-
In order to break through the limit of Shockley-Queisser (SQ) radiation and further improve the efficiency of perovskite solar cells, tin-lead perovskite solar cells have widely and successfully been used as narrow-bandgap bottom cells in all-perovskite tandem solar cells. The highest efficiency of tin-lead perovskite solar cells has recently reached 21.7%, which, however, is still lower than that of lead-based perovskite solar cells. This article analyzes the main factors that limit the further improving of their performances, and summarizes the effective solutions proposed by researchers in recent years. The main points are as follows: 1) by adding tin-rich additives, strong reducing agents or compounds containing large organic cations, Sn2+ oxidation is inhibited and the p-doped degree of tin-lead perovskite and the open-circuit voltage loss are reduced; 2) through regulating the composition, changing the method of preparing the perovskite film, adding functional groups or solvent engineering, the crystallization rate of tin-lead perovskite film is delayed and the crystallization quality of the film is improved; 3) by selecting an appropriate electron transport layer or hole transport layer the influence of energy level mismatch on carrier transport or the instability of carrier transport layer on devices can be avoided. Finally, the future development of Sn-Pb perovskite solar cells is prospected. It is believed that the tin-lead perovskite solar cells can realize not only the high efficiency and stable single-junction solar cells, but also high efficiency perovskite-perovskite tandem solar cells.
-
Keywords:
- tin-lead perovskite /
- oxidation /
- crystal quality /
- energy level mismatch
[1] Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] Best research-cell efficiencies https://www.nrel.gov/pv/cell-efficiency.html.
[3] Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar
[4] Xiao K, Lin R X, Han Q L, Hou Y, Qin Z Y, Nguyen H T, Wen J, Wei M Y, Yeddu V, Saidaminov M I, Gao Y, Luo X, Wang Y R, Gao H, Zhang C F, Xu J, Zhu J, Sargent E H, Tan H R 2020 Nat. Energy 5 870Google Scholar
[5] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T L, Hayase S 2014 J. Phys. Chem. Lett. 5 1004Google Scholar
[6] Im J, Stoumpos C C, Jin H, Freeman A J, Kanatzidis M G 2015 J. Phys. Chem. Lett. 6 3503Google Scholar
[7] Eperon G E, Leijtens T, Bush K A, et al. 2016 Science 354 86Google Scholar
[8] Hao F, Stoumpos C C, Chang R P H, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094Google Scholar
[9] Klug M T, Milot R L, Patel J B, Green T, Sansom H C, Farrar M D, Ramadan A J, Martani S, Wang Z P, Wenger B, Ball J M, Langshaw L, Petrozza A, Johnston M B, Herz L M, Snaith H J 2020 Energy Environ. Sci. 14 112
[10] Gu S, Lin R X, Han Q L, Gao Y, Tan H R, Zhu J 2020 Adv. Mater. 32 1907392
[11] Yao H H, Zhou F G, Li Z Z, Ci Z P, Ding L M, Jin Z W 2020 Adv. Sci. 7 1903540Google Scholar
[12] Zhu Z L, Chueh C C, Li N, Mao C Y, Jen A K Y 2018 Adv. Mater. 30 1703800Google Scholar
[13] Li J M, Cao H L, Jiao W B, Wang Q, Wei M D, Cantone I, Lü J, Abate A 2020 Nat. Commun. 11 310Google Scholar
[14] Tchounwou P B, Yedjou C G, Patlolla A K, Sutton D J 2012 Molecular, Clinical and Environmental Toxicology (Vol. 101) (Jackson: Springer, Basel.) p133
[15] Nishimura K, Kamarudin M A, Hirotani D, Hamada K, Shen Q, Iikubo S, Minemoto T, Yoshino K, Hayase S 2020 Nano Energy 74 104858Google Scholar
[16] Leijtens T, Prasanna R, Parker A G, Toney M F, McGehee M D 2017 ACS Energy Lett. 2 2159Google Scholar
[17] Yan Y J, Pullerits T, Zheng K B, Liang Z Q 2020 ACS Energy Lett. 5 2052Google Scholar
[18] Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar
[19] Ricciarelli D, Meggiolaro D, Ambrosio F, Angelis F D 2020 ACS Energy Lett. 5 2787Google Scholar
[20] Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579Google Scholar
[21] Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G 2016 J. Am. Chem. Soc 138 14750Google Scholar
[22] Yang Z B, Rajagopal A, Jen A K Y 2017 Adv. Mater. 29 1704418Google Scholar
[23] Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herza L M, Snaith H J 2014 Energy Environ. Sci. 7 3061Google Scholar
[24] Wang J K, Datta K, Li J Y, Verheijen M A, Zhang D, Wienk M M, Janssen R A J 2020 Adv. Energy Mater. 10 2000566Google Scholar
