G, Yuan S, Zhang H, Zhu X, Zhou H, Cao B 2017 J. Mater. Chem. C 5 7084Google Scholar

    [37]

    Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar

    [38]

    Ge B, Qiao H, Lin Z, Zhou Z, Chen A, Yang S, Hou Y, Yang H 2019 Sol. RRL 3 1900192Google Scholar

    [39]

    Hu Z, Chen D, Yang P, Yang L, Qin L, Huang Y, Zhao X 2018 Appl. Surf. Sci. 441 258Google Scholar

    [40]

    Wang S, Zhang B, Feng D, Lin Z, Zhang J, Hao Y, Fan X, Chang J 2019 J. Mater. Chem. C 7 9270Google Scholar

    [41]

    Chen W, Zhou Y, Wang L, Wu Y, Tu B, Yu B, Liu F, Tam H W, Wang G, Djurisic A B, Huang L, He Z 2018 Adv. Mater. 30 1800515Google Scholar

    [42]

    Chen W, Wu Y, Fan J, Djurišić A-B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D, He Z 2018 Adv. Energy Mater. 8 1870091Google Scholar

    [43]

    Wang Z, Rong X, Wang L, Wang W, Lin H, Li X 2020 ACS Appl. Mater. & Interfaces 12 8342Google Scholar

    [44]

    Li G, Jiang Y, Deng S, Tam A, Xu P, Wong M, Kwok H S 2017 Adv. Sci. 4 1700463Google Scholar

    [45]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Michael G, Han L 2015 Science 350 944Google Scholar

    [46]

    Niu Q L, Deng Y, Cui D, Lv H, Duan X, Li Z, Liu Z, Zeng W, Xia R, Tan W, Min Y 2019 J. Mater. Sci. 54 14134Google Scholar

    [47]

    He J, Xiang Y, Zhang F, Lian J, Hu R, Zeng P, Song J, Qu J 2018 Nano Energy 45 471Google Scholar

    [48]

    Zhang J, Luo H, Xie W, Lin X, Hou X, Zhou J, Huang S, Ou-Yang W, Sun Z, Chen X 2018 Nanoscale 10 5617Google Scholar

    [49]

    Li Z, Jo B H, Hwang S J, Kim T H, Somasundaram S, Kamaraj E, Bang J, Ahn T K, Park S, Park H J 2019 Adv. Sci. 6 1802163Google Scholar

    [50]

    Wang S, Zhu Y, Wang C, Ma R 2020 Org. Electron. 78 105627Google Scholar

    [51]

    Chen W, Zhou Y, Chen G, Wu Y, Tu B, Liu F Z, Huang L, Ng A M C, Djurišić A B, He Z 2019 Adv. Energy Mater. 9 1970068Google Scholar

    [52]

    Wang T, Cheng Z, Zhou Y, Liu H, Shen W 2019 J. Mater. Chem. A 7 21730Google Scholar

    [53]

    Zhao J, Tavakoli R, Tavakoli M-M 2019 Chem. Commun 55 9196Google Scholar

    [54]

    Wang T, Xie M, Abbasi S, Cheng Z, Liu H, Shen W 2020 J. Power Sources 448 227584Google Scholar

    [55]

    Wang Q, Chueh C C, Zhao T, Cheng J, Eslamian M, Choy W C H, Jen A K 2017 Chem. Sus. Chem. 10 3794Google Scholar

    [56]

    Du Y, Xin C, Huang W, Shi B, Ding Y, Wei C, Zhao Y, Li Y, Zhang X 2018 ACS Sustain. Chem. Eng. 6 16806Google Scholar

    [57]

    Zhai Z, Huang X, Xu M, Yuan J, Peng J, Ma W 2013 Adv. Energy Mater. 3 1614Google Scholar

    [58]

    Sun Y, Chen W, Wu Y, He Z, Zhang S, Chen S 2019 Nanoscale 11 1021Google Scholar

    [59]