[25] Hao F, Stoumpos C C, Guo P J, Zhou N J, Marks T J, Chang R P H, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445Google Scholar
[26] Liao W Q, Zhao D W, Yu Y, Shrestha N, Ghimire K, Grice C R, Wang C L, Xiao Y Q, Cimaroli A J, Ellingson R J, Podraza N J, Zhu K, Xiong R G, Yan Y F 2016 J. Am. Chem. Soc. 138 12360Google Scholar
[27] Chi D, Huang S H, Zhang M Y, Mu S Q, Zhao Y, Chen Y, You J B 2018 Adv. Funct. Mater. 28 1804603Google Scholar
[28] Wang C L, Song Z N, Li C W, Zhao D W, Yan Y F 2019 Adv. Funct. Mater. 29 1808801Google Scholar
[29] Tavakoli M M, Zakeeruddin S M, Grätzel M, Fan Z Y 2018 Adv. Mater. 30 1705998Google Scholar
[30] Zhao D W, Chen C, Wang C L, Junda M M, Song Z N, Grice C R, Yu Y, Li C W, Subedi B, Podraza N J, Zhao X Z, Fang G J, Xiong R G, Zhu K, Yan Y F 2018 Nat. Energy 3 1093Google Scholar
[31] Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122Google Scholar
[32] Xiao M, Gu S, Zhu P C, Tang M Y, Zhu W D, Lin R X, Chen C L, Xu W C, Yu T, Zhu J 2018 Adv. Opt. Mater. 6 1700615Google Scholar
[33] Gupta S, Cahen D, Hodes G 2018 J. Phys. Chem. C 122 13926Google Scholar
[34] Liao W Q, Zhao D W, Yu Y, Grice C R, Wang C L, Cimaroli A J, Schulz P, Meng W W, Zhu K, Xiong R G, Yan Y F 2016 Adv. Mater. 28 9333Google Scholar
[35] Lee S J, Shin S S, Kim Y C, Kim D, Ahn T K, Noh J H, Seo J, and Seok S I 2016 J. Am. Chem. Soc. 138 3974Google Scholar
[36] Zong Y X, Zhou Z M, Chen M, Padture N P. Zhou Y Y 2018 Adv. Energy Mater. 8 1800997Google Scholar
[37] Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G 2012 Nature 485 486Google Scholar
[38] Xu X B, Chueh C C, Yang Z B, Rajagopal A, Xu J Q, Jo S B, Jen A K Y 2017 Nano Energy 34 392Google Scholar
[39] Zhu Z L, Li N, Zhao D B, Wang L D, Jen A K Y 2019 Adv. Energy Mater. 9 1802774Google Scholar
[40] Saidaminov M I, Spanopoulos I, Abed J, Ke W J, Wicks J, Kanatzidis M G, and Sargent E H 2020 ACS Energy Lett. 5 1153Google Scholar
[41] Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar
[42] Wei M Y, Xiao K, Walters G, Lin R X, Zhao Y B, Saidaminov M I, Todorović P, Johnston A, Huang Z R, Chen H J, Li A D, Zhu J, Yang Z Y, Wang Y K, Proppe A H, Kelley S O, Hou Y, Voznyy O, Tan H R, Sargent E H 2020 Adv. Mater. 32 1907058Google Scholar
[43] Ramirez D, Schutt K, Wang Z P, Pearson A J, Ruggeri E, Snaith H J, Stranks S D, Jaramillo F 2018 ACS Energy Lett. 3 2246Google Scholar
[44] Li C H, Pan Y M, Hu J L, Qiu S D, Zhang C L, Yang Y Z, Chen S, Liu X H, Brabec C J, Nazeeruddin M K, Mai Y H, Guo F 2020 ACS Energy Lett. 5 1386Google Scholar
[45] Yang D W, Lv J, Zhao X G, Xu Q L, Fu Y H, Zhan Y Q, Zunger A, Zhang L J 2017 Chem. Mater. 29 524Google Scholar
[46] Green M A, Baillie A H, Snaith H J 2014 Nat. Photon. 8 506Google Scholar
[47] Bartel C J, Sutton C, Goldsmith B R, Ouyang R H, Musgrave C B, Ghiringhelli L M, Scheffler M 2019 Sci. Adv. 5 eaav0693Google Scholar
[48] Shi T T, Zhang H S, Meng W W, Teng Q, Liu M Y, Yang X B, Yan Y F, Yip H L, Zhao Y J 2017 J. Mater. Chem. A 5 15124Google Scholar
[49] Yang Z B, Rajagopal A, Chueh C C, Jo S B, Liu B, Zhao T, Jen A K Y 2016 Adv. Mater. 28 8990Google Scholar
[50] Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310Google Scholar
[51] Prasanna R, Leijtens T, Dunfield S P, Raiford J A, Wolf E J, Swifter S A, Werner J, Eperon G E, Paula C d, Palmstrom A F, Boyd C C, Hest M F A M, Bent S F, Teeter G, Berry J J, McGehee M D 2019 Nat. Energy 4 939Google Scholar
[52] Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar
[53] Li C W, Song Z N, Zhao D W, Xiao C X, Subedi B, Shrestha N, Junda M M, Wang C L, Jiang C S, Jassim M A, Ellingson R J, Podraza N J, Zhu K, Yan Y F 2018 Adv. Energy Mater. 9 1803135
[54] Lian X M, Chen J H, Zhang Y Z, Qin M C, Li J, Tian S X, Yang W T, Lu X H, Wu G, Chen H Z 2019 Adv. Funct. Mater. 29 1807024Google Scholar
[55] Tong J H, Song Z N, Kim D H, Chen X H, Chen C, Palmstrom A F, Ndione P F, Reese M O, Dunfield S P, Reid O G, Liu J, Zhang F, Harvey S P, Li Z, Christensen S T, Teeter G, Zhao D W, Jassim M M A, Hest M F A M, Beard M C, Shaheen S E, Berry J J, Yan Y F, Zhu K 2019 Science 364 475Google Scholar
[56] Zhu H L, Xiao J Y, Mao J, Zhang H, Zhao Y, Choy W C H 2017 Adv. Funct. Mater. 27 1605469Google Scholar
[57] Konstantakou M, Stergiopoulos T 2017 J. Mater. Chem. A 5 11518Google Scholar
[58] Ke W J, Stoumpos C C, Kanatzidis M G 2018 Adv. Mater. 31 1803230Google Scholar
[59] Zhu L Z, Yuh B, Schoen S, Li X P, Aldighaithir M, Richardson B J, Alamera A, Yu Q M 2016 Nanoscale 8 7621Google Scholar
[60] Liu M Y, Chen Z M, Xue Q F, Cheung S H, So S K, Yip H L, Cao Y 2018 J. Mater. Chem. A 6 16347Google Scholar
[61] Nejand B A, Hossain I M, Jakoby M, Moghadamzadeh S, Abzieher T, Gharibzadeh S, Schwenzer J A, Nazari P, Schackmar F, Hauschild D, Weinhardt L, Lemmer U, Richards B S, Howard I A, Paetzold U W 2019 Adv. Energy Mater. 10 1902580Google Scholar
[62] Ball J M, Buizza L, Sansom H C, Farrar M D, Klug M T, Borchert J, Patel J, Herz L M, Johnston M B, Snaith H J 2019 ACS Energy Lett. 4 2748Google Scholar
[63] Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q, Han L Y 2014 Energy Environ. Sci. 7 2934Google Scholar
[64] Liu C, Fan J D, Li H L, Zhang C L, Mai Y H 2016 Sci. Rep. 6 35705Google Scholar
[65] Liu C, Li W Z, Li H L, Zhang C L, Fan J D, Mai Y H 2017 Nanoscale 9 13967Google Scholar
[66] Zhou X Y, Zhang L Z, Wang X Z, Liu C, Chen S, Zhang M Q, Li X N, Yi W D, Xu B M 2020 Adv. Mater. 32 1908107Google Scholar
[67] Hu M Y, Chen M, Guo P J, Zhou H, Deng J J, Yao Y D, Jiang Y, Gong J, Dai Z H, Zhou Y X, Qian F, Chong X Y, Feng J, Schaller R D, Zhu K, Padture N P, Zhou Y Y 2020 Nat. Commun. 11 151Google Scholar
[68] Yang Z B, Yu Z H, Wei H T, Xiao X, Ni Z Y, Chen B, Deng Y H, Habisreutinger S N., Chen X H, Wang K, Zhao J J, Rudd P N, Berry J J, Beard M C, Huang J S 2019 Nat. Commun. 10 4498Google Scholar
[69] Kapil G, Ripolles T S., Hamada K, Ogomi Y, Bessho T, Kinoshita T, Chantana J, Yoshino K, Shen Q, Toyoda T, Minemoto T, Murakami T N, Segawa H, Hayase S 2018 Nano Lett. 18 3600Google Scholar
[70] Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M 2001 Sol. Energy Mater. Sol. Cells 67 83Google Scholar
[71] Zhou X Y, Hua M M, Liu C, Zhang L Z, Zhong X W, Li X N, Tian Y Q, Cheng C, Xu B M 2019 Nano Energy 63 103866Google Scholar
[72] Liu J W, Ozaki M, Yakumaru S, Handa T, Nishikubo R, Kanemitsu Y, Saeki A, Murata Y, Murdey R, Wakamiya A 2018 Angew. Chem 130 13405Google Scholar
[73] Li C W, Song Z N, Zhao D W, Xiao C X, Subedi B, Shrestha N, Junda M M, Wang C L, Jiang C S, Jassim M A, Ellingson R J, Podraza N J, Zhu K, Yan Y F 2019 Adv. Energy Mater. 9 1803135Google Scholar
[74] Jiang T M, Chen Z, Chen X, Liu T Y, Chen X Y, Sha W E I, Zhu H M, Yang Y 2020 Sol. RRL 4 1900467Google Scholar
[75] Yang Z B, Zhang X H, Yang W Y, Eperon G E, Ginger D S 2020 Chem. Mater. 32 2782Google Scholar
[76] Zhu Z L, Bai Y, Zhang T, Liu Z K, Long X, Wei Z H, Wang Z L, Zhang L X, Wang J N, Yan F, Yang S H 2014 Angew. Chem 53 12571
[77] Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107Google Scholar
[78] Garcia A, Welch G C, Ratcliff E L, Ginley D S, Bazan G C, Olson D C 2012 Adv. Mater. 24 5368Google Scholar
[79] Manders J R, Tsang S W, Hartel M J, Lai T H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar
[80] Yu Z H, Yang Z B, Ni Z Y, Shao Y C, Chen B, Lin Y Z, Wei H T, Yu Z S J, Holman Z, Huang J S 2020 Nat. Energy 5 657Google Scholar
[81] Tang H Y, Shang Y Q, Zhou W J, Peng Z J, Ning Z J 2019 Sol. RRL 3 1800256Google Scholar
[82] Xu G Y, Bi P Q, Wang S H, Xue R M, Zhang J W, Chen H Y, Chen W J, Hao X T, Li Y W, Li Y F 2018 Adv. Funct. Mater. 28 1804427Google Scholar
[83] Ni Z Y, Bao C X, Liu Y, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar
[84] Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112Google Scholar
-
图 2 钙钛矿材料的能带结构随着金属比例的变化而调整 (a) Ogomi等[5]表征CH3NH3Sn1–xPbxI3能带结构随金属比例的变化; (b) Eperon等[7]通过Tauc plot、PL及第一性原理计算FASnxPb1–xI3带隙随金属比例的变化趋势; (c) Hao等[8]通过紫外吸收光谱表征CH3NH3Sn1–xPbxI3的带隙变化
Figure 2. The energy band of Sn-Pb perovskite changed with the metal ratios: (a) Ogomi et al.[5] characterized the CH3NH3Sn1–xPbxI3 energy band structure changed with the metal ratio; (b) Eperon et al.[7] used the Tauc plot, PL and first-principles calculations to obtain the variable trend of HC(NH2)2SnxPb1–xI3(FASnxPb1–xI3) band gap with metal proportions; (c) Hao et al.[8] characterized the band gap changes of CH3NH3Sn1–xPbxI3 by electronic absorption spectra.