    Wang T, Ding D, Zheng H, Wang X, Wang J, Liu H, Shen W 2019 Solar RRL 3 1900045Google Scholar

  • [1] Zhao Xing, Li Dan-Ni, Li Mei-Cheng. Enhancement of charge collection capability by potassium-doped NiO in inverted planar perovskite solar cells. Acta Physica Sinica, 2024, 73(24): 247801. doi: 10.7498/aps.73.20240974
    [2] Xu Jie, Feng Ze-Hua, Liu Bing-Ye, Zhu Xin-Yi, Dai Jin-Fei, Dong Hua, Wu Zhao-Xin. Preparation and optoelectronic characteristics of perovskite module devices in air assisted by polymer inner packaging layern. Acta Physica Sinica, 2023, 72(24): 248802. doi: 10.7498/aps.72.20231055
    [3] Yu Yuan, Xing Ruo-Fei, Du Hui-Tian, Zhou Qian, Fan Ji-Hui, Pang Zhi-Yong, Han Sheng-Hao. Performance of trans perovskite solar cells improved by finely adjusting the particle size of nickel oxide nanoparticles through pH value. Acta Physica Sinica, 2023, 72(1): 018101. doi: 10.7498/aps.72.20221640
    [4] Wang Cheng-Lin, Zhang Zuo-Lin, Zhu Yun-Fei, Zhao Xue-Fan, Song Hong-Wei, Chen Cong. Progress of defect and defect passivation in perovskite solar cells. Acta Physica Sinica, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [5] Sun Meng-Jie, He Zhi-Qun, Zheng Yi-Fan, Shao Yu-Chuan. Application of EDTA/SnO2 double-layer composite electron transport layer to perovskite solar cells. Acta Physica Sinica, 2022, 71(13): 137201. doi: 10.7498/aps.71.20220074
    [6] Wang Gui-Qiang, Bi Jia-Yu, Liu Jie-Qiong, Lei Miao, Zhang Wei. Enhancing quality of CsPbIBr2 inorganic perovskite via cellulose acetate addition for high-performance perovskite solar cells. Acta Physica Sinica, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [7] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [8] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [10] Ji Chao, Liang Chun-Jun, You Fang-Tian, He Zhi-Qun. Effect of interface modification on performances of organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [11] Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Acta Physica Sinica, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [12] Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang. Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells. Acta Physica Sinica, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [13] Li Xiao-Guo, Zhang Xin, Shi Ze-Jiao, Zhang Hai-Juan, Zhu Cheng-Jun, Zhan Yi-Qiang. Research progress of interface passivation of n-i-p perovskite solar cells. Acta Physica Sinica, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [14] Fan Wei-Li, Yang Zong-Lin, Zhang Zhen-Yun, Qi Jun-Jie. Preparation and performance of high-efficient hole-transport-material-free carbon based perovskite solar cells. Acta Physica Sinica, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin. Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Acta Physica Sinica, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [16] Xiao Di, Wang Dong-Ming, Li Xun, Li Qiang, Shen Kai, Wang De-Zhao, Wu Ling-Ling, Wang De-Liang. Nickel oxide as back surface field buffer layer in CdTe thin film solar cell. Acta Physica Sinica, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [17] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] Huang Lin-Quan, Zhou Ling-Yu, Yu Wei, Yang Dong, Zhang Jian, Li Can. Recent progress in graphene and its derivatives as interfacial layers in organic solar cells. Acta Physica Sinica, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [19] Ting Hung-Kit, Ni Lu, Ma Sheng-Bo, Ma Ying-Zhuang, Xiao Li-Xin, Chen Zhi-Jian. progress in electron-transport materials in application of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] Song Zhi-Hao, Wang Shi-Rong, Xiao Yin, Li Xiang-Gao. Progress of research on new hole transporting materials used in perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
Metrics
  • Abstract views:  17593
  • PDF Downloads:  752
  • Cited By: 0
Publishing process
  • Received Date:  11 November 2020
  • Accepted Date:  14 December 2020
  • Available Online:  27 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回