图 4 (a)不同SnF2添加量的钙钛矿薄膜扫描电子显微镜(scanning electron microscope, SEM)扫描图[34]; (b) Zhu等[39]利用伽伐尼置换反应(GDR)制备MAPbxSn1–xI3钙钛矿溶液的照片和示意图以及薄膜老化过程机制示意图; (c)由于前驱体溶液中存在Sn4+而在Sn-Pb钙钛矿中形成锡空位的示意图[18]; (d) Wei等[42]利用PEAI实现Sn-Pb钙钛矿表面钝化或膜内钝化的处理方法示意图; (e) Ramirez等[43]引入叔丁胺离子n = 4和n = 5的Sn-Pb钙钛矿晶格示意图; (f) Li等[44]引入4-氟苯乙基碘化铵(FPEAI)使(MAPbI3)0.75(FASnI3)0.25晶粒高度垂直排列的示意图及未使用与使用(FPEAI)的器件J-V曲线
Figure 4. (a) SEM images of perovskite films with different SnF2 additions[34]; (b) photos and schematic diagrams of preparing MAPbxSn1–xI3 precursor solution using GDR and the schematic diagram of film aging process[39]; (c) the schematic diagram of tin vacancies formation in Sn-Pb perovskite due to the presence of Sn4+ in the precursor solution[18]; (d) Wei et al. [42]used PEAI to achieve surface passivation or in-film passivation of Sn-Pb perovskit; (e) the schematic diagram of Sn-Pb perovskite lattice with n = 4 and n = 5 introduced by Ramirez et al.[43]; (f) Li et al.[44]introduced FPEAI to vertically arrange the (MAPbI3)0.75(FASnI3)0.25 grain height and the J-V curve of unused and used FPEAI devices.
图 5 (a) AMX3型钙钛矿材料常用元素组分及不同组分的材料性质[45]; (b) FA+掺入对MA1–yFAyPb0.75Sn0.25I3钙钛矿器件稳定性的影响[49]; (c)由计算和实验所得的MASn1–xPbxI3带隙随x的变化[6]; (d)不同Sn-Pb比例的FA0.66MA0.34Pb1–xSnxI3钙钛矿的XRD图谱[24]; (e) Br含量分别为0, 6%和16%的Sn-Pb钙钛矿太阳电池的暗态J-V曲线[53]; (f)未掺入Cl和掺入2.5% Cl对钙钛矿薄膜的SEM扫描图[30]; (g)掺入不同比例(0, 15%, 25%, 40%)MASCN对薄膜钙钛矿薄膜的SEM顶部扫描图及横截面扫描图[54]
Figure 5. (a) The commonly used element compositions and their properties of AMX3[45]; (b) FA+-doping effects to the stability of MA1–yFAyPb0.75Sn0.25I3 perovskite devices[49]; (c) the band gap variation with x changes of MASn1–xPbxI3 obtained from calculations and experiments[6]; (d) XRD patterns of FA0.66MA0.34Pb1–xSnxI3 perovskites with different Sn-Pb ratios[24]; (e) dark J-V curves of Sn-Pb perovskite solar cells with Br concentrations of 0, 6% and 16% respectively[53]; (f) SEM images of perovskite films without Cl and with 2.5% Cl[30]; (g) the top and cross-section SEM images of perovskite films mixed with 0, 15%, 25%, 40% of MASCN[54].
图 6 (a)两步顺序沉积结合DMSO溶剂蒸气处理的方式制备MASn0.1Pb0.9I3的过程示意图[59]; (b)两步顺序沉积FA0.66MA0.34Pb0.5Sn0.5I3的过程示意及原位吸收光谱图[24]
Figure 6. (a) The schematic diagram of the two-step sequential depositions combined with DMSO solvent vapor treatment method to prepare MASn0.1Pb0.9I3 perovskite films[59]; (b) the schematic diagram of the two-step sequential deposition process of FA0.66MA0.34Pb0.5Sn0.5I3 and in-situ absorption spectra[24].
图 7 (a)真空辅助热退火结合一步溶液法制备的器件结构及原理示意图[60]; (b)使用/不使用真空辅助热退火所制备的薄膜形貌顶部SEM图[60]; (c)真空辅助生长(VAGC)方法的原理示意图及横截面SEM图像[61]; (d)双源共蒸法制备FA1–xCsxSn1–yPbyI3钙钛矿薄膜过程示意图及晶体结构示意图[62]
Figure 7. (a) Device architecture and schematic diagram that combined the vacuum-assisted thermal annealing process and one-step solution method[60]; (b) the top SEM images of the film prepared with/without vacuum-assisted thermal annealing[60]; (c) the schematic diagram and cross-section SEM image of the film prepared by VAGC method[61]; (d) the schematic diagram and crystal structure of FA1–xCsxSn1–yPbyI3 perovskite films prepared by dual-source co-evaporation method[62].
图 8 (a)不同DMSO/DMF溶剂比的Sn-Pb钙钛矿反应机理示意图[56]; (b) MAPb1–xSnxI3 (0 ≤ x ≤ 1)薄膜的形成机理以及相应的晶体结构示意图[64]; (c)在不同偏置电压下未掺杂及掺杂C60的MAPb0.75Sn0.25I3钙钛矿器件的本体复合寿命和表面复合寿命[65]
Figure 8. (a) The mechanism diagram of Sn-Pb perovskite reactions with different DMSO/DMF solvent ratio[56]; (b) the formation mechanisms of MAPb1–xSnxI3 (0 ≤ x ≤ 1) film and corresponding crystal structures[64]; (c) bulk recombination life and surface recombination life of MAPb0.75Sn0.25I3 perovskite devices with or without C60-doped under different amplitude voltages[65].
图 9 (a)含GABr的FA0.7MA0.3Pb0.7Sn0.3I3表面的电荷密度分布图(等电势为0.03 eÅ–3)以及未添加与添加12%的GABr的钙钛矿SEM扫描图[66]; (b)添加CdI2的1.22 eV窄带隙钙钛矿与1.80 eV宽带隙钙钛矿叠层太阳电池的结构示意图和SEM横截面扫描图[68]; (c) (4AMP)2+, 哌嗪离子和PEA+阳离子的结构式及用(4AMP)I2, 碘化哌嗪和PEAI表面处理的CsPb0.6Sn0.4I3钙钛矿太阳电池的J-V曲线[67]
Figure 9. (a) The charge density distribution on the FA0.7MA0.3Pb0.7Sn0.3I3 surface containing GABr (the isopotential is 0.03 eÅ–3) and the SEM images of the perovskite without and with 12% GABr[66]; (b) structure diagram and cross-section SEM inage of 1.22 eV narrow-bandgap perovskite with CdI2 added and 1.80 eV wide-bandgap perovskite tandem solar cell[68]; (c) structure of(4AMP)2+, piperazine ion and PEA+ and J-V curves of CsPb0.6Sn0.4I3 perovskite solar cell that absorber film surface treated with (4AMP)I2, piperazine iodide and PEAI, respectively[67].
图 10 (a) Kapil等[69]对比传统无PCBM层和带PCBM层的电荷提取和复合过程示意图, τr表示从FAMA到C60的载流子注入时间; (b)添加DF-C60形成的梯度异质结(GHJ)结构示意图[72]; (c)在NiOx及PEDOT:PSS上沉积钙钛矿膜的SEM顶部扫描图及截面扫描图[27]; (d)使用BHJ PBDB-T:ITIC中间层形成的逐步升高的HOMO能级结构示意图[82]; (e) S-乙酰硫代胆碱氯化物分子锚定在缺陷部位的示意图, 其中红色、黄色和蓝色符号分别代表S-乙酰硫代胆碱氯化物分子中的O原子、S原子和N原子[71]
Figure 10. (a) The diagram of Kapil et al[69]. compared the traditional charge extraction and recombination process without and with PCBM, τr represents the carrier injection time from FAMA to C60; (b) the schematic diagram of the gradient heterojunction (GHJ) with DF-C60[72]; (c) the top and cross-section SEM images of the perovskite films deposited on NiOx and PEDOT:PSS[27]; (d) the schematic diagram of the gradually increasing HOMO energy level structure formed by BHJ PBDB-T:ITIC intermediate layer[82]; (e) the schematic diagram of the S-acetylthiocholine chloride molecule anchored at the defect sites, where the red, yellow and blue symbols represent the O atom, S atom and N atom in the acetylthiocholine chloride molecule, respectively[71].
表 A1 P-I-N型Sn-Pb钙钛矿太阳电池性能统计
Table A1. Statistics of P-I-N type tin-lead perovskite solar cells performance
Year Perovskite Device structure Eg/eV VOC/V JSC/(mA·cm–2) FF/% PCE/(%) Ref. 2016 MA0.5FA0.5Pb0.75Sn0.25I3 ITO/PEDOT:PSS/PVK/PCBM/Bis-C60/Ag 1.33 0.78 23.03 79 14.19 [49] 2016 (FASnI3)0.6(MAPbI3)0.4 ITO/PEDOT:PSS/PVK/C60/BCP/Ag 1.25 0.795 26.86 70.6 15.08 [26] 2017 MA0.5FA0.5Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK/PCBM/Bis-C60/Ag 1.2 0.78 25.69 70 14.01 [38] 2017 MAPb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK-DF-C60/ICBA/Bis-C60/Ag 1.22 0.87 26.1 69 15.61 [72] 2018 (t-BUA)2(FA0.85Cs0.15)n–1 Pb0.6Sn0.4)nI3n+1 ITO/PEDOT:PSS/2 D-PVK/PCBM/BCP/Ag 1.24 0.70 24.2 63 10.6 [43] 2018 FA0.6MA0.4Sn0.6Pb0.4I3 ITO/PFI-(PEDOT:PSS)/PVK/PCBM/BCP/Ag 1.22 0.784 27.22 74.36 15.85 [81] 2018 (FAPbI3)0.7(CsSnI3)0.3 ITO/PEDOT:PSS/PVK/C60/BCP/Al 1.3 0.74 25.89 81.4 15.6 [36] 2018 (FASnI3)0.6(MAPbI3)0.34(MAPbBr3)0.06 ITO/PEDOT:PSS/PVK/C60/BCP/Ag 1.272 0.888 28.72 74.6 19.03 [53] 2018 (FASnI3)0.6(MAPbI3)0.4 ITO/PEDOT:PSS/PVK/C60/BCP/Ag 1.25 0.841 29.0 74.4 18.1 [30] 2018 FAPb0.7Sn0.3I3 ITO/PEDOT:PSS/PVK/PEAI/PC61BM/BCP/Ag 1.34 0.78 26.46 79 16.26 [54] 2018 FAPb0.75Sn0.25I3 ITO/NiOX/PVK/PC60BM/BCP/Ag 1.36 0.81 28.23 75.4 17.25 [27] 2018 (FASnI3)0.6(MAPbI3)0.4 ITO/PEDOT:PSS/PBDBT:ITIC/PVK/C60/BCP/Ag 1.25 0.86 27.92 75.1 18.03 [82] 2019 FA0.8MA0.2Sn0.5Pb0.5I3 ITO/PEDOT:PSS/PVK/PCBM/BCP/Ag 1.27 0.81 30 75 18.2 [61] 2019 (FAPb0.6Sn0.4I3)0.85(MAPb0.6Sn0.4Br3)0.15 ITO/PEDOT:PSS/PVK/PCBM/BisC60/Ag 1.28 0.87 26.45 79.1 18.21 [39] 2019 FA0.7MA0.3Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK/PC60BM/BCP/Cu 1.22 0.831 31.4 80.8 21.1 [18] 2019 Cs0.1MA0.2FA0.7Pb0.5Sn0.5I3 ITO/NiOX/PVK/C60/BCP/Cu 1.2 0.771 31.1 73.3 17.6 [52] 2019 FA0.75Cs0.25Sn0.4Pb0.6I3 ITO/PVK/C60/BCP/Ag 1.25 0.72 32.59 69.8 16.4 [51] 2019 (FASnI3)0.6(MAPbI3)0.4 ITO/PEDOT:PSS/PVK/C60/BCP/Ag 1.25 0.834 30.4 80.8 20.5 [55] 2019 Cs0.1MA0.2FA0.7Sn0.5Pb0.5I3 ITO/NiOX/PVK/C60/BCP/Cu 1.2 0.771 31.1 73.3 17.6 [52] 2020 (MAPbI3)0.75(FASnI3)0.25 ITO/PEDOT:PSS/PVK/BCP/Ag 1.33 0.79 28.42 78 17.51 [44] 2020 Cs0.1MA0.2FA0.7Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK/PCBM/PEIE/Ag 1.25 0.81 30.3 78.9 19.4 [42] 2020 FA0.83Cs0.17Pb0.7Sn0.3I3 ITO/PEDOT:PSS/PVK/PCBM/BCP/Ag 1.3 0.82 30.3 78.4 18.1 [9] 2020 FA0.7MA0.3Pb0.7Sn0.3I3 ITO/PEDOT:PSS(EMIC)/PVK/S-acetylthiocholine chlorde/C60/BCP/Ag 1.35 1.02 26.61 76 20.63 [66] 2020 FA0.66MA0.34Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK/C60/BCP/Ag 1.23 0.78 27.8 73 15.8 [54] 2020 FA0.5MA0.45Cs0.05Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PTAA/Cd-PVK/C60/BCP/Cu 1.22 0.85 30.2 79 20.3 [68] 2020 FA0.7MA0.3Pb0.5Sn0.5I3 ITO/PEDOT:PSS/PVK/C60/BCP/Cu 1.24 0.85 31.6 80.8 21.7 [4] -
[1] Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] Best research-cell efficiencies https://www.nrel.gov/pv/cell-efficiency.html.
[3] Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar
[4] Xiao K, Lin R X, Han Q L, Hou Y, Qin Z Y, Nguyen H T, Wen J, Wei M Y, Yeddu V, Saidaminov M I, Gao Y, Luo X, Wang Y R, Gao H, Zhang C F, Xu J, Zhu J, Sargent E H, Tan H R 2020 Nat. Energy 5 870Google Scholar
[5] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T L, Hayase S 2014 J. Phys. Chem. Lett. 5 1004Google Scholar
[6] Im J, Stoumpos C C, Jin H, Freeman A J, Kanatzidis M G 2015 J. Phys. Chem. Lett. 6 3503Google Scholar
[7] Eperon G E, Leijtens T, Bush K A, et al. 2016 Science 354 86Google Scholar
[8] Hao F, Stoumpos C C, Chang R P H, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094Google Scholar
[9] Klug M T, Milot R L, Patel J B, Green T, Sansom H C, Farrar M D, Ramadan A J, Martani S, Wang Z P, Wenger B, Ball J M, Langshaw L, Petrozza A, Johnston M B, Herz L M, Snaith H J 2020 Energy Environ. Sci. 14 112
[10] Gu S, Lin R X, Han Q L, Gao Y, Tan H R, Zhu J 2020 Adv. Mater. 32 1907392
[11] Yao H H, Zhou F G, Li Z Z, Ci Z P, Ding L M, Jin Z W 2020 Adv. Sci. 7 1903540Google Scholar
[12] Zhu Z L, Chueh C C, Li N, Mao C Y, Jen A K Y 2018 Adv. Mater. 30 1703800Google Scholar
[13] Li J M, Cao H L, Jiao W B, Wang Q, Wei M D, Cantone I, Lü J, Abate A 2020 Nat. Commun. 11 310Google Scholar
[14] Tchounwou P B, Yedjou C G, Patlolla A K, Sutton D J 2012 Molecular, Clinical and Environmental Toxicology (Vol. 101) (Jackson: Springer, Basel.) p133
[15] Nishimura K, Kamarudin M A, Hirotani D, Hamada K, Shen Q, Iikubo S, Minemoto T, Yoshino K, Hayase S 2020 Nano Energy 74 104858Google Scholar
[16] Leijtens T, Prasanna R, Parker A G, Toney M F, McGehee M D 2017 ACS Energy Lett. 2 2159Google Scholar
[17] Yan Y J, Pullerits T, Zheng K B, Liang Z Q 2020 ACS Energy Lett. 5 2052Google Scholar
[18] Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar
[19] Ricciarelli D, Meggiolaro D, Ambrosio F, Angelis F D 2020 ACS Energy Lett. 5 2787Google Scholar
[20] Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579Google Scholar
[21] Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G 2016 J. Am. Chem. Soc 138 14750Google Scholar
[22] Yang Z B, Rajagopal A, Jen A K Y 2017 Adv. Mater. 29 1704418Google Scholar
[23] Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herza L M, Snaith H J 2014 Energy Environ. Sci. 7 3061Google Scholar
[24] Wang J K, Datta K, Li J Y, Verheijen M A, Zhang D, Wienk M M, Janssen R A J 2020 Adv. Energy Mater. 10 2000566Google Scholar
[25] Hao F, Stoumpos C C, Guo P J, Zhou N J, Marks T J, Chang R P H, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445Google Scholar
[26] Liao W Q, Zhao D W, Yu Y, Shrestha N, Ghimire K, Grice C R, Wang C L, Xiao Y Q, Cimaroli A J, Ellingson R J, Podraza N J, Zhu K, Xiong R G, Yan Y F 2016 J. Am. Chem. Soc. 138 12360Google Scholar
[27] Chi D, Huang S H, Zhang M Y, Mu S Q, Zhao Y, Chen Y, You J B 2018 Adv. Funct. Mater. 28 1804603Google Scholar
[28] Wang C L, Song Z N, Li C W, Zhao D W, Yan Y F 2019 Adv. Funct. Mater. 29 1808801Google Scholar
[29] Tavakoli M M, Zakeeruddin S M, Grätzel M, Fan Z Y 2018 Adv. Mater. 30 1705998Google Scholar
[30] Zhao D W, Chen C, Wang C L, Junda M M, Song Z N, Grice C R, Yu Y, Li C W, Subedi B, Podraza N J, Zhao X Z, Fang G J, Xiong R G, Zhu K, Yan Y F 2018 Nat. Energy 3 1093Google Scholar
[31] Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122Google Scholar
[32] Xiao M, Gu S, Zhu P C, Tang M Y, Zhu W D, Lin R X, Chen C L, Xu W C, Yu T, Zhu J 2018 Adv. Opt. Mater. 6 1700615Google Scholar
[33] Gupta S, Cahen D, Hodes G 2018 J. Phys. Chem. C 122 13926Google Scholar
[34] Liao W Q, Zhao D W, Yu Y, Grice C R, Wang C L, Cimaroli A J, Schulz P, Meng W W, Zhu K, Xiong R G, Yan Y F 2016 Adv. Mater. 28 9333Google Scholar
[35] Lee S J, Shin S S, Kim Y C, Kim D, Ahn T K, Noh J H, Seo J, and Seok S I 2016 J. Am. Chem. Soc. 138 3974Google Scholar
[36] Zong Y X, Zhou Z M, Chen M, Padture N P. Zhou Y Y 2018 Adv. Energy Mater. 8 1800997Google Scholar
[37] Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G 2012 Nature 485 486Google Scholar
[38] Xu X B, Chueh C C, Yang Z B, Rajagopal A, Xu J Q, Jo S B, Jen A K Y 2017 Nano Energy 34 392Google Scholar
[39] Zhu Z L, Li N, Zhao D B, Wang L D, Jen A K Y 2019 Adv. Energy Mater. 9 1802774Google Scholar
[40] Saidaminov M I, Spanopoulos I, Abed J, Ke W J, Wicks J, Kanatzidis M G, and Sargent E H 2020 ACS Energy Lett. 5 1153Google Scholar
[41] Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar
[42] Wei M Y, Xiao K, Walters G, Lin R X, Zhao Y B, Saidaminov M I, Todorović P, Johnston A, Huang Z R, Chen H J, Li A D, Zhu J, Yang Z Y, Wang Y K, Proppe A H, Kelley S O, Hou Y, Voznyy O, Tan H R, Sargent E H 2020 Adv. Mater. 32 1907058Google Scholar
[43] Ramirez D, Schutt K, Wang Z P, Pearson A J, Ruggeri E, Snaith H J, Stranks S D, Jaramillo F 2018 ACS Energy Lett. 3 2246Google Scholar
[44] Li C H, Pan Y M, Hu J L, Qiu S D, Zhang C L, Yang Y Z, Chen S, Liu X H, Brabec C J, Nazeeruddin M K, Mai Y H, Guo F 2020 ACS Energy Lett. 5 1386Google Scholar
[45] Yang D W, Lv J, Zhao X G, Xu Q L, Fu Y H, Zhan Y Q, Zunger A, Zhang L J 2017 Chem. Mater. 29 524Google Scholar
[46] Green M A, Baillie A H, Snaith H J 2014 Nat. Photon. 8 506Google Scholar
[47] Bartel C J, Sutton C, Goldsmith B R, Ouyang R H, Musgrave C B, Ghiringhelli L M, Scheffler M 2019 Sci. Adv. 5 eaav0693Google Scholar
[48] Shi T T, Zhang H S, Meng W W, Teng Q, Liu M Y, Yang X B, Yan Y F, Yip H L, Zhao Y J 2017 J. Mater. Chem. A 5 15124Google Scholar
[49] Yang Z B, Rajagopal A, Chueh C C, Jo S B, Liu B, Zhao T, Jen A K Y 2016 Adv. Mater. 28 8990Google Scholar
[50] Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310Google Scholar
[51] Prasanna R, Leijtens T, Dunfield S P, Raiford J A, Wolf E J, Swifter S A, Werner J, Eperon G E, Paula C d, Palmstrom A F, Boyd C C, Hest M F A M, Bent S F, Teeter G, Berry J J, McGehee M D 2019 Nat. Energy 4 939Google Scholar
[52] Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar
[53] Li C W, Song Z N, Zhao D W, Xiao C X, Subedi B, Shrestha N, Junda M M, Wang C L, Jiang C S, Jassim M A, Ellingson R J, Podraza N J, Zhu K, Yan Y F 2018 Adv. Energy Mater. 9 1803135
[54] Lian X M, Chen J H, Zhang Y Z, Qin M C, Li J, Tian S X, Yang W T, Lu X H, Wu G, Chen H Z 2019 Adv. Funct. Mater. 29 1807024Google Scholar
[55] Tong J H, Song Z N, Kim D H, Chen X H, Chen C, Palmstrom A F, Ndione P F, Reese M O, Dunfield S P, Reid O G, Liu J, Zhang F, Harvey S P, Li Z, Christensen S T, Teeter G, Zhao D W, Jassim M M A, Hest M F A M, Beard M C, Shaheen S E, Berry J J, Yan Y F, Zhu K 2019 Science 364 475Google Scholar
[56] Zhu H L, Xiao J Y, Mao J, Zhang H, Zhao Y, Choy W C H 2017 Adv. Funct. Mater. 27 1605469Google Scholar
[57] Konstantakou M, Stergiopoulos T 2017 J. Mater. Chem. A 5 11518Google Scholar
[58] Ke W J, Stoumpos C C, Kanatzidis M G 2018 Adv. Mater. 31 1803230Google Scholar
[59] Zhu L Z, Yuh B, Schoen S, Li X P, Aldighaithir M, Richardson B J, Alamera A, Yu Q M 2016 Nanoscale 8 7621Google Scholar
[60] Liu M Y, Chen Z M, Xue Q F, Cheung S H, So S K, Yip H L, Cao Y 2018 J. Mater. Chem. A 6 16347Google Scholar
[61] Nejand B A, Hossain I M, Jakoby M, Moghadamzadeh S, Abzieher T, Gharibzadeh S, Schwenzer J A, Nazari P, Schackmar F, Hauschild D, Weinhardt L, Lemmer U, Richards B S, Howard I A, Paetzold U W 2019 Adv. Energy Mater. 10 1902580Google Scholar
[62] Ball J M, Buizza L, Sansom H C, Farrar M D, Klug M T, Borchert J, Patel J, Herz L M, Johnston M B, Snaith H J 2019 ACS Energy Lett. 4 2748Google Scholar
[63] Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q, Han L Y 2014 Energy Environ. Sci. 7 2934Google Scholar
[64] Liu C, Fan J D, Li H L, Zhang C L, Mai Y H 2016 Sci. Rep. 6 35705Google Scholar
[65] Liu C, Li W Z, Li H L, Zhang C L, Fan J D, Mai Y H 2017 Nanoscale 9 13967Google Scholar
[66] Zhou X Y, Zhang L Z, Wang X Z, Liu C, Chen S, Zhang M Q, Li X N, Yi W D, Xu B M 2020 Adv. Mater. 32 1908107Google Scholar
[67] Hu M Y, Chen M, Guo P J, Zhou H, Deng J J, Yao Y D, Jiang Y, Gong J, Dai Z H, Zhou Y X, Qian F, Chong X Y, Feng J, Schaller R D, Zhu K, Padture N P, Zhou Y Y 2020 Nat. Commun. 11 151Google Scholar
[68] Yang Z B, Yu Z H, Wei H T, Xiao X, Ni Z Y, Chen B, Deng Y H, Habisreutinger S N., Chen X H, Wang K, Zhao J J, Rudd P N, Berry J J, Beard M C, Huang J S 2019 Nat. Commun. 10 4498Google Scholar
[69] Kapil G, Ripolles T S., Hamada K, Ogomi Y, Bessho T, Kinoshita T, Chantana J, Yoshino K, Shen Q, Toyoda T, Minemoto T, Murakami T N, Segawa H, Hayase S 2018 Nano Lett. 18 3600Google Scholar
[70] Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M 2001 Sol. Energy Mater. Sol. Cells 67 83Google Scholar
[71] Zhou X Y, Hua M M, Liu C, Zhang L Z, Zhong X W, Li X N, Tian Y Q, Cheng C, Xu B M 2019 Nano Energy 63 103866Google Scholar
[72] Liu J W, Ozaki M, Yakumaru S, Handa T, Nishikubo R, Kanemitsu Y, Saeki A, Murata Y, Murdey R, Wakamiya A 2018 Angew. Chem 130 13405Google Scholar
[73] Li C W, Song Z N, Zhao D W, Xiao C X, Subedi B, Shrestha N, Junda M M, Wang C L, Jiang C S, Jassim M A, Ellingson R J, Podraza N J, Zhu K, Yan Y F 2019 Adv. Energy Mater. 9 1803135Google Scholar
[74] Jiang T M, Chen Z, Chen X, Liu T Y, Chen X Y, Sha W E I, Zhu H M, Yang Y 2020 Sol. RRL 4 1900467Google Scholar
[75] Yang Z B, Zhang X H, Yang W Y, Eperon G E, Ginger D S 2020 Chem. Mater. 32 2782Google Scholar
[76] Zhu Z L, Bai Y, Zhang T, Liu Z K, Long X, Wei Z H, Wang Z L, Zhang L X, Wang J N, Yan F, Yang S H 2014 Angew. Chem 53 12571
[77] Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107Google Scholar
[78] Garcia A, Welch G C, Ratcliff E L, Ginley D S, Bazan G C, Olson D C 2012 Adv. Mater. 24 5368Google Scholar
[79] Manders J R, Tsang S W, Hartel M J, Lai T H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar
[80] Yu Z H, Yang Z B, Ni Z Y, Shao Y C, Chen B, Lin Y Z, Wei H T, Yu Z S J, Holman Z, Huang J S 2020 Nat. Energy 5 657Google Scholar
[81] Tang H Y, Shang Y Q, Zhou W J, Peng Z J, Ning Z J 2019 Sol. RRL 3 1800256Google Scholar
[82] Xu G Y, Bi P Q, Wang S H, Xue R M, Zhang J W, Chen H Y, Chen W J, Hao X T, Li Y W, Li Y F 2018 Adv. Funct. Mater. 28 1804427Google Scholar
[83] Ni Z Y, Bao C X, Liu Y, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar
[84] Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112Google Scholar
Catalog
Metrics
- Abstract views: 11423
- PDF Downloads: 286
- Cited By: 